

# Compressive simultaneous full-waveform simulation

Tim T.Y. Lin\* jointly with Felix J. Herrmann and Yogi A. Erlangga



University of British Columbia

presented Oct 28, 2009 \*timtylin@gmail.com



# Wave-equation methods

noun

SYNONYM: very slow methods

why?

# modeling costs



### revolutions

Acquision: Slip-sweep, HFVS, ISS

Modeling: ?

**Imaging:** Check-pointing, Frequency domain inversion

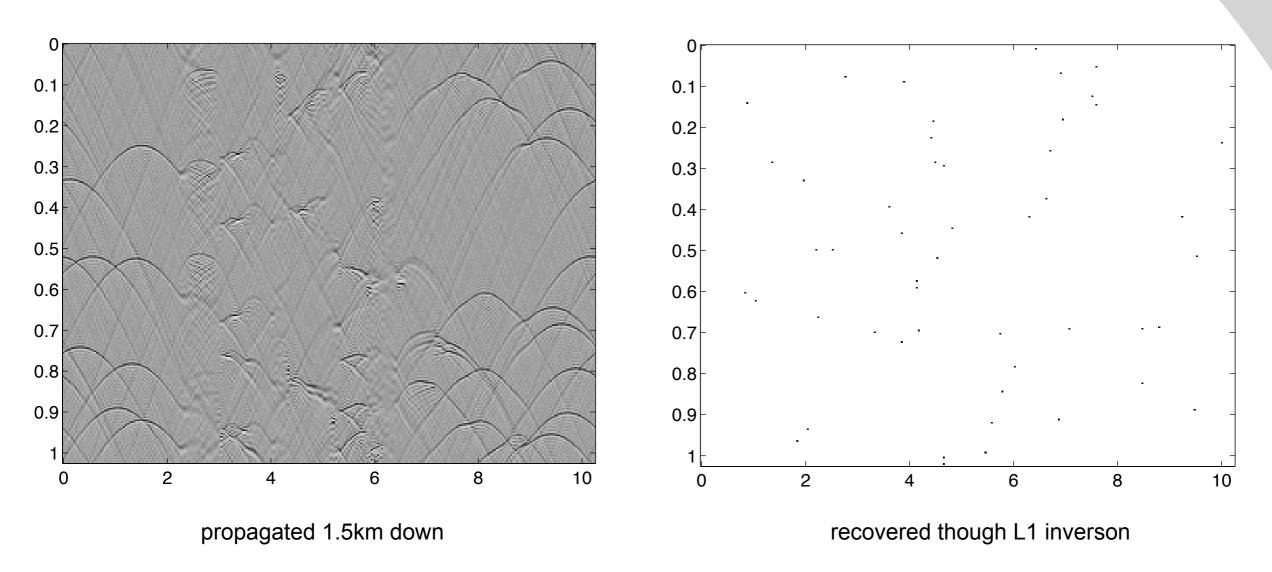


# holy grail

Can we use simultaneously acquired data directly in seismic imaging?



### from **SEG** 2007



Restricted One-Way Wavefield extrapolator to 1% of original eigenvalues of Helmholtz operator

(Lin & Herrmann 07, Demanet & Peyre 08)

This talk is concerned with frequency-domain wave equation seismic modeling:

$$\mathcal{H}(\omega)u(\omega, x_s; x) := \left(-\nabla^2 + \frac{\omega^2}{c^2(x)}\right)u(\omega, x_s; x) = b(\omega, x_s)$$

Invert Helmholtz operator H on b to obtain frequency-domain wavefield u(w)

#### **Single Shot**

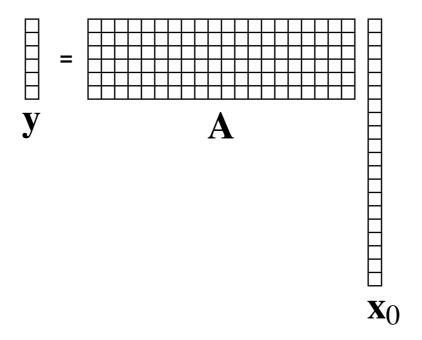
$$\mathbf{u}(\omega) := \begin{bmatrix} \mathbf{u}(\omega_1) \\ \vdots \\ \mathbf{u}(\omega_{n_f}) \end{bmatrix} = \begin{bmatrix} \mathbf{H}^{-1}(\omega_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{H}^{-1}(\omega_{n_f}) \end{bmatrix} \begin{bmatrix} \mathbf{b}(\omega_1) \\ \vdots \\ \mathbf{b}(\omega_{n_f}) \end{bmatrix}$$

#### Multiple Shots

$$\begin{bmatrix} \mathbf{u}_1(\omega) & \dots & \mathbf{u}_{ns}(\omega) \end{bmatrix} = \mathbf{H}^{-1} \begin{bmatrix} \mathbf{b}_1(\omega) & \dots & \mathbf{b}_{ns}(\omega) \end{bmatrix}$$



# Compressed sensing



Is it possible to recover  $\mathbf{x}_0$  accurately from  $\mathbf{y}$ ?

