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Slogan

“...from seismic reflectivity to 

connectivity...”
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Motivation

Equivalent media techniques

•wash out singularities 

•loose specular reflectivity

Because they average density and 
constitutive parameters



SLIM

Wish list

Upscaling techniques that preserve 
singularities = reflectivity

• link lithology to reflectivity (e.g. volume 
fraction shale in sand/shale mixtures)

• provide information on the connectivity

• without oversampling 
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Two strategies

1. Replace linear windowed equivalent medium 
averaging by equivalent medium averaging based 
on nonlinear approximations (e.g nonlinear 
approximations with wavelets based on recent 
developments in applied Harmonic analysis).

2. Use (rock) physical arguments based on the 
existence of critical phenomena in statistical 
mechanics (e.g., phase transitions in percolation 
theory) 
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Equivalent-medium (EM) 
approaches

Wave-equation driven (homogenization)

• anisotropy 

• difference (harmonic) averages for density

• static behavior of waves, i.e., the centroid

Mixture-model driven (binary mixtures)

• HS bounds

• Voigt-Reuss

[Schoenberg  ’88, ’89, ’92’]
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Our approach
Include connectivity in models for the effective properties 
of bi-compositional mixtures <=> SWITCH

• sand-shale, gas-hydrate, opal/opal CT

• upper-mantle mineralogy

Studied two cases:

• elastic properties upper mantle

• fluid-flow properties synthetic rock 

[FJH and Bernabe, ‘04]
[Bernabe and FJH, ’04]
[Maysami and FJI ‘08]
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Approach cont’d
Develop an upscaling methodology based on

• bi-compositional (sand/shale) mixtures

• two litho phases (LP/HP), namely weak and 
strong

• assume volume fraction (p) increases linearly 
with depth

[FJH and Bernabe, ‘04]
[Bernabe and FJH, ‘04]
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Approach cont’d

Model predictions:

• volumetric properties vary smoothly as a 
function of the volume fractions

• transport properties may not...
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Site percolationrandom 
process

Site-percolation 
model

LP Sand

HP Shale volume fraction

elastic properties

[FJH and Bernabe, ‘04]
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Percolation model
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Our approach

Incorporate geometry in description binary 
mixtures.

Distinguish between 

• volumetric properties (density & porosity) - 
do not depend on geometry/connectivity

• transport properties (permeability, stiffness, 
wavespeed) - depend on geometry/connectivity

[Knight ‘05]
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Regimes

For          ,

• weak mixture with random disconnected 
strong inclusions

• with increasing depth more strong 
inclusions are deposited

• at a critical volume fraction (depth), a 
connected cluster of strong HP is formed

p < pc
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Regimes

For         ,

• an infinite cluster of connected strong 
(HP) material is formed

p = pc
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Regimes
For         ,

• not all HP inclusions are part of the infinite HP 
cluster

• isolated HP clusters are embedded in the 
remaining LP to form a mixture M

• volume fraction that belongs to HP infinite 
cluster

p > pc

p∗ = p
(

p−pc

1−pc

)β
for β > 0
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Switch

Strength of material proportional to cluster 
size, i.e.,

Generates a fractional-order singularity at 
the critical volume fraction.

p∗ =





0 if p < pc

p
(

p−pc

1−pc

)β
if p ≥ pc.
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Universality scale 
exponents

Scale exponents of Percolation depend on

• dimension & type - e.g. Bond vs Site Percolation

• statistical properties of the mixing

• if isotropic, then the scale exponents are universal

We use Site Percolation in 3-D yielding β = 0.41
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Regimes

Volume fraction of mixed material is                .

To model the mixture, we need the volume 
fractions of its LP/HP parts

yielding

q∗ = 1− p∗

qM = (1− p)/ ((1− p) + (p− p∗)) and pM = (1− qM ),

pM = 1− q

1− p
(

p−pc

1−pc

)β
.
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Percolation

Well known that binary mixtures are strong when 
strong material is connected and weak otherwise.

Onsets of connectivity yield transitions similar to 
phase transitions predicted by Statistical Mechanics

• e.g. the onset of magnetization below Cury 
temperature

Takes connectivity into account...

Ledbetter et al. (1984); Gai et al. (1984); Deptuck et al. (1985);
Turosov et al. (1986); Marion and Nur (1989); Favier et al.
(1997); Novikov et al. (2001),Stauffer and Aharony
(1994),Herrmann and Bernab´e, 2004a; Bernab´e et al.,
2004)
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Bounds
Both the HP and LP phases are elastically isotropic 
and HP inclusions are spherical so the HP/LP 
mixture is locally (statistically) isotropic.

