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Drivers

We are no longer finding oil...

Seismic imaging & inversion

• from noisier and incomplete data

• at reduced computational costs

• with improved resolution
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Impediments

Seismic-data volumes are extremely 
large

Least-squares migration & formation 
of image volumes are prohibitively 
expensive...
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Impediments

Full-waveform inversion is 
suffering from

• multimodality, i.e,. a multitude of velocity 
models explain data

• local minima

• is both over- and undetdetermined

[Symes, ‘08]
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Today’s talk
Leverage insights from

• Randomized matrix multiplies and linear 
regressions, and

• from Compressive Sensing (CS)

for computation of image volumes

Exploit physical principle of focusing...
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Motivation
Faster shot-record depth migrations using phase encoding by Morton 
& Ober, ’98.
Phase encoding of shot records in prestack migration by Romero et. 
al., ’00.
How to choose a subset of frequencies in frequency-domain finite-
difference migration by Mulder & Plessix, ’04.
Efficient waveform inversion and imaging: A strategy for selecting 
temporal frequencies by Sirque & Pratt, ’04. 
Compressed wavefield extrapolation by T. Lin and F.J.H, ’07
Efficient Seismic Forward Modeling using Simultaneous Random 
Sources and Sparsity by N. Neelamani et. al., ’08.
Migration Velocity Analysis and Waveform Inversion by Symes, ‘08
Compressive simultaneous full-waveform simulation by FJH  et. al., ’09.
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PDE constrained 
optimization

min
U∈U ,m∈M

1
2
‖P−DU

∥∥2

2
subject to H[m]U = Q

+ Free surface BC

P = Total multi-source and multi-frequency data volume
D = Detection operator
U = Solution of the Helmholtz equation
H = Discretized multi-frequency Helmholtz system
Q = Unknown seismic sources
m = Unknown model, e.g. c−2(x)

[Lailly, ‘83]
[Tarantola, ‘84, ‘86, ’87]
[Pratt and co-authors, ‘96, ‘98, ‘99, ’03]
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Adjoint state
Implicit solves of Helmholtz system for each source 

with

and

H[m]u = q and H∗[m]v = r

F [m,q] = DH−1[m]q

[Pratt et. al., ‘98]
[Plessix ‘06]

r = D∗(p− F [m,q])

q
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Gradient
Post-stack migration:

with

and

δd = vec(P−DH−1[m]Q)

F [m, Q] = DH−1[m]Q

δm = !
(

∑

ω

ω2
∑

s

(ū" v)s,ω

)
= K∗[m,Q]δd

[Plessix ‘06]
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Helmholtz system
Involves multiple solves of

and the adjoint system





Hω1 0

0 Hω2

. . .
. . . . . . 0

0 Hωnf









Uω1︷ ︸︸ ︷
[u1 u2 · · · uns ]ω1

...

...
[u1 u2 · · · uns ]ωnf︸ ︷︷ ︸

Unf





=





Qω1︷ ︸︸ ︷
[q1 q2 · · · qns

]ω1

...

...
[q1 q2 · · · qns

]ωnf︸ ︷︷ ︸
Qnf





[Erlangga, Oosterlee, Vuik, ‘06]
[Riyanti et. al., ‘06]
[Plessix et. al., ‘07]
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PDE constrained 
optimization

Design data-space Compressive 
Sampling strategies that

• reduce # of frequencies & right-hand-sides

• commute with the block-diagonal Helmholtz 
system

• overhead << gain in computational speed 
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Dimensionality 
reduction

Reduced system






Q = D∗ s︸︷︷︸
single shots

HU = Q

y = RMDU

⇐⇒






Q = D∗ RMs︸ ︷︷ ︸
simul. shots

HU = Q

y = DU

[FJH et al., ‘09]

min
U∈U ,m∈M

1
2
‖y −DU‖2

2 subject to H[m]U = Q
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Recent advances

Numerical modeling costs 

• are no longer determined by the size of the 
discretization...

• but by transform-domain compressibility of 
the solution...

[Neelamani et. al. ‘08]
[FJH et al., ‘07-09]
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Data-space reduction

“Compresive simultaneous full-waveform 
simulation” by Felix J. Herrmann, Tim T. Y. 
Lin*, Yogi A. Erlangga. SM 1 Algorithms and 
Methods. Room 360 A @ 11:25 AM.

“Seismic waveform inversion with Gauss-
Newton-Krylov method” by Yogi Erlangga 
and Felix J Herrmann. SI 3 Methods. Room: 
351 F @ 04:25 PM.

http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2009/lin09segcss.pdf
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Challenges

• there are local minima--, i.e., many velocity 
models explain data within the same error

• continuation methods only offer partial solution

• miss the ability to focus

• flexibility to harvest multiexperiment wavefields 
U, V for information (e.g.,  AVO) ...

min
U∈U ,m∈M

1
2
‖P−DU

∥∥2

2
subject to H[m]U = Q

+ Free surface BC
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Migration-velocity analysis
Motivated by differential semblance

make the wave equation nonlocal-i.e.,

with

annihilator︷ ︸︸ ︷
Ph· = h·,

redundant coordinate

minm ‖(Ph

image volume︷ ︸︸ ︷
δI(·, h;m, δd)) ‖2

with m = 1
2 (xs + xr) and h = 1

2 (xs − xr)

[Symes, ’93,’04, ‘09]
[Plessix ‘99]
[Stolk ’03]
[de Hoop ’03]
[Biondo ’04]
[Shen ‘08]

m(x) !→ I(m,h)
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Nonlinear MVA

Solve

• increases degrees of freedom

• promotes focusing

• involves non-local modeling

min
U∈U , I∈I

1
2
‖P−DU

∥∥2

2
subject to

{
H[I]U = Q
PhI = 0

[Symes, ‘08]
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Gradient
Pre-stack migration:

with for 

(
Ū ! VT

)
:= T(xs,xr,ω) !→(m,h,τ)




Ū1

. . .
Ūnf








VT

1
...

