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SUMMARY

Migration relies on multi-dimensional correlations between
source- and residual wavefields. These multi-dimensional
correlations are computationally expensive because they in-
volve operations with explicit and full matrices that contain
both wavefields. By leveraging recent insights from compres-
sive sampling, we present an alternative method where linear
correlation-based imaging is replaced by imaging via multidi-
mensional deconvolutions of compressibly sampled wavefields.
Even though this approach goes at the expense of having to
solve a sparsity-promotion recovery program for the image, our
wavefield inversion approach has the advantage of reducing the
system size in accordance to transform-domain sparsity of the
image. Because seismic images also exhibit a focusing of the
energy towards zero offset, the compressive-wavefield inversion
itself is carried out using a recent extension of one-norm solver
technology towards matrix-valued problems. These so-called
hybrid (1, 2)-norm solvers allow us to penalize pre-stack energy
away from zero offset while exploiting joint sparsity amongst
near-offset images. Contrary to earlier work to reduce model-
ing and imaging costs through random phase-encoded sources,
our method compressively samples wavefields in model space.
This approach has several advantages amongst which improved
system-size reduction, and more flexibility during subsequent
inversions for subsurface properties.

INTRODUCTION

With the recent resurgence of full-waveform inversion—i.e.,
adjoint-state methods applied to solve PDE-constrained opti-
mization problems—the computational cost of computing the
model updates has become one of the major impediments with-
standing successful application of this technology to industry-
size data volumes. To overcome this impediment, we argue
that further improvements will depend on a problem formula-
tion with a computational complexity that is no longer strictly
determined by the size of the discretization but by transform-
domain sparsity of its solution. In this new paradigm, we
bring computational costs in par with our ability to compress
solutions of certain PDEs. This premise is related to two re-
cent developments. First, there is the new field of compres-
sive sensing (CS in short throughout the paper, Candès et al.,
2006; Donoho, 2006)—where the argument is made, and rigor-
ously proven—that compressible signals can be recovered from
severely sub-Nyquist sampling by solving a sparsity promot-
ing program. Second, there is in the seismic community the
recent resurgence of simultaneous-source acquisition (Beasley,
2008; Krohn and Neelamani, 2008; Berkhout, 2008; Neelamani
et al., 2008; Herrmann et al., 2009), and continuing efforts to
reduce the cost of seismic modeling, imaging, and inversion
through phase encoding of simultaneous sources (Morton and
Ober, 1998; Romero et al., 2000; Krohn and Neelamani, 2008;
Neelamani et al., 2008; Herrmann et al., 2009), and the removal
of subsets of angular frequencies (Sirgue and Pratt, 2004; Mul-

der and Plessix, 2004; Lin et al., 2008; Herrmann et al., 2009)
or plane waves (Vigh and Starr, 2008). All these approaches
correspond to instances of CS. By using CS principles, we have
been able to remove the associated sub-sampling interferences
through a combination of exploiting transform-domain sparsity,
properties of certain sub-sampling schemes, and the existence
of sparsity promoting solvers. In this paper, we will extend
these approaches by applying these principles towards compres-
sively sampling in the model space. This means that we are
intervening at the heart of the imaging process. First, we briefly
introduce the objectives of full-waveform inversion. Next, we
introduce a imaging procedure based on multi-dimensional de-
convolutions, which combined with hybrid (1, 2)-norm solvers,
leads to a formulation for compressive imaging. We conclude
by presenting a proof-of-principle example, followed by a dis-
cussion and conclusions.

FULL-WAVEFORM INVERSION

Full-waveform inversion entails solving PDE-constrained opti-
mization problems of the following type:

min
U,m
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where P and U are the observed data volumes and the solution
of the multi-source (in its columns)-frequency Helmholtz equa-
tion over the domain of interest. D represents the detection
operator that extracts simulated data from time-harmonic so-
lutions at the receiver locations (its adjoint inserts the residue
into the co-located sources), H is a matrix with the discretized
multi-frequency Helmholtz equation, and F is a matrix with
the frequency-transformed source distributions in its columns.
In the above optimization problem (from which—after casting
Eq. 1 in its unconstrained form—most quasi-Newton type full-
waveform inversion schemes derive), solutions for the unknown
velocity model, m, and for the wave equation, U, are pursued
that minimize the energy mismatch. Because Eq. 1 is nonlinear
in the model variables collected in the vector m, solutions of
Eq. 1 require multiple solves of the (implicit) Helmholtz equa-
tion. At the jth depth-level, these solves yield the following
updates for the model:
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where the monochromatic forward- and inversely propagated
source-receiver wavefields, U j, V j are solved from the Helm-
holtz, and adjoint (denoted by the symbol ∗) Helmholtz systems,