Model materials with isolated randomly distributed 
inclusions inside connected matrix.

Use upper bound when strong component forms 
the connected matrix.

Use lower bound otherwise.

[Hashin and Shtrikman (1962)]
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Bounds

Bulk modulus above critical depth

with                 and

[Marion and Nur (1989); Favier et al. (1997); Novikov et al.
(2001); Saidi et al. (2003)]

K = KLP

(
1 +

p(KHP −KLP )
q(KHP −KLP )aLP + KLP

)

aLP = 3KLP /(3KLP + 4GLP )

p = q − 1
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Bounds
Bulk modulus below critical depth

with

Similar expressions hold for shear modulus G.

[Marion and Nur (1989); Favier et al. (1997); Novikov et al. (2001)]
[Saidi et al. (2003), Herrmann and Bernabe ’04; Bernabe and Herrmann, ‘04]

K = KH

(
1 +

q∗(KM −KHP )
p∗(KM −KHP )aDHLP + KHP

)
,

KM = KLP

(
1 +

pM (KHP −KLP )
qM (KHP −KLP )aLP + KLP

)
.
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Equivalent medium

‣ Profile is smooth

‣ HS bounds are narrow

‣ Reuss-Voigt are wide
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Percolation model

‣ Below pc, HP is 
disconnected, use lower 
bound

‣ Above pc, HP is connected, 
switch to upper bound with 
appropriate volume fractions

‣ Switching leads to 
singularity at p = pc

‣ Use Reuss-Voigt
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Density varies 
smoothly

Velocity does not 

Singularity 
generates specular 
reflectivity
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Site percolationrandom 
process

Site-percolation 
model

LP Sand

HP Shale volume fraction

elastic properties

[FJH and Bernabe, ‘04]
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Site percolationrandom 
process

Site-percolation 
model
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Singularity analysis

Chapter 1. Introduction
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Figure 1.1: Generalized type of seismic transitions with different singularity
orders including fractional-orders (left). Corresponding seismic waveform
(right) is given by convolving the seismic source function, which is taken
to be a Ricker wavelet.
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Chapter 3. Seismic waveform characterization
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Figure 3.1: A typical example for detection stage of a synthetic seismic
trace (a) with k = 11 reflection events. Wavelet coefficients for the signal
are plotted in (b) with warm colors corresponding to large magnitudes. The
vertical and horizontal axes show scale and location, respectively. Modulus
maxima lines are shown as dark blue lines where white circles identify the
scale and the location for the corresponding events.
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Detection-estimation

Chapter 3. Seismic waveform characterization
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Figure 3.1: A typical example for detection stage of a synthetic seismic
trace (a) with k = 11 reflection events. Wavelet coefficients for the signal
are plotted in (b) with warm colors corresponding to large magnitudes. The
vertical and horizontal axes show scale and location, respectively. Modulus
maxima lines are shown as dark blue lines where white circles identify the
scale and the location for the corresponding events.
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Multiscale detection:
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Segmentation & 
estimation

Chapter 3. Seismic waveform characterization

where W(.) is the windowing operator centered at τ (n), and has a support
proportional to σ(n) (see Fig. 3.2).

The outputs of this procedure are N signals with ‘isolated’ events. Even
though this segmentation procedure is somewhat arbitrary (e.g. it depends
on a width parameter), we found this method to perform reasonably well for
cases where inter-event distances are large enough (see Dossal and Mallat
(2005) for more details). Sub-wavelength details are not extracted and are
left to the ensuing estimation stage.
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Figure 3.2: Partitioning of detected events for the synthetic seismic trace in
Figure 3.1. Each individual event (solid waveform) is extracted by using a
window function (dashed line with same color) centered at τ (n) and a width
proportional σ(n).

3.3 Nonlinear parametric inversion

In order to complete the characterization, we need to estimate attributes
for the individual windowed waveforms s(n)(t) given by the detection stage.
These isolated events are subjected to a nonlinear parametric inversion,
where prior estimates on location, scale, and phase, are provided by the
detection stage. To setup this procedure, we first need to refine our math-
ematical model for the parametrized waveforms in equation 3.1. We derive
our model from a Gaussian bell-shaped waveform.