(Candes, Romberg, Tao, 2006; Wakin, Baraniuk, Laska, 2006, Lustig, Donoho, Pauly, 2006)

# Compressed sensing

#### conditions:

- A obeys the *restricted isometry principle*
- $\mathbf{x}_0$  is sufficiently sparse

#### procedure:

$$\underbrace{\min_{\mathbf{x}} \|\mathbf{x}\|_{1}}_{\mathbf{x}} \quad \text{s.t.} \quad \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\mathbf{perfect reconstruction}}$$

#### performance:

 S-sparse vectors recovered from roughly on the order of S measurements (to within constant and log factors) RIP for  $k \leq m \ll n$ 

$$(1 - \delta_k) \|\mathbf{x}_T\|_{\ell_2} \le \|\mathbf{A}_T \mathbf{x}\|_{\ell_2} \le (1 + \delta_k) \|\mathbf{x}_T\|_{\ell_2}$$

$$m \begin{bmatrix} & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ & & & & & \\ \end{pmatrix}$$

RIP for  $k \leq m \ll n$ 

# $\mathbf{A}_{T}$ how close is it to an orthonormal basis?

(if close enough, then if  $NNZ(\mathbf{x}) \leq k/2$ ,  $\mathbf{S}^{\dagger}\mathbf{x}_{ml} = \mathbf{G}$  with overwhelming probability)

# Compressed sensing

#### Some popular choices for A in literature

- Restricted random gaussian projections
- Restricted random signs projections
- Fourier transform with randomly missing frequencies

$$\mathbf{y}(\omega) = \mathbf{RMu}(t)$$

# Commutativity of RM

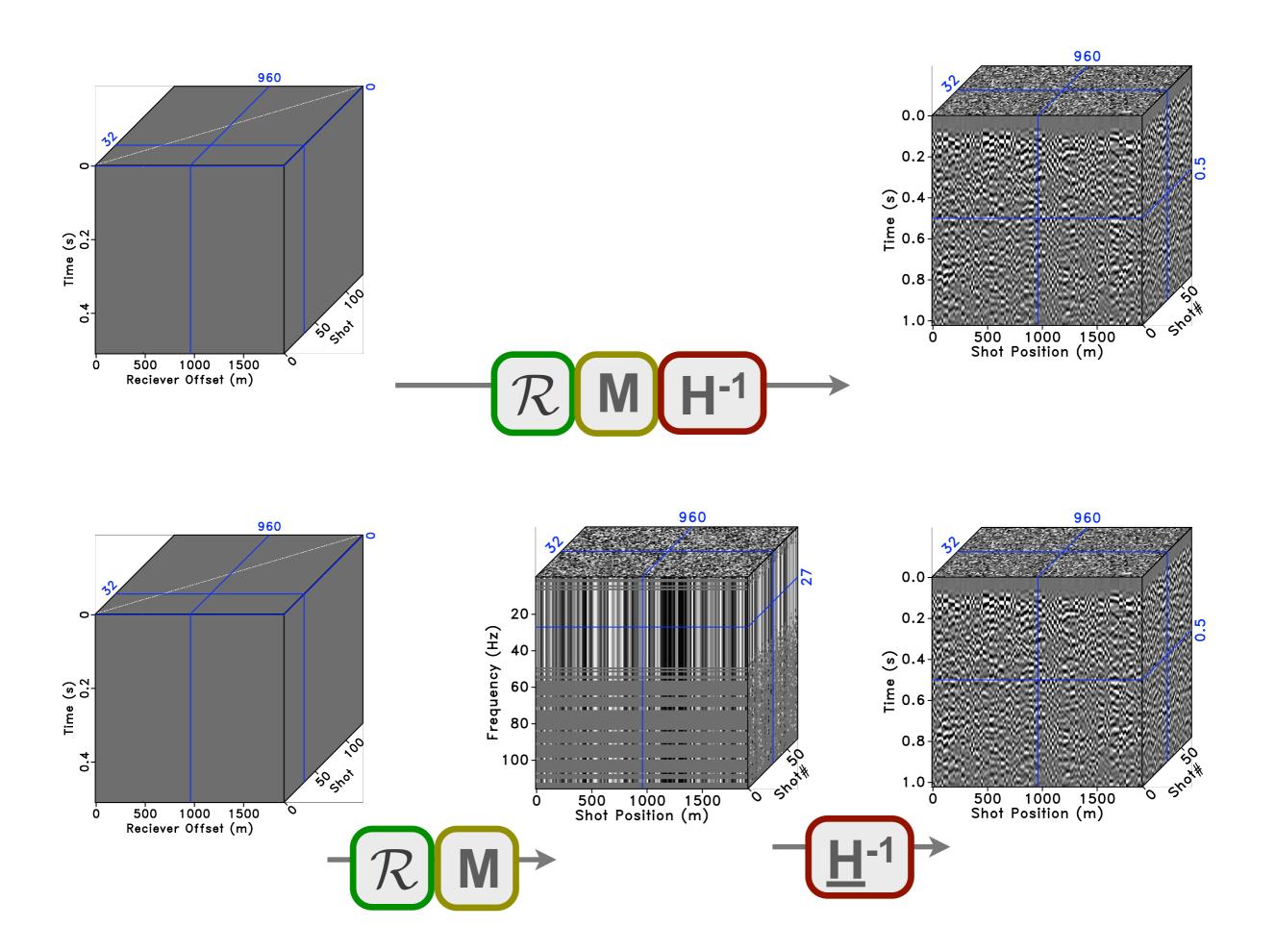
- Is there equivalence between
  - CS sampling of *full* solution for separate single-source experiments
  - Solution of *reduced* system after CS sampling the collective single-shot source wavefield