H[m]U = F, and H[m]∗V = ∆R, (3)

with ∆R := D∗ (P−DU) the multi-shot residual wavefield. For
later extension to pre-stack imaging, we deliberately formulated
imaging in Eq. 2 in terms of matrix multiplications amongst the
source- and residual wavefields at depth level j. In that case,
the zero-offset image resides on the diagonal and is equivalent
to summing the Hadamard products (elementwise products)
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between U, and the complex conjugate of V over all shots and
frequencies (Plessix, 2006). (To simplify notation, I will omit
frequency and depth dependence.)

At this point, the following observations are in order. First,
the updates in Equation 2 correspond, up to some constants,
to ’post-stack’ migration (see e.g. Plessix, 2006), where the
zero-offset image is extracted from the diagonal after matrix-
matrix multiplication. Second, the above migration procedure
can be generalized to prestack migration by dropping the zero-
offset diagonal extraction. This allows for the incorporation
of a focusing procedure during which the energy in the off-
diagonals—i.e., the non-zero-offset imaged wavefields—is min-
imized through a differential-semblance-like optimization pro-
cedure (see e.g. Shen and Symes, 2008). Third, the creation
of the image suffers from amplitude deterioration and requires,
when implemented naively, explicit storage of both wavefields.
By turning above correlation-based imaging into a focused
wavefield inversion procedure for compressively-sampled data
(read image-space blended data), we address these computa-
tional and amplitude problems. First, we introduce focused
prestack imaging through wavefield inversion, followed by
compression according to compressive sensing. We conclude
by introducing a method based on joint sparsity promotion.

IMAGING VIA FOCUSED-WAVEFIELD INVERSION

Following earlier work by Claerbout (1971); Berkhout (1982);
Shen and Symes (2008); Misra and Sacchi (2008), and many
others, Equation 2 can for each angular frequency be recast into
the following ’pre-stack’ form:

I = T∆h
(xs,xr)7→(m,h) (UV∗) , (4)

with T∆h
(xs,xr)7→(m,h) a linear operator that maps source-receiver

coordinates to midpoint (m = 1
2 (xs + xr))/halve-offset (h =

1
2 (xs−xr)) coordinates for offsets on the interval h∈ [−∆h, +∆h].
For now, we assume that the source-receiver positions lie in the
same horizontal plane for each depth level.

Instead of calculating the image through multi-dimensional
correlation, we propose to image by inverting the adjoint of
the wavefield U with respect to the wavefield V∗. This type of
wavefield inversion has been applied successfully before, a find-
ing reported widely in the literature with applications that range
from interferometric deconvolution, to missing-trace interpola-
tion with the focal transform Herrmann et al. (2008), curvelet-
based multiple and primary prediction. (For the latter, refer to
another contribution by the first author to the proceedings of this
conference.) As shown by Herrmann and Wang (2008), these
wavefield inversions benefit greatly from transform-domain
sparsity promotion. Transform-domain sparsity, however, is
not the only aspect that we can exploit towards our advantage.
The fact that imaging is based on focusing can also be used by
penalizing energy residing in the non-zero offsets, followed by
extracting the zero-offset trace—i.e., δm = I(·,h = 0)—after
the inversion is completed.

We now arrive at the mathematical formulation of the imaging
problem through focused wavefield inversion. This formulation

involves the inversion of the following system:

U∗S∗X ≈ V∗ (5)

HX ≈ 0, (6)

or AX≈ B. Here, H is a linear operator designed to penalize
the non-zero offsets—, i.e. I(·,h) for h 6= 0. The synthesis
operator S∗ brings data back from the sparsifying domain to
the near offsets, including a conversion back to source-receiver
coordinates (with T∗). Finally, the matrix 0 contains zeros,
and the symbol ≈ indicates that the above equations hold in
the least-squares sense. Focusing is accomplished by multiply-
ing the images with a function that increases (linearly) with
distance with respect to the zero-offset coordinate (Shen and
Symes, 2008). (Notice this argument also applies to focusing
towards zero time.) With the linearized ’forward’ model, we
create a focused image by inverting the adjoint of the wave-
field U, compounded with the synthesis matrix S∗. Focusing is
accomplished through minimization of the energy functional
‖HI‖2.

