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SUMMARY

By combining Percolation models with lithological smooth-
ing, we arrive at method for upscaling rock elastic constants
that preserves reflections. In this approach, the Percolation
model predicts sharp onsets in the elastic moduli of sand-shale
mixtures when the shales reach a critical volume fraction. At
that point, the shale inclusions form a connected cluster, and
the macroscopic rock properties change with the power-law
growth of the cluster. This switch-like nonlinearity preserves
singularities, and hence reflections, even if no sharp transition
exists in the lithology or if they are smoothed out using standard
upscaling procedures.

PROBLEM STATEMENT

Equivalent medium theory that models specular reflections has
been, and and probably still is, one of the main challenges in
current-day rock physics. The reason for this challenge lies in
the fact that equivalent medium theory generally derives from a
spatial or ensemble averaging argument during which fine-scale
medium variations are “averaged out”. This is problematic
problematic because reflections are washed out as well.

While this type of averaging has made a major impact—not
least thanks to Mike’s major contributions in describing the
quasi-static behavior of waves, including anisotropy induced
by fine-scale heterogeneity (Schoenberg and Muir, 1989) or of
preferential-oriented cracks (Haugen and Schoenberg, 2000;
Daley et al., 2006)—finding an averaging procedure that pre-
serves specular reflections continues to be more illusive. The
reason for this is that smoothing intrinsically mollifies singu-
larities. Consequently, transitions where the derivative in the
elastic medium properties becomes large are washed out and
this explains why waves cease to reflect specularly in media
that have been smoothed (using equivalent medium theory) to
length-scales that are too close to the dominant wavelength.
This observation was made early on by Folstad and Schoenberg
(1992) and proved extremely useful for the purpose of forward
modeling. However, because the averaging-length scale re-
quired for the forward modeling needs to be approximately
ten times finer than the dominant wavelength, it is perhaps a
challenge to use these results to formulate an inverse problem.

One could argue that there are two possible remedies to ad-
dress this issue. First, one may opt to replace linear windowed-
equivalent medium averaging by an approach where the medium
fluctuations are nonlinearly averaged. In mathematical terms,
this means that we could nonlinearly approximate the medium
fluctuations by increasing thresholds on the coefficients of the
shift-invariant discrete wavelet transform. For the Haar wavelet,
this approach is reminiscent of the nonlinear procedure known
as “blocking”. Recent developments in the field of compres-
sive sensing (see e.g. Herrmann et al., 2009), which achieve
super resolution, could provide access to these large coeffi-
cients. However, despite the fact that these approaches preserve

singularities, and hence, reflectivity, they lack a clear physical
interpretation—i.e., it is somewhat to envision how this sort
of thing would work for something as intricate as solving the
upscaling problem. Therefore, we would like to explore another
possibility and that one is related to the existence of critical
phenomena in statistical mechanics. There, a system changes
its behavior critically as a function of some order parameter
(read ’some volume fraction dependent on some spatial coor-
dinate). An example of this type of behavior is the physical
property of magnetization, which occurs when the density of
aligned spins reaches a critical threshold. Below this thresh-
old, the material is non-magnetic while above the critical point
the degree of magnetization increases rapidly as a function of
decreasing temperature that determines the density of aligned
spins. Using a connectivity argument, Stauffer and Aharony
(1994), and many others, developed Percolation theory, which
explains this type of phenomenon. The argument is that there is
a critical concentration at which the aligned spins form a con-
nected cluster, and that point coincides with the critical point at
which the material becomes magnetic. This model is not limited
to magnetic materials and is known to describe the behavior
of so-called transport properties that depend on connectivity,
including electric conductivity, sustainment of shear, and the
onset of permeability.

In this paper, we present an averaging method that incorpo-
rates these Percolation ideas. We do this by considering a rock
consisting of a mixture of sand and shales, and we ask our-
selves the question: Can we expect a critical point to occur as a
function of the volume fractions, and hence can we predict the
occurrence of a specular reflection, when the composition of
bi-compositional reaches a point at which clusters of the stiffer
of the two materials connect. We use this phenomenon to come
up with a new averaging procedure that generates reflections
induced by critical points.

First, we will adapt the Percolation-based model introduced
by the authors (Herrmann and Bernabé, 2004a; Bernabé et al.,
2004) to model sand-shale mixtures. Second, we combine this
model with an averaging method that acts on the lithology.
This approach differs from current approaches where the elastic
properties (e.g., bulk modulus) are typically averaged. Instead,
we propose to average spatial variations in sand-shale volume
fractions, and use our Percolation model to map these to the
elastic properties. We will illustrate the behavior of this model
with a synthetic lithology log.