#### **Single Shot**

$$\mathbf{u}(\omega) := \begin{bmatrix} \mathbf{u}(\omega_1) \\ \vdots \\ \mathbf{u}(\omega_{n_f}) \end{bmatrix} = \begin{bmatrix} \mathbf{H}^{-1}(\omega_1) & \cdots & 0 \\ \vdots & \ddots & \vdots \\ 0 & \cdots & \mathbf{H}^{-1}(\omega_{n_f}) \end{bmatrix} \begin{bmatrix} \mathbf{b}(\omega_1) \\ \vdots \\ \mathbf{b}(\omega_{n_f}) \end{bmatrix}$$

#### **Multiple Shots**

$$\begin{bmatrix} \mathbf{u}_1(\omega) & \dots & \mathbf{u}_{ns}(\omega) \end{bmatrix} = \mathbf{H}^{-1} \begin{bmatrix} \mathbf{b}_1(\omega) & \dots & \mathbf{b}_{ns}(\omega) \end{bmatrix}$$



# Defining RM

- natural restriction in Fourier (F) with importance sampling in the temporal direction
- CS encoding matrix (N) along shots => simultaneous sources
- assures incoherence with sparsifying transform

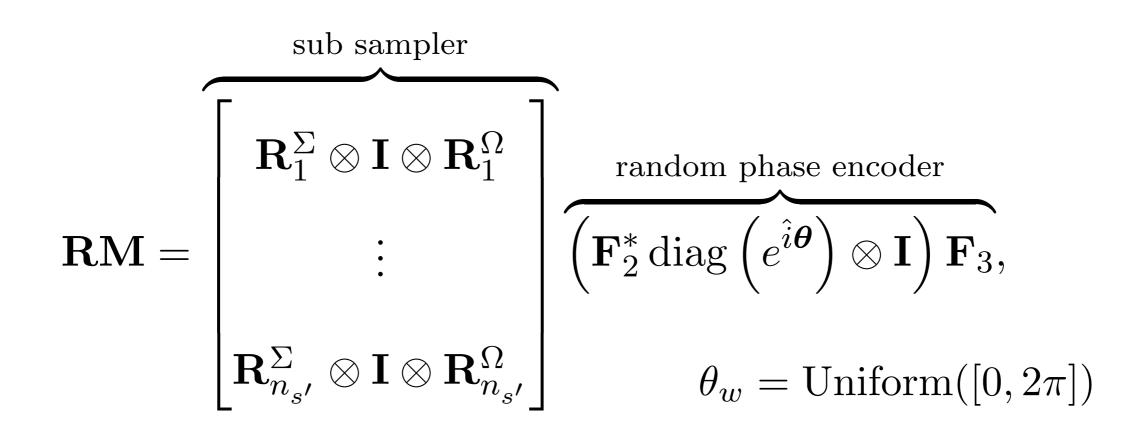
For each **simultaneous** shot, define different restrictions

$$\mathbf{R}\mathbf{M} = egin{bmatrix} \mathbf{R}_1^\Sigma \otimes \mathbf{R}_1^\Omega \ dots \ \mathbf{R}_{n_{s'}}^\Sigma \otimes \mathbf{R}_{n_{s'}}^\Omega \end{bmatrix} \otimes (\mathbf{N} \otimes \mathbf{F})$$

yielding the reduced simulated data

# Defining RM

#### CS with Random Convolution (Romberg '08)





### question

How do I really *know* if I lost anything?

# **Enforcing sparsity**

Using Curvelet transform for shot and receiver coordinates

Frequency-domain restrictions perform well under Wavelet transform for seismic data (Lin et. al. '08)

**Spatial-domain** restrictions perform well under **Curvelet** transform for seismic data (Hennefent et. al. '07)

#### Combine both transforms in the coordinate they are most suited for

Wavelet sparsity on temporal-frequency coordinate

2D Curvelet sparsity on shot and receiver plane

$$\mathbf{S} = \mathbf{C}_{2d} \otimes \mathbf{W}$$

# Compressed sensing

#### conditions:

- A obeys the *restricted isometry principle*
- $\mathbf{x}_0$  is sufficiently sparse