Recovery from incomplete compressively sampled data in-
volves the solution of the following sparsity-promotion program
(Berg and Friedlander, 2008)ex = argmin

x
‖x‖1 subject to ‖Ax−b‖2 ≤ σ (7)

Here, compressively-sampled data is given by b = Ax0 with
x0 sparse (e.g., a transform-domain vector with a limited num-
ber of large entries). The matrix A = RMS∗ is made out of
matrices that, respectively, subsample, phase encode, and spar-
sify (Herrmann et al., 2009). The above optimization problems
seeks a vector with the smallest `1-norm provided data is fitted
to within an energy σ . This constant depends on the noise level
or on the level to which the forward model explains data, which
in our case represents the residual wavefield.

The key contribution of CS lies in the fact that the above spar-
sity promoting program is able to recover sparse vectors x0
from data sub sampled at rates that are are proportional to the
sparsity-level of x0. Even though this framework has proven to
be powerful, the recovery until recently was not able to benefit
from situations where multiple compressive measurements are
taken of a series objects that have similar transform-domain
supports. In that case, transform coefficients are likely to be
large at the same entries. This situation occurs when images
align for the near offsets. Following recent work by Berg and
Friedlander (2008), recovery of objects from multiple measure-
ment vectors (collected in the matrix B) , can be formulated as
followseX = argmin

X
‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ , (8)

with the mixed (1,2)-norm defined as

‖X‖1,2 :=
X

i∈rows(X)

‖rowi(X)∗‖2. (9)

The (2,2)-norm for the residue is defined as

‖X‖2,2 :=

0@ X
i∈rows(X)

‖rowi(X)∗‖2
2

1A 1
2

. (10)
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The sparsity-promoting program in Eq. 8 differs from Eq. 7
because it seeks to find multiple sparse vectors from multi-
ple measurements while asserting minimal energy amongst
the rows. This penalty assures ’lateral’ continuity amongst
the recovered sparse vectors. We will use this joint-sparsity
promotion for our focused-imaging procedure.

COMPRESSIVE IMAGING

Solutions of Eq. 1 require multiple solves of the (implicit)
Helmholtz system. This may prove computationally prohibitive,
even after preconditioning (with a complexity of O(n4) in 2-D
(Erlangga and Nabben, 2007; Erlangga and Herrmann, 2008)).
Storage of the wavefields is also problematic. We address these
issues by using CS (Romberg, 2008; Herrmann et al., 2009)
to reduce the size of these wavefields. We accomplish this by
extending earlier work (Herrmann et al., 2009)—where sources
and angular frequencies in the data space are compressively
sampled—towards a compressive sampling of the source- and
residual wavefields in the model space:

RM :=

sub samplerz }| {ˆ
Rσ ⊗Rρ ⊗Rζ

˜ random phase encoderz }| {“
F∗3 diag

“
eîθθθ

””
F3,

with F3 the 3-D Fourier transforms, and θθθ = Uniform([0,2π]) a
random phase rotation. The matrices Rσ , Rρ , and Rζ represent
CS-subsampling matrices acting along the depth, receiver, and,
source coordinates. The subsampling operators reduce the
system size, i.e., nσ × nρ × nζ � ns× nr × nz with ns, nr, nz
the number of sources, receivers, and depthlevels, respectively.
As shown by Herrmann et al. (2009), application of this type of
CS-sampling matrix, RM, is in this case equivalent to a spatial
blending along the source-receiver coordinates, and along the
depth coordinate. To maximize randomization during the CS
sampling, we choose a different RM for each frequency.

Aside from proper CS sampling, imaging from compressive-
sampled wavefields depends on a sparsifying transform that
compresses seismic images, is fast, and reasonably incoherent
with the CS sampling matrix. We accomplish this by defining
the sparsity transform as the Kronecker product between the
2-D discrete curvelet transform (Candès et al., 2006) along
the midpoint-depth coordinates, and the Dirac basis along the
offset coordinate—i.e., S := vec−1 ((Id ⊗C)T0)vec(·) · with
C, Id the curvelet synthesis and Dirac matrices, respectively.
T0 represents the mapping defined in Eq. 4, supplemented with
the imaging condition at t = 0. The functions vec and vec−1

reorganize a matrix into a long vector, and vice versa. To further
simplify notation, I drop these from the equations.

