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SUMMARY

This abstract discusses an implicit implementation of the
Gauss-Newton method, used for the frequency-domain full-
waveform inversion, where the inverse of the Hessian for the
update is never formed explicitly. Instead, the inverse of the
Hessian is computed approximately by a conjugate gradient
(CG) method, which only requires the action of the Hessian on
the CG search direction. This procedure avoids an excessive
computer storage, usually needed for storing the Hessian, at
the expense of extra computational work in CG. An effective
preconditioner for the Hessian is important to improve the con-
vergence of CG, and hence to reduce the overall computational
work.

INTRODUCTION

Full waveform inversion–either in the time domain or the fre-
quency domain–is one of the important methods for obtaining
information on the earth’s subsurface structure. Given data
at the receivers, an image is obtained by minimizing the mis-
fit between the data and the predicted wavefields, which are
computed from a mathematical model, usually partial differ-
ential equations (PDEs), that governs the wave propagation
in the earth (Tarantola, 1984). This process is an instance
of PDE-constrained optimization, which requires methods to
solve the underlying PDEs associated with the state and the
adjoint variables, and methods to systematically update the
model. In time-domain waveform inversions, the state vari-
ables are obtained by solving an initial-boundary value prob-
lem, to propagate the initial wavelet forward in time. The ad-
joint variables, however, are the solution of a final-boundary
value problem, which propagate residuals back in time. The
latter introduces difficulties because it in principle requires all
time history, which is impossible to store. One remedy is to
use checkpointing (Griewank, 1992; Symes, 2007).

Frequency-domain waveform inversions, on the other hand, do
not have “history” problems. Furthermore, while in their for-
malism, all frequencies in the band should be included, inver-
sion can be performed by using only a subset of frequencies
(Sirgue and Pratt, 2004; Mulder and Plessix, 2004; Herrmann
et al., 2008). Typically, the inversion is performed by solving
optimization problems of increasing frequencies (Pratt, 1999;
Plessix, 2006). This offers additional advantages of saving
computational work at low frequencies–because these prob-
lems require less grid points–and of enlarging the basin of
attraction. One disadvantage is that the associated state and
adjoint equations are now of implicit forms, which are also
known to be more difficult to solve. Only for a not-too-large
2-D problem that the inverse of the operators of these equa-
tions can be formed explicitly.

One important issue in the waveform inversion is the conver-
gence rate of the inversion method. A descent method, which
only requires the gradient of the functional to be minimized,

converges only linearly. A faster convergence can be attained
by using a Newton-like method (Nocedal and Wright (1999)
and examples in seismic applications in Pratt et al. (1998)).
This method can exhibit a (or near) quadratic convergence,
provided that the initial model is close enough to the mini-
mizer, and that the inverse of the Hessian (the second deriva-
tive of the functional) is available. For large problems–as in
seismic waveform inversions–the latter is in general dense, and
it is impossible to store.

In this paper, we discuss an implicit inversion of the Hessian in
the Gauss-Newton framework used for the frequency-domain
waveform inversion. This inversion is based on an iterative
method (conjugate gradient (CG)), which requires only an ac-
tion of the Hessian on the CG search direction that updates
the CG approximation to the second variation of the model.
The resultant method is an instance of Gauss-Newton-Krylov
methods. We show that a useful inversion result can be ob-
tained by using this procedure with a small number of updates,
and with less CPU time than standard gradient methods for the
same quality of results. Combined with an iterative method for
solving the state and adjoint equations (Erlangga et al., 2006;
Erlangga and Nabben, 2007; Lin et al., 2008; Erlangga and
Herrmann, 2008), a matrix-free seismic waveform inversion
algorithm can be designed. For the time-domain counterpart,
see Akcelik et al. (2002).

FULL-WAVEFORM INVERSION

The frequency-domain waveform inversion can be formulated
as follows. Given the data ud(xr,ω) ∈ C, with ω the an-
gular frequency and xr ∈ ΩR ⊂ Ω the receiver position, find
q = 1/c2(x) ∈ Q ⊂ R, x ∈ Ω (c(x) the velocity model) such
that
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u∈U ⊂C, that are equipped with proper boundary conditions.
(· indicates the complex conjugation.) Here, Ns, Nr, and N f are
respectively the number of shots, receivers, and frequencies.