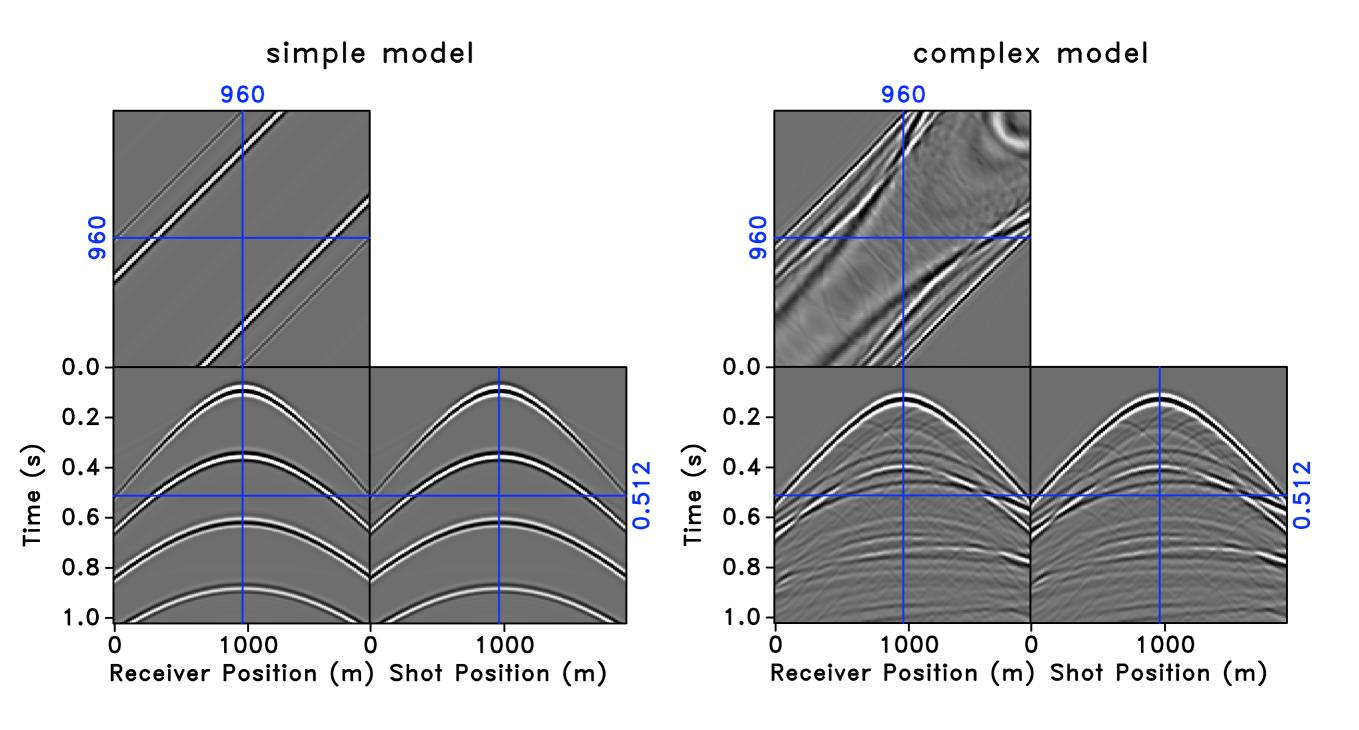
#### procedure:

$$\underbrace{\min_{\mathbf{x}} \|\mathbf{x}\|_{1}}_{\mathbf{x}} \quad \text{s.t.} \quad \underbrace{\mathbf{A}\mathbf{x} = \mathbf{y}}_{\mathbf{perfect reconstruction}}$$

#### performance:

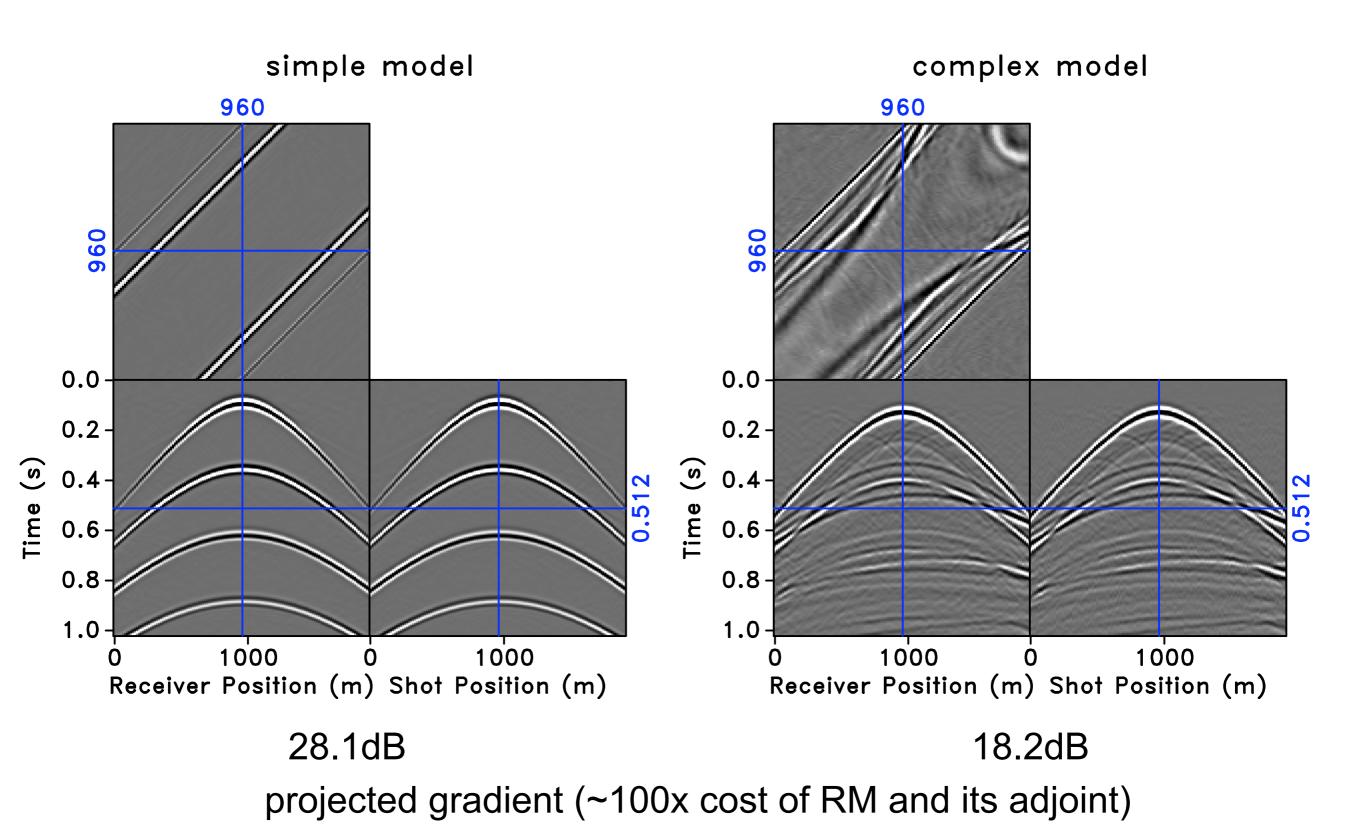
 S-sparse vectors recovered from roughly on the order of S measurements (to within constant and log factors)