PERCOLATION FOR SAND-SHALE MIXTURES

Although the lithology of sedimentary crust is likely to be
complex, we will assume here that, as far as modeling the
elastic properties is concerned, we can use a simplified bi-
compositional model with volume fractions that depend on
the vertical coordinate only. We consider a region where only
two lithologies are involved, namely sand and shale (see Fig 1,
where the black inclusions refer to Shale). At the top of the co-
existence region, the material exclusively consists of the weak
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phase (LP). With increasing depth, inclusions of the stronger
phase (HP) are progressively formed until only HP material
remains. For the sake of simplicity, we assume that the volume
fractions of HP and LP, p and q = 1− p, are linear functions
of depth z (See Fig. 1 (a)). However, this assumption is non-
essential and more complicated functions of z can be used as
we will discuss below. At a critical depth zc, which corresponds
to the percolation threshold pc = p(zc), an infinite, connected
HP cluster is formed. It is important to note that, below zc, not
all HP inclusions belong to the infinite cluster. Isolated HP
inclusions can still be found, embedded in the remaining LP
material and forming with it a mixture (M). In summary, above
zc we have a weak LP matrix containing randomly distributed,
non-percolating, strong HP inclusions. Below zc, a strong HP
skeleton is intertwined with the weaker, mixed material M. Per-
colation theory predicts that, in the vicinity of the percolation
threshold, the volume fraction p∗ of HP material that belongs
to the infinite cluster is zero for p < pc (i.e., below zc) and has
a power-law dependence on (p− pc) for p≥ pc (Stauffer and
Aharony, 1994). For convenience, we assume that this power-
law extends to the bottom of the mixing region (i.e., p = 1).
Hence, p∗ is given by:

p∗ = p
„

p− pc

1− pc

«β

, (1)

where the exponent β is a positive, real number, which in
general, is considered to be “universal” (i.e., it only depends
on dimensionality, but, for example, not on interconnection
topology of the inclusions). Site Percolation theory predicts
β = 0.41 in three-dimensional discrete lattices in the case of
an isotropic, δ -correlated, stochastic process (Stauffer and
Aharony, 1994). However, universality of the Percolation ex-
ponents is unlikely to hold in the case of the sand-shale transi-
tions. Indeed, the stochastic process responsible for inclusion
emplacement should presumably display long-range, possibly
anisotropic, spatial correlation owing to the elastic interaction
of an inclusion with its surroundings (Kaganova and Roitburd,
1988). This causes a change of the exponent β , especially since
the inclusion connectivity problem belongs to continuum rather
than lattice percolation (e.g., Isichenko (1992); Sahimi and
Mukhopadhyay (1996)).

Below zc, the volume fractions for the mixed material M is,
of course, given by q∗ = 1− p∗. For modeling M, we need
need the volume fractions of its LP and HP parts, qM − (1−
p)/((1− p)+(p− p∗)) and pM = (1− qM), respectively. A
simple calculation yields:

pM = 1− q

1− p
“

p−pc
1−pc

”β
. (2)

It is well-known in solid state physics and mechanical engi-
neering that a binary mixture is elastically strong if its strong
component forms a connected cluster and weak otherwise (e.g.,
Ledbetter et al. (1984); Gai et al. (1984); Deptuck et al. (1985);
Turosov et al. (1986); Marion and Nur (1989); Favier et al.
(1997); Novikov et al. (2001) for other applications of per-
colation theory to mechanics see de Gennes (1976), or Roux
and Guyon (1985)). Thus a realistic elastic model of the co-

existence region must take into account the connectivity (or
lack of connectivity) of the HP phase.