The usual way to solve the above minimization problem is via
the Lagrange functional (Nocedal and Wright (1999), Vogel
(2002)):
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after making use of the divergence theorem, with v ∈ V ⊂ C
the Lagrange multiplier. A descent method computes the mini-
mizer {u∗,v∗,q∗} via an update {u,v,q}← {u,v,q}+ γg, with
g the search direction, which is the negative of the gradient,
and γ the step length. This minimization however has to be
done over the large space U ×V ×Q. The computational bur-
den can be reduced by considering the reduced gradient

δqL (u,v,q)[q̂] =
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the first variation of the Lagrange functional with respect to
the model q, if the conditions that u f ,s,v f ,s solve respectively
(2) and the adjoint equations

A T
f v f ,s = A f v f ,s =

NrX
r=1

(ud −u f ,s)δ (x− xr), ∀s, f , (5)

for an estimate q are imposed. In this case, the optimization
is now carried out only over the model space Q with updates
q← q− γδqL (u,v,q). This procedure however results in a
linear convergence towards the minimizer. This convergence
is suboptimal and may prove prohibitive in practice.

A faster convergence can be attained by considering Newton
updates {u,v,q} ← {u,v,q}+ {ũ, ṽ, q̃}, where {ũ, ṽ, q̃} solves
the system

δ
2L (u,v,q)[û, v̂, q̂; ũ, ṽ, q̃] =−δL (u,v,q)[û, v̂, q̂], (6)

with δ 2L the second variation of the Lagrangian. First, the
system (6) requires the solution from the space U×V×Q. The
size of the problem can be reduced by imposing the condition
that the current approximation u and v solve the state and the
adjoint equations (2) and (5), respectively. Consequently, we
have δvL = δuL = 0. Also remark that unless the current
approximation is close enough to the minimizer, the system in
Eq. (6) is not guaranteed to be positive definite. We obtain a
symmetric positive definite system by dropping the terms with
v from Eq. (6). This results in the Gauss-Newton update. With
these two conditions, the equation (6) can be reduced to

H GN(u,v,q)[q̂] =−δqL = g, (7)

with H GN the Schur complement of the (q̃, q̃) block in δ 2L ,
also called the reduced Hessian. For instance, with N f = 1, and
Ns = 2 (one frequency and two shots), the full Gauss-Newton
system reads266664

W̃1 0 ˜A T 0 0
0 W̃2 0 ˜A T 0
˜A 0 0 0 P̃1

0 ˜A 0 0 P̃2
0 0 Q̃1 Q̃2 0

377775
0BBBB@

ũ1
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where P̃s = Q̃T
s =
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˜A −T W̃s ˜A −1Q̃s. (9)

(The definitions of each operator are not derived here and only
given in the Appendix.) Clearly, the operator (9) is symmetric
positive definite (spd). Furthermore, if {u,v,q} and {ũ, ṽ, q̃}
are known, the action of the H GN on q̃, discussed in the next
section, can be easily determined.

NUMERICAL PROCEDURE

We first present the Gauss-Newton method in Algorithm 1 be-
low, starting with the initial model q0.

Algorithm 1. Gauss-Newton
Choose q0;
Do i = 0,1, . . . until convergence

With qi, solve the state equation for ui
f ,s, ∀ f ,s

With ui
f ,s and qi, solve the adjoint equation for vi

f ,s
With ui

f ,s, vi
f ,s and qi, compute gi;

Solve H GN,i[q̃i] = gi for q̃i;
qi+1 := qi + γ q̃i;
If ‖gi‖ ≤ tol then convergent;

end

An important numerical procedure in the implicit Gauss-Newton
method is the iterative method for spd matrices to approxi-
mately solve Eq. (7). An iterative method has an advantage
that it only requires an action of the to-be-inverted operator on
a vector. Since H GN is spd, conjugate gradient (CG, Axels-
son, 1994) is the method of choice. In CG applied to Eq. (7),
the new approximation to q̃ is done via an update: q̃← q̃+αw,
where w := H GN [p] is compute via Eq. (9) with p the CG
search direction. To do this, we need a forward solve associ-
ated with the operator ˜A −1Q̃s and an adjoint solve associated
with QT

s
˜A −T to compute the second variations, ũ and ṽ, based

on u, v, and q at the i-th Gauss-Newton update and q̃ = p at the
j-th CG update. This procedure is summarized below.

Algorithm 2. Computing the action of the Hessian H GN

At the i-th Gauss-Newton step, with ui
f ,s, qi and vi

f ,s = 0, ∀i,
and at the j-th CG step:

With q̃i
j, solve the state equation for ũi

f ,s, j, ∀ f ,s;
With ũi

j, solve the incremental adjoint equation for ṽi
f ,s, j;

Compute Equation (9).