### Green's functions

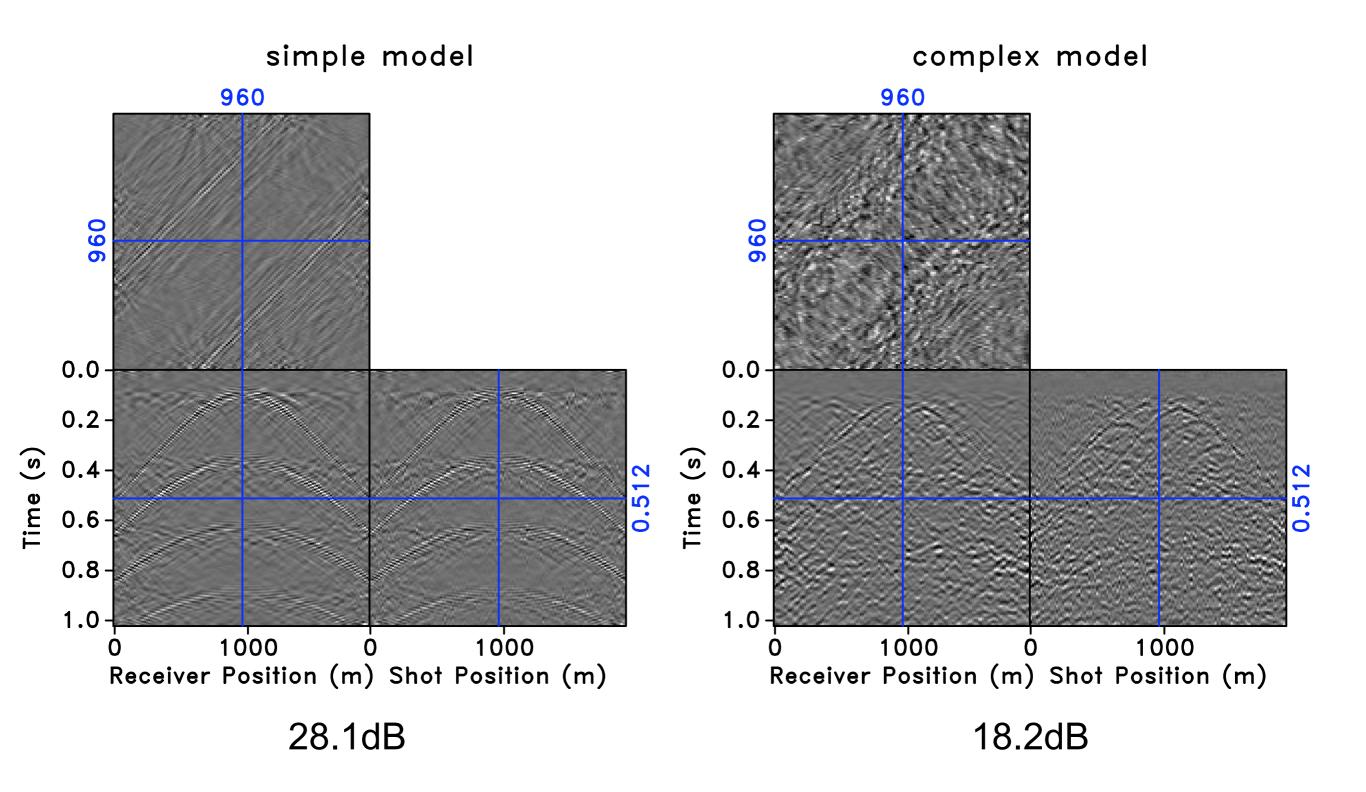


projected to 25% of original data size

### recovered wavefield

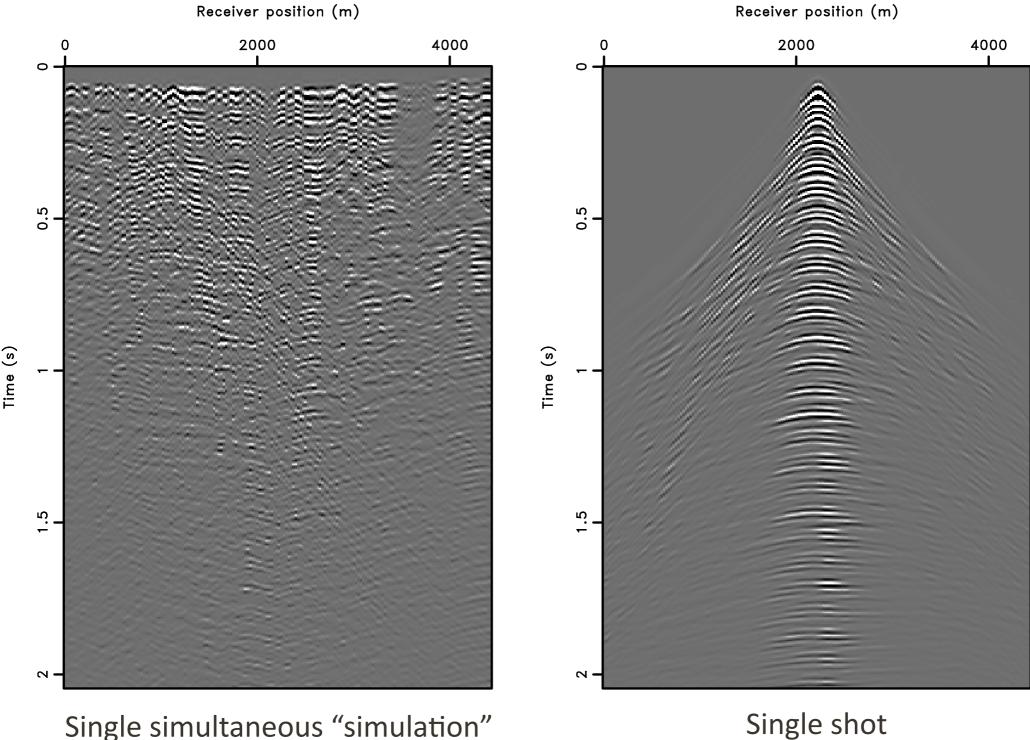