We begin by assuming that both the HP and LP phases are elasti-
cally isotropic and that the HP inclusions have a spherical shape
so that the HP/LP mixture is locally (statistically) isotropic as
well. Hashin and Shtrikman (1962) demonstrated that the elas-
tic moduli of statistically isotropic, binary mixtures are tightly
bounded by two quantities known as the Hashin-Shtrikman
(HS) bounds. More importantly, it has been shown that the HS
bounds can effectively be used to model the elastic properties of
materials consisting of isolated spherical inclusions randomly
distributed inside a continuous (connected) matrix (e.g., Mori
and Tanaka (1973); Benveniste (1987)), even for non-dilute
concentrations of inclusions (e.g., Luo and Weng (1987)). Note
that the model accuracy increases with decreasing elastic con-
trast between the two components of the mixture. The upper
HS bound must be used when the strong component forms the
connected matrix while the lower one applies otherwise (e.g.,
Marion and Nur (1989); Favier et al. (1997); Novikov et al.
(2001); Saidi et al. (2003)). Accordingly, the bulk modulus K
of the co-existence region above zc is given by the lower HS
bound:

K = KLP

„
1+

p(KHP−KLP)
q(KHP−KLP)aLP +KLP

«
, (3)

where aLP = 3KLP/(3KLP +4GLP), and the subscripts LP and
HP refer to the two lithologies involved in the transition. A sim-
ilar relation is obtained for the shear modulus, except that aLP
is replaced by bLP = 6(KLP + 2GLP)/5(3KLP + GLP). Below
zc, we must switch to the higher HS bound:

K = KH

„
1+

q∗(KM −KHP)
p∗(KM −KHP)aDHLP +KHP

«
, (4)

where KM is the bulk modulus of the mixed material M. Since
the HP inclusions in M are isolated, KM is calculated using the
lower HS bound:

KM = KLP

„
1+

pM(KHP−KLP)
qM(KHP−KLP)aLP +KLP

«
. (5)

Similar equations can be written for G, where aLP and aHP are
replaced by bLP and bHP. Hence, we can calculate K and G for
all values of p between 0 and 1.

PERCOLATION-INDUCED REFLECTIVITY
The above Percolation-based model predicts rapid changes in
the transport properties as a function of the volume fractions
of bi-compositional mixtures. For mixtures of two materials,
e.g. one hard one soft, the behavior of such a mixture is well
understood. Less well-known is the fact that the mixture under-
goes an abrupt change when the volume fraction of the stronger
material reaches a point where the inclusions connect. At that
critical point, a fractional-order discontinuity is created in the
elastic properties of the mixture.

So, we have a β -order singularity in the elastic bulk moduli
as the critical depth zc is approached from below. Thus, the
fluctuations in the elastic bulk moduli with respect to a smoothly
varying background obey the following power-law relation,

∆(z) ∝

(
(z− zc)β z≥ zc

0 z < zc
(6)
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Figure 1: Site Percolation Model (SPM) (adapted from (Herrmann and Bernabé, 2004b))
of the coexistence region. (a) Depth-profile of the mixture density, ρ = qρLP + pρHP , which
does not behave singularly for a smoothly varying composition, p(z). (b) Schematic illustration
of the phase transition by formation of the strong lithology (HP) inclusions in a weak lithology
(LP) matrix. The HP inclusions (black) are assumed to be horizontal-oriented ellipsoids. At the
critical depth zc (dotted line) the HP inclusions percolate, form an infinite cluster containing
long vertical dendrites of the LP matrix and some isolated HP inclusions. (c) Corresponding
shear wavespeed profile (solid line) showing a singularity at xc . The singularity is clearly
apparent in the derivative (dashed line). The magnitude of the singularity depends on the
difference between the mixing laws (here Reuss and Voigt averages). The value for the
singularity order was taken to be β = 0.30.

with 0 < β < 1 and where the symbol ∆ refers to fluctuations in
the bulk modulus, ∆K = K−K̄

K̄ , or shear modulus, ∆G = G−Ḡ
Ḡ ,

with the barred quantities representing (moving) averages such
that ∆K, ∆G� 1. Notice that Eq. 6 implies divergence of the
α-order derivative at (with α > β ). Conversely, the lithology,
as expressed by the volume fractions (p and q) and the mixture
density (ρ = qρLP + pρHP ), varies smoothly. Since β cannot
be theoretically constrained, we must instead use seismic waves
to probe the singularity and estimate the exponent. Refer to
Maysami and Herrmann (2008) where seismic data was used to
constrain the exponent associated with the opal-A (Amorphous)
to opal-CT (Cristobalite/Tridymite) transition in the North Sea
near the Shetland Islands.