We are now in the position to image from compressively-samp-
led wavefields. This is done by applying the CS-subsample ma-
trix to Eq. 5, yielding a reduced system: RMU∗S∗X≈ RMV∗.
For the remainder of the paper, we overload the definition
for the original system, AX≈ B, with its compressively sam-
pled counterpart. By solving the joint sparsity-promoting pro-
gram of Eq. 8, followed by extraction of the diagonal from
δ em = ℜ

“
diag

“
S∗eX””

, we obtain an estimate for the image.
We solve this problem with SPG`1 (Berg and Friedlander, 2008),
a projected-gradient algorithm based on root finding.

EXAMPLE

We consider a example with n = nt = ns = nr = nz = 128 for
8 frequencies selected randomly from the band 20− 100Hz,
and the first 8 near offsets. The background model m0 and
perturbation δm := m−m0 are plotted in Fig. 1(a)-1(b). The
wavefields are computed with Eq. 3. Next, linearized data is
computed (Eq. 5), followed by a compressive sampling for each
frequency separately, yielding a system of 1/64 its original
size. Migrated images and selected common-image gathers for
the migrated (by multi-dimensional correlation) and focused
wavefield inversion are plotted in Fig.’s 1(c)-1(f). Even though
we used sub-optimal wavelets instead of curvelets as the sparsity
transform (to save memory usage in this prototype implemented
using SPARCO (van den Berg et al., 2007).), we were able to
get a good recovery from a substantial degree of subsampling.

DISCUSSION & CONCLUSIONS

The key contributions are: (i) Focused image recovery through
mixed (1, 2)-norm minimization during which transform-do-
main sparsity is promoted for each offset in conjunction with
a `2 penalty term that promotes joint sparsity amongst these
images. Consequently, energy amongst the larger offsets is
penalized, yielding a focusing of the energy. (ii) A reduction in
modeling costs with some computational overhead related to
the solution of the sparsity promoting program (see Herrmann
et al., 2009, for details). Because, the concept of compressive
sampling is carried a step further compared to earlier work
(Herrmann et al., 2009), we anticipate additional performance
improvements by combining focusing with model-space spar-
sity promotion. (iii) A reduction in storage requirements. The
more compressible the image, the more these wavefields can be
sub sampled. This opens the possibility of storing these matri-
ces explicitly. (iv) A reduction in the wavefield-inversion cost
by virtue of the reduced system size. (vi) Finally, compressive
sampling in the model space has the additional advantage that it
offers more flexibility during the subsequent imaging/inversion
step. For instance, extremely high degrees of CS subsampling
can be envisaged for velocity-model estimation where the un-
known velocity model permits a extremely low-dimensional
parameterization by splines. Conversely, high-resolution migra-
tion will require more compressive samples.

In summary, by combining sparsity promotion and focusing
towards the near offsets, a new framework for pre-stack mi-
gration and inversion is presented. In this framework, model
updates are obtained by multi-dimensional deconvolutions of
the source wavefield with respect to the residual wavefield. This
approach has the advantage that it allows for a recovery from
compressively sampled wavefields. This leads to system-size
reduction with sub-sampling rates, and hence modeling, and
storage costs, that can be chosen in par with the sparsity of the
object of interest. Finally, we envisage an integration of these
ideas into our formulation for full-waveform inversion based
on our Gauss-Newton-Krylov method reported elsewhere in the
proceedings of this conference.
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Figure 1: Proof of principle for the recovery of the image from compressively sampled wavefields by joint sparsity promotion.
(a) The background velocity model, m0. (b) The perturbation δm := m−m0. (c) “Noisy” migrated image according to Eq. 2 for
compressively-sampled linearized data (cf. Eq. 5). (d) Image obtained by wavefield inversion via joint sparsity promotion—i.e.,
δ em = ℜ

“
diag

“
S∗eX””

. (e) Three selected common-image gathers for the migrated image as a function depth and the subsurface
halve offset. (e) The same but after wavefield inversion. These results clearly show that subsampling according to the principles of
CS leads to noisy interference artifacts. Our formulation based on wavefield inversion removes these incoherent artifacts and leads to
a substantial improvement in the recovery. This improvement can be attributed to sparsity promotion combined with focusing. This
focusing can clearly be observed in the common-image gathers for the result obtained by wavefield inversion.
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