### 10x difference





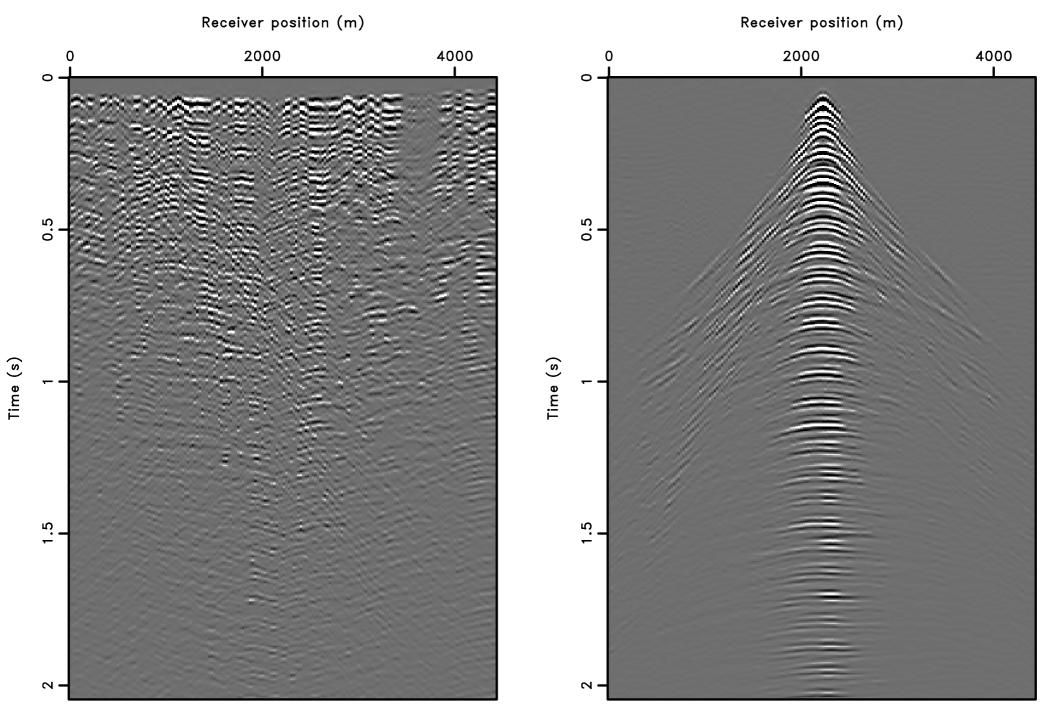
# real marine data



Single simultaneous "simulation"



# real marine data

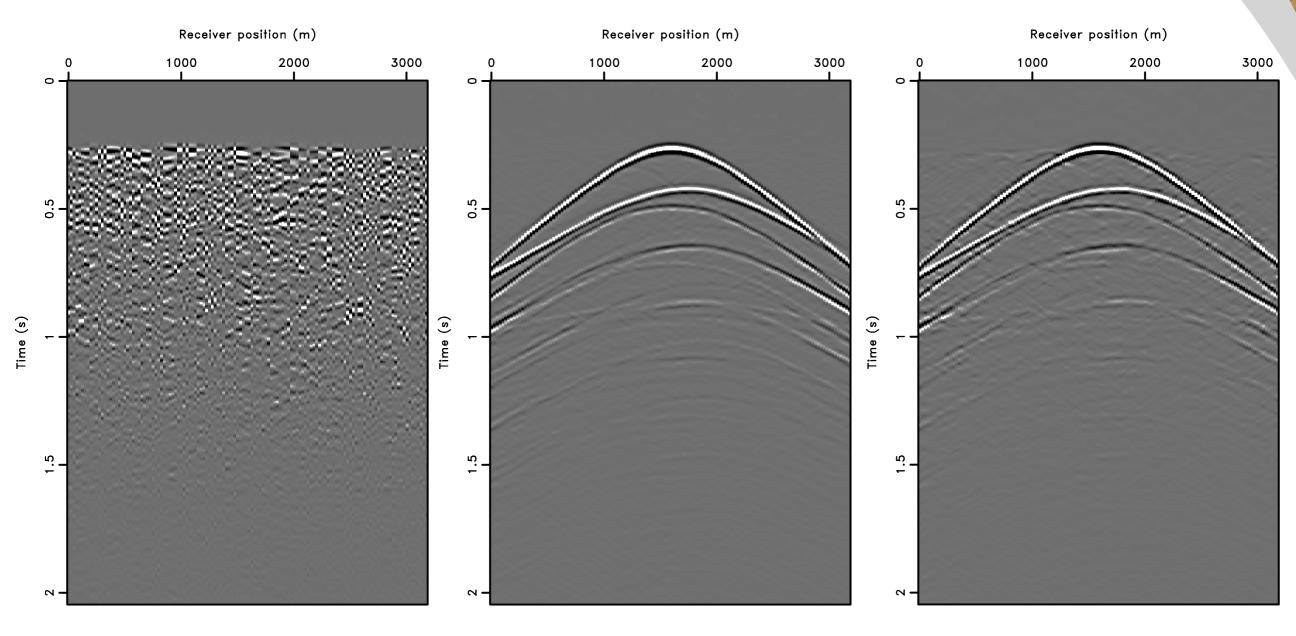


Single simultaneous "simulation"