In summary, critical Percolation phenomena (Herrmann and
Bernabé, 2004a; Bernabé et al., 2004) have profound impli-
cations on the interpretation of seismic discontinuities, which
in this case can no longer be attributed to steep gradients in
the composition. Instead the discontinuities are due to an in-
tricate mechanism which, when well understood, provides (i)
complementary information on the composition of the subsur-
face and (ii) a method to do lithological upscaling. Because
of the “switch” at the critical point, upscaling by smoothing
the lithology, e.g. by smoothing of the volume fractions of
shale in sand-shale mixtures, no longer washes out the reflectiv-
ity, an unwanted site effect of many equivalent-medium based
upscaling techniques. Instead, reflectors will be preserved.

LITHOLOGICAL UPSCALING

To understand how to incorporate the Percolation switch in
upscaling let us study the behavior of sonic wavespeeds as a
function of the compliance K calculated from volume fraction
p that is a function of depth. From mixing theory, it is known
that the compliance for any rock mixture lies within the Hashin-
Shtrikman (HS) bounds (See Fig. 2). According to our model,
the rock mixture follows for low volume fractions the lower-

HS bound and as it reaches the critical point, the compliance
displays a ’cusp-like’ behavior departing the lower-bound, fol-
lowed by a ramping up towards the upper bound (the red line in
Fig. 2). As we will show, this ’switch-like’ behavior will have
a distinct impact on upscaled velocities, and in particular on
reflectivity. This can be understood because reflectivity entails
a differentiation with respect to the medium properties and this
differentiation is sensitive to cusp-like singularities.

To illustrate upscaling according to our Percolation model, we
study the lithology of the synthetic well-log plotted in Figure 3
(kindly provided by Dave Wilkinson). We use the volume frac-
tions from this log to calculate the velocities with the model
presented in this paper. We use published values for the bulk
moduli of pure sand and pure Shale in the equations. The cal-
culated velocities for the detailed synthetic well are plotted
in Figure 4. Because the detailed lithology profile contains
sharp transitions, we observe sharp transitions in the both veloc-
ity profiles. We also observe significant differences whenever
the volume fraction passes though the critical volume fraction
of pc = 0.32 (see Fig. 2). Even though both profiles contain
sharp zero-order transitions (these correspond to scale exponent
β = 0), the profile yielded by our model contains additional
singularities associated with the Percolation switch. The cross
plots for these velocities included in Figure. 5 reveals the pres-
ence of this smoother type of singularity reflected in the cusp-
like feature that is not present in the velocity predictions using
equivalent medium theory.

This subtle difference proves extremely important for upscaling
when this is done by averaging the lithology instead of the den-
sity and elastic moduli as is commonly done. Mathematically,
we can represent this upscaling to the scale σ via,

vσ
p (z) = P [(p∗z φσ )(z)] , (7)

with φσ a Gaussian bell shape with width σ , p(z) the volume-
fraction profile, and P[·] represents the Percolation-switch model.
Because we are interested in reflectivity (or in converted waves),
we plot in Fig. 6 the derivatives for both velocity profiles for
increasing upscalings (from left to right). As expected, the
reflectivity obtained after equivalent medium averaging dis-
appears as the scale increases. However, the presence of the
switch in our model, preserves reflections at locations where
the upscaled lithology log crosses the critical volume fraction.

CONCLUSIONS

We presented a upscaling methodology during which reflections
are preserved that otherwise would have been washed out during
conventional upscaling techniques. Our contribution lies in the
combination of a nonlinear switch-like Percolation model with
a linear smoothing procedure that acts on the spatial variations
of volume fractions of sand-shale mixtures. This approach in
interesting because it may give us access to the lithology by
studying reflections.
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Figure 2: HS bounds for the elastic compliance (black) as a
function of the lithology (volume fraction p) and the cusp-
like behavior according to our critical percolation-based model
(red).
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Figure 3: A well with a synthetically generated lithology log
for the volume fractions of shale as a function of depth.
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Figure 4: Velocities calculated with conventional equivalent
medium theory (blue) and our Percolation-based model (green).
Notice that there are significant differences between the values.
Also remark, that both logs contain edges because of the sharp
edges present in the lithology log itself (cf. Fig. 3).
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Figure 5: Cross plots calculates from the velocity logs plotted
in Fig. 4. Notice, the presence of the cusp for the crossplot of
the velocities calculated with the Percolation model (red).
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Figure 6: Reflector-preserved lithological upscaling. (a) Up-
scaled reflection traces according to the classical upscaling
based on equivalent medium theory. (b) The same but now
from the Percolation model. Notice the vanishing of the re-
flectivity for coarser scales with the classical upscaling and the
preservation of the events related to our nonlinear upscaling
model.
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