3.3.1 Parametric representation

Each element of the parametric family, also known as a manifold, is given by
a fractional derivative/integration of the shifted and scaled Gaussian with
some phase rotation. In the time domain, these waveforms are defined by a
nonlinear function, fθ : R5 !→ R, given by

fθ(t) = Dα

(
1√

2πσ2
e(t−τ)2/2σ2

)
ejπφ, (3.4)

13

Chapter 3. Seismic waveform characterization

The gradients for the mismatch error e(n) are then given by

J (n)
i =

∂e(n)

∂θi
= 2

〈
s(n) −M [θ], γθi

〉
with θi ∈ θ, (3.8)

where γθi = ∂fθ
∂θi

, and 〈., .〉 denotes inner product of two signals. One can

also think of J (n)
i as the projected estimation error for each parameter. The

Jacobian matrix is given by J(n) = {J (n)
i : i = 1 · · · 4}.

Figure 3.3 shows the parameter estimation results for a single isolated
event, where the BFGS method provides an acceptable solution to the min-
imization problem after only a few iterations. Figure 3.4 compares the es-
timated values of the singularity order with actual values. It also shows
the fairly small mismatch between the original trace and the reconstructed
trace by superposition of the estimated waveforms. We found the inversion
results for the isolated events to be independent of noise below a reasonable
level.
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Figure 3.3: Parameter estimation for an individual event in Fig. 3.2. (a)
Initial iteration of parameter estimation for the isolated event where dashed
blue line shows windowed event and solid red line shows our guess. (b) Final
iteration of parameter estimation for the isolated event where the estimated
waveform matches the actual event.
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Chapter 3. Seismic waveform characterization
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Chapter 5. Opal-A to opal-CT transition and well-seismic tie
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Figure 5.3: Well-seismic tie. By choosing the appropriate pc value, diage-
netic event is aligned in both synthetic traces (in the middle of section) and
neighboring real traces. The detection-estimation method is applied to this
semi-synthetic section in order to see how constraints from seismic wave-
forms fit with the ones from lithology. Estimated (a) singularity orders and
(b) phase attributes are matched along the diagenetic event when β = 0.81.
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Used to constrain the scale exponent for 
well to seismic tie.

Estimated singularity 
orders
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Opal-Opal CT 
transition

Chapter 5. Opal-A to opal-CT transition and well-seismic tie
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Figure 5.1: The site percolation model for the diagenetic transition of opal-
A to opal-CT. Properties for opal-A are taken to be ρ = 1713.90 kg/m3 and
Vp = 1889.65 m/s. For opal-CT, density and P-wave velocity are assumed
to be ρ = 2006.06 kg/m3 and Vp = 2237.71 m/s, respectively. Density (top
left) and P-wave velocity (top right) profile of the transition is determined
as a function of volume fraction of opal-CT. The velocity, bounded by Reuss
and Voigt averages, is showing a switch-like behavior at a critical point. The
singularity is clearly visible from derivative of velocity (bottom left), and
also preserved in reflection coefficients (bottom right).
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Upscaling problem

How can we upscale to preserve reflectivity?

Mike’s proposal is to do a moving average equivalent 
medium averaging-i.e.,

cv,σ(z) =

√
1(

ρ ∗ φσ

)
(z)

(
κ−1 ∗ φσ

)
(z)

ch,σ(z) =

√(
ρ−1 ∗ φσ

)
(z)(

κ−1 ∗ φσ

)
(z)

[Schoenberg  ’88, ’89, ’92’]
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Upscaling problem

... But in that case we need to 
“oversample” by a factor of 10 ...

... and this may lead to difficulties 
during inversion...

[Foldstad and Schoenberg, ‘92]
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Upscaling problem

We can use our percolation 
model instead...
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Synthetic log
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Velocities
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Cross plots
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Upscaling dillema

Suppose we are given volume fractions p(z) for shale.

Use the Percolation model to compute fine-grained 
velocities.

Two options to upscale:

• average fine-grained velocities and densities but  
this smoothes out the switch

• average the volume fractions because this preserves 
the switch
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Upscaled lithology
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Upscaled EM 
velocities

0   500 1000 1500 2000 2500 3000 3500 4000

−10

−5 

Log samples

Ve
lo

ci
tie

s

Equivalent−medium upscaled velocities, 



SLIM

Upscaled Percolation 
velocities
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Upscales EM 
reflectivities
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Upscaled Percolation 
reflectivities
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Observations

At fine scales, the (zero-order) singularities in 
the lithology dominate the reflectivity

At coarse scales, 

• EM-based reflectivity smoothes out

• Percolation-based reflectivity is persistent and 
is dominated by the (fractional)-order 
singularity
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Conclusions

Percolation model preserves the singularities

Switch model provided “access” to the fine-
structure (connectivity) from macroscopic 
waves 

Rigorous mathematical framework for the 
“shapes” of these percolation-induced 
transitions is an open problem...
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“...a few words”
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