recovered from 25% number of realizations



# Reconstruction from different number of realizations of simultaneous simulation (measured in % of number of single-shots)



Single simultaneous simulation

30% number of realizations

20% number of realizations

|     | 0.25 | 0.15 | 0.07 |
|-----|------|------|------|
| 2   | 14.3 | 12.1 | 8.6  |
| 1   | 18.2 | 14.5 | 10.2 |
| 0.5 | 22.2 | 16.5 | 10.7 |

$$SNR = -20 \log \frac{\|\mathbf{d} - \tilde{\mathbf{d}}\|_2}{\|\mathbf{d}\|_2}$$



# key points

Is it *really* a good idea to remove crosstalk before processing?

If we use non-linear inversions, maybe not necessary

Simultaneous simulation is the key

Simultaneous data 

Imaging



### extension

### Primary estimation

More on this tomorrow from me SPMUL 2, 3:10pm

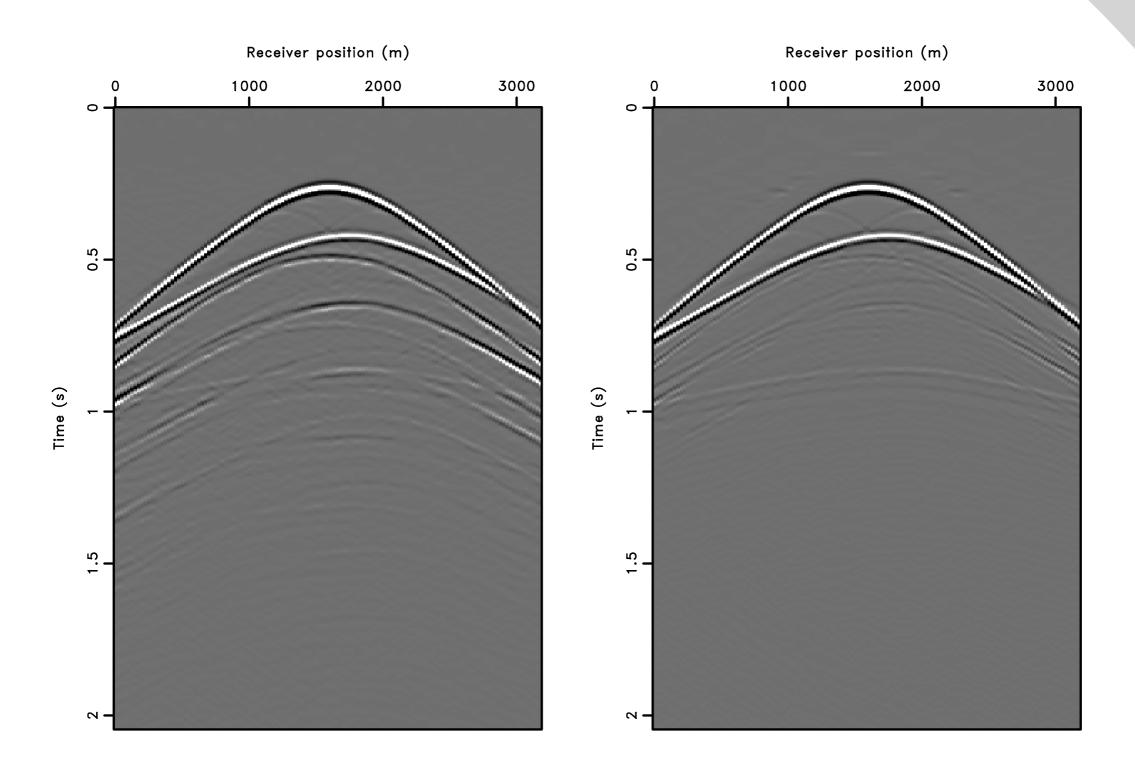


# Primary estimation



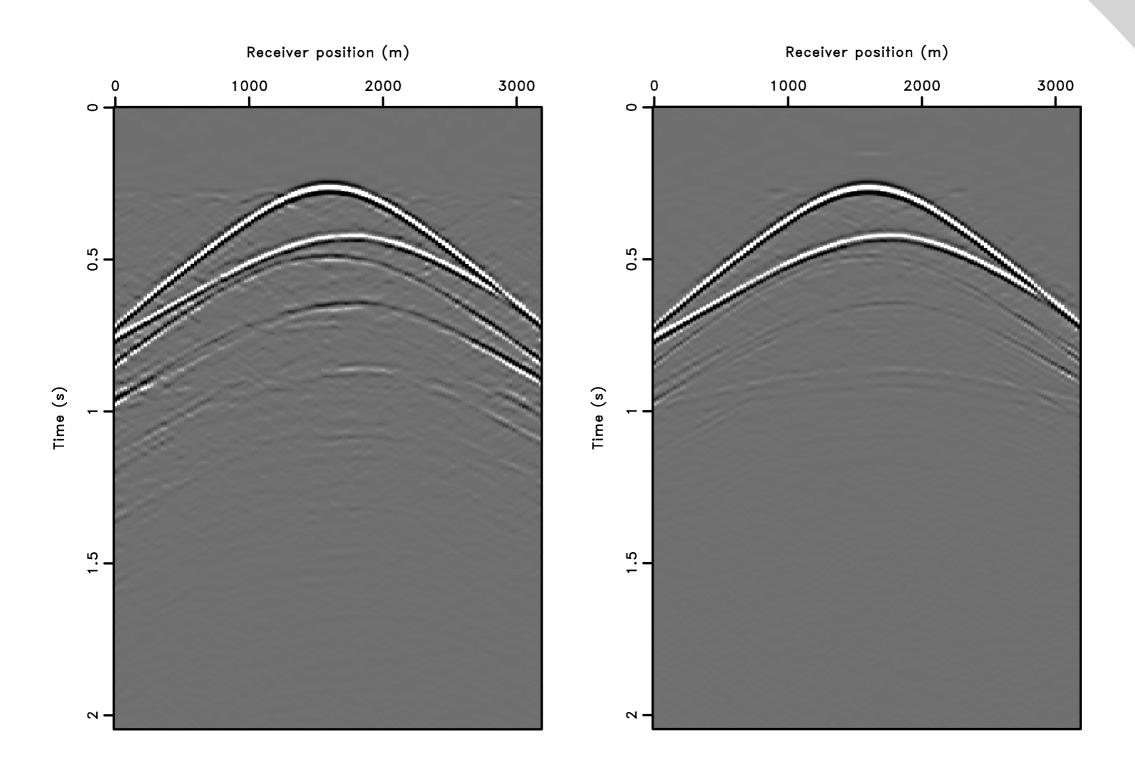


### 50% realizations





### 20% realizations





### extension

### full waveform inversion

$$\min_{\mathbf{U} \in \mathcal{U}, \, \mathbf{m} \in \mathcal{M}} \frac{1}{2} \|\mathbf{P} - \mathbf{D}\mathbf{U}\|_2^2 \quad \text{subject to} \quad \mathbf{H}[\mathbf{m}]\mathbf{U} = \mathbf{Q} \\ + \text{Free surface BC}$$