VT
nf





f = 1 · · · nf

δI(m,h, τ) =
(
Ū " VT

)
= K∗[m,Q]δd

[Symes, ‘08]
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Image volume

Claerbout’s imaging principle:

ns nx × nz × nt

=

δm = δI(·, h = 0, τ = 0)
= K∗[m,Q]δd

!

n
m

=
n

x
×

n
z

n′
s

[Symes, ‘85]

nh = 2× nx × nz × nτ
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Image volume
Image volume large because of degrees of freedom

Wavefields too expensive to store

Formation image volume relies on full matrix-
matrix multiplies

Use dimensionality reduction techniques

• beyond phase-encoded sources

• “model-space” dimension reduction
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Dimensionality reduction
Look at the Google/Yahoo people for help ...

• Fast Monte Carlo Algorithms for Matrices I: 
Approximating Matrix Multiplication by
 P. Drineas, R. 
Kannan, and M. W. Mahoney, ‘04

• Improved Approximation Algorithms for Large Matrices 
via Random Projections by Tamás Sarlós, ’08

AB ≈ A (RM)∗ (RM)B
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Model-space reduction
For each angular frequency phase encode

with

Approximate image volume by

RM :=

sub sampler︷ ︸︸ ︷



Rσ
1 ⊗Rρ

1 ⊗Rζ
1

...
Rσ

n′
f
⊗Rρ

n′
f
⊗Rζ

n′
f





random phase encoder︷ ︸︸ ︷(
F∗

3

(
eîθ

))
F3 ,

n′
f × n′

σ × n′
ρ × n′

ζ " nf × ns × nr × nz

δI(m,h, t) ≈
(
Ū

(
RM

)∗
! RMVT

)

[Romero et. al., ’98.]
[Morton & Ober ‘00]
[Romberg, ‘08]
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Example
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background velocity model perturbation



δI



δI(·, h = 0, τ = 0)
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Observations

Recovery from 0.1% of the 
samples ... But is

•noisy

•and not focused
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Extended linearized 
inversion

Gauss-Newton updates with reduced Hessian

Invert with Lanczos (Conjugate gradients)

δILS = K†δd = min
δI

‖δd−KδI‖2

K∗K︸ ︷︷ ︸
HGN

δILS ≈ K∗δd︸ ︷︷ ︸
δI
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Dimensionality reduction

Look again at the Google/Yahoo people for help ...

• Sampling Algorithms for L2 Regression and Applications by 
P. Drineas, M. W. Mahoney, and S. Muthukrishnan, ‘06

• Improved Approximation Algorithms for Large Matrices via 
Random Projections by Tamás Sarlós, ’08

minx ‖b−Ax‖2 ≈ minx ‖RM
(
b−Ax

)
‖2
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Sparsity promotion 
and focusing

Least-squares does not promote sparsity.

CS recovers from dimension reductions through 
transform-domain sparsity promotion.

Missing fundamental principle of focusing...

Use recent results on mixed (1,2)-norm 
minimization.
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Focussed wavefield 
inversion

Least-squares inversion for image volumes is 
equivalent to solving multi-D deconvolution 
problem, i.e., by inverting

• reduce dimensionality by model-space CS 

• include sparsity promotion and focusing

(U∗ ∗ δI) ≈ VT
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CS & focus

Compressively sample augmented system:

Solve with mixed (1,2) norm minimization

AX ≈ Bor
RM (U∗ ∗ S∗X) ≈ RMVT

PhX ≈ 0
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Group-sparsity promotion

Back to optimizers & CS people

• Joint sparsity-promotion with mixed (1,2) norms

• Joint-sparse recovery from multiple measurements by E. 
van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ
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Group-sparsity

Solve by mixed (1,2)-norm minimization:

with

and

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

‖X‖1,2 :=
∑

i∈rows(X)

‖rowi(X)∗‖2

‖X‖2,2 :=




∑

i∈rows(X)

‖rowi(X)∗‖2
2





1
2

.

[van den Berg and Friedlander, ‘09]
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Computational 
details

Compute image volume for varying

• horizontal offset, i.e., 

• ‘vertical’ time offset

• combine

h = hx = 1
2 (xs − xr) for z = zs = zr fixed

τ = 1
2 (ts − tr)

h = (h, τ) and Ph = h⊗ τ
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Recovery

Solve

with






X̃ = arg minX ‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ

δ̃I = S∗X̃

S = W ⊗W



δI



δ̃I



δI(m,h = 0, τ = 0)



δ̃I(m,h = 0, τ = 0)



SLIM

Observations

Model reductions by CS  are essential

Group sparsity promotion allows for

• focusing amongst offsets via two-norm 
minimization

• sparsity-promotion amongst images via one-
norm minimization

Perspective of solving the extended formulation...
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CS alternative

Computational complexity no longer 
depends on the size of the 
discretization...

...but on transform-domain 
compressibility of the solution...
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Conclusions & outlook
CS allows for model-size reduction

• image volumes computable

• recoverable with group-sparsity promotion

• promotes sparsity & focusing

Opens perspectives towards

• harvesting image volumes for information

• Symes’ extension
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Thank you for your attention!

more information

slim.eos.ubc.ca

http://my.yahoo.com/
http://my.yahoo.com/