EXAMPLE

We consider an “academic” example based on a 1-D (hard)
velocity model with two reflectors to show the concept. In
this model, the domain is scaled into a unit square domain,
and the frequency and velocity are then scaled into the re-
duced frequency k = ωL/c, with L a characteristic length. The
model space Q is discretized into 64× 64 grid points. Syn-
thetic data for this model are obtained from 64 shot positions,
recorded at 64 receiver positions. The initial model for the in-
version is a constant velocity background obtained by remov-
ing the two reflectors from the hard model. Figure 1 com-
pares the inversion results based on the gradient method and



the implicit Gauss-Newton method. In both cases, we did not
use an optimal step length, which can be determined, for ex-
ample, via a backtracking procedure. Instead we fixed the
step length throughout the iterations. In the Gauss-Newton
method, the Hessian is inverted by 8 unpreconditioned CG it-
erations. Figure 1(a) shows the inversion result after the two-
norm of the gradient is reduced below 10−6 by only 16 Gauss-
Newton updates. Figure 1(b) is the inversion result with 500
gradient updates (‖g‖2 = 2.7× 10−5). About 9 and 87 sec-
onds of CPU-time per update are needed by the gradient and
the Gauss-Newton method, respectively. Overall, the Gauss-
Newton method requires 1400 seconds to converge, less than
4500 seconds needed by 500 gradient steps. With only 16 gra-
dient updates, the inversion result is far from accurate (Fig-
ure 1(c)) and the second reflector is not yet recovered.

DISCUSSION

Inversion results shown here are not surprising: Newton-based
directions provide a very good search direction for an update
and – under certain conditions – guarantee a fast convergence.
The main aspect of this paper, however, is the iterative proce-
dure (CG) to invert the Hessian, which translates to perform-
ing the action of the Hessian on the CG search direction, and
which avoids an explicit computation and excessive storage of
the inverse of the Hessian. Clearly the rate of convergence
will depend on the accuracy of this implicit inversion of the
Hessian. We have two options: either to allow more CG it-
erations or to use a preconditioner for the Hessian. The first
remedy may not be computationally efficient because at every
CG iteration, 2NsN f state and adjoint equation solves have to
be performed. This procedure also allows a matrix-free imple-
mentation, where no matrix (either Hessian or the state and ad-
joint equations) has to be stored. Furthermore, the wavefields
u and v need not be stored and can be computed on the fly. We
note that the state and adjoint operators are commonly inverted
explicitly by an LU-type factorization, which has to be done in
each Gauss-Newton and CG iteration because of the change
of q. With an iterative method as proposed in Erlangga et al.
(2006) and Erlangga and Nabben (2007), expensive compu-
tations of this factor and extra memory to store it can also be
avoided. Of importance is that in the frequency-domain wave-
form inversion the Hessian is embarrassingly parallel in fre-
quency and shot; cf. Eq. (9). It is therefore possible to compute
each term in the Hessian individually in a parallel machine and
then gather them.

Better inversion results can be expected by including a penalty
term (e.g., Tikhonov or Total Variation (TV)) in the minimiza-
tion functional. TV is especially suitable for models with edges
or discontinuities, because of the boundedness of the TV func-
tional and its ability to damp oscillations in the smooth region.
Algorithm-wise, we note that, with a penalty term, the (q̃, q̃)
block is no longer a zero block, and the reduced Hessian (7)
will have an additive term associated with this penalty func-
tional, whose implementation is straightforward. What is more
important, however, is the fact that seismic inversion tries to
focus the energy at the zero offset. A spread of energy towards
nonzero offset creates defocusing, which appears in the image
matrix as nonzero off diagonals (the diagonal is the energy fo-
cused at the zero offset, the image). This energy spreading is

(a)

(b)

(c)

Figure 1: Full waveform inversion: (a) Implicit Gauss-Newton
method at convergence, (b) gradient method after 500 itera-
tions (‖g‖2 = 2.7× 10−5), (c) gradient method after 16 iter-
ations (the same number of iterations required by the Gauss-
Newton method to converge).



typically produced by a correlation-based approach, which is
equivalent to a gradient method without a penalty term. The
Hessian in the Gauss-Newton method is one way to penalize
the energy at the nonzero offset and to focus it at the zero off-
set, which can be improved further by TV. In this direction,
an alternative to TV is the use of an `1-norm-based minimiza-
tion, which promotes sparsity by minimizing the energy at the
nonzero offset, corresponding to the off-diagonal terms in the
image matrix. This minimization, however, has to be carried
out over a matrix space associated with the model, and re-
quires an extension of the standard, vector-space, `1 solvers.
Herrmann (2009) (this conference) shows that with a mixed
(1,2)-norm solver, which penalizes the energy at the far offset
and exploits joint sparsity at the near offset, this approach can
be a viable alternative to TV. This approach is also conducive
to undersampled data (in this case, image), which can bring a
significant reduction in the size of the problem.
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APPENDIX

Definitions of operators in equation (9).
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