### extension

$$\begin{cases} \mathbf{Q} = \mathbf{D}^* & \mathbf{s} \\ & \text{single shots} \\ \mathbf{H}\mathbf{U} = \mathbf{Q} \\ \mathbf{y} = \mathbf{R}\mathbf{M}\mathbf{D}\mathbf{U} \end{cases} \Leftrightarrow$$

$$\begin{cases} \underline{\mathbf{Q}} = \underline{\mathbf{D}}^* & \underline{\mathbf{RMs}} \\ & \text{simul. shots} \\ \underline{\mathbf{HU}} = \underline{\mathbf{Q}} \\ \underline{\mathbf{y}} = \underline{\mathbf{DU}} \end{cases}$$

### Reduced system

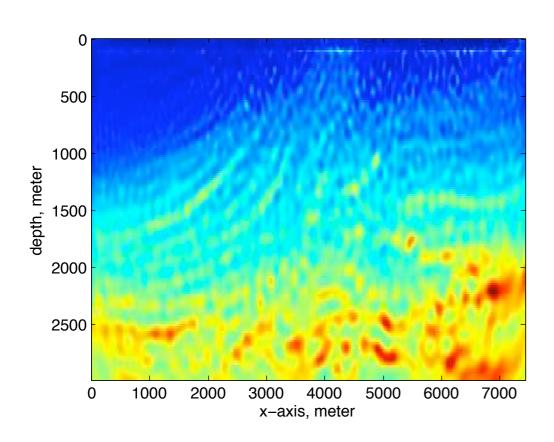
$$\min_{\underline{\mathbf{U}} \in \underline{\mathcal{U}}, \, \mathbf{m} \in \mathcal{M}} \frac{1}{2} \|\mathbf{y} - \underline{\mathbf{D}}\underline{\mathbf{U}}\|_2^2 \quad \text{subject to} \quad \underline{\mathbf{H}}[\mathbf{m}]\underline{\mathbf{U}} = \underline{\mathbf{Q}}$$



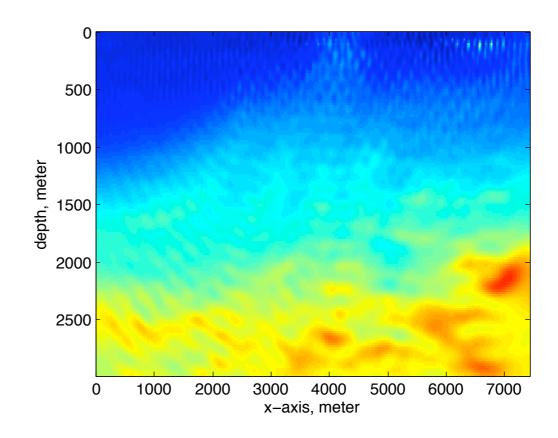
### **Gauss-Newton Krylov method**

5th iteration

#### 10% data size



Projected using RM



Periodically downsampled



### extension

### waveform inversion

More on this in the afternoon

SI 3: Herrmann @ 2:45pm

SI 3: Erlangga @ 4:25pm



### acknowledgements

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of Felix J. Herrmann. This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BP, Petrobras, and Schlumberger.