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SUMMARY

The fact that the computational complexity of wavefield sim-
ulation is proportional to the size of the discretized model
and acquisition geometry, and not to the complexity of the
simulated wavefield, is a major impediment within seismic
imaging. By turning simulation into a compressive sensing
problem—where simulated data is recovered from a relatively
small number of independent simultaneous sources—we re-
move this impediment by showing that compressively sam-
pling a simulation is equivalent to compressively sampling the
sources, followed by solving a reduced system. As in com-
pressive sensing, this allows for a reduction in sampling rate
and hence in simulation costs. We demonstrate this principle
for the time-harmonic Helmholtz solver. The solution is com-
puted by inverting the reduced system, followed by a recovery
of the full wavefield with a sparsity promoting program. De-
pending on the wavefield’s sparsity, this approach can lead to
significant cost reductions, in particular when combined with
the implicit preconditioned Helmholtz solver, which is known
to converge even for decreasing mesh sizes and increasing an-
gular frequencies. These properties make our scheme a viable
alternative to explicit time-domain finite-differences.

INTRODUCTION

Currently, simulation costs are largely dictated by the mesh
size of the computational domain, the size of the source-receiver
acquisition grid, and the maximum-desired frequency of the
source function. As opposed to solutions based on certain ap-
proximations, e.g. asymptotic (high-frequency) solutions that
typically involve diagonalization of solution operators (see e.g.
ten Kroode et al., 1998), efficient computation of high-fidelity
large-scale full-waveform simulations remains an elusive area
of research. To overcome this impediment, we argue that fu-
ture improvements in wave-equation imaging and inversion
will depend on a problem formulation with a computational
complexity that is no longer strictly determined by the size of
the discretization but by the transform-domain compressibility
of its solution. In this new paradigm, we bring computational
costs in par with our ability to compress seismic data and im-
ages.

The above premise is related to recent developments in theo-
retical signal processing—known as compressive sensing (CS
in short throughout the paper, Candès et al., 2006; Donoho,
2006)—where the argument is made, and rigorously proven,
that compressible signals can be recovered from severely sub-
Nyquist sampling by solving a sparsity promoting program. In
this approach, sub-sampling interferences are removed by ex-
ploiting transform-domain sparsity, properties of certain sub-
sampling schemes, and the existence of sparsity promoting
solvers. Following earlier work by Lin and Herrmann (2007)
(with a formal proof recently established by Demanet and Peyré,

2008), we adapt the ideas from CS towards the problem of
seismic waveform simulation. Instead of compressively sam-
pling along the source/receiver coordinates in the modal do-
main (spanned by the eigenfunctions of the Helmholtz oper-
ator), we propose to compressively sample the source wave-
fields. Both approaches can be seen as instances of simultaneous-
source acquisition, an observation also made by Neelamani
et al. (2008). Our main contribution here lies in the design of
a simultaneous acquisition methodology, based on fast imple-
mentations of CS-sampling matrices (Romberg, 2008), for nu-
merical waveform simulation (albeit our ideas are extendible
to field acquisition, see e.g. Krohn and Neelamani, 2008; Nee-
lamani et al., 2008).

By designing the acquisition according to CS principles, the
inteference phenomenon experienced in this type of acquisi-
tion can be mitigated. CS is important because it provides
a link between subsampling strategies and the quality of re-
covery, which is largely lacking in simultaneous acquisition
(Beasley, 2008), and in cost-reduction during waveform sim-
ulation and imaging with subsets of frequencies (Sirgue and
Pratt, 2004; Mulder and Plessix, 2004).

MOTIVATION

Even though numerical solutions to wave equations vary in
complexity, they generally compress in transformed domains
such as curvelets (Candès et al., 2006). In principle, this find-
ing allows for recovery through sparsity promotion, following
the sampling strategies prescribed by CS (see e.g. Herrmann
and Hennenfent, 2008; Hennenfent and Herrmann, 2008, where
this approach was followed to regularize data with missing
traces through curvelet-domain sparsity promotion). To illus-
trate how these guidelines translate to subsampling (= com-
pressing) solutions of the wave equation, we first briefly out-
line the principles of CS and sparse recovery, followed by a
brief discussion on the Helmholtz wave-equation solver.

Compressive sampling: Recovering a sparse (’spiky’) sig-
nal from sub samplings is the modern equivalent of finding
’needles’ in a haystack. For instance, consider the problem
of locating k arbitrary non-zero entries from a sparse spike
train of length N � k. According to CS theory, m incoherent
measurements of a data vector d ∈ RN suffice to recover these
non-zero entries. Here, the CS-measurement vector is given
by y = RMd ∈ Cm with M the (N×N) measurement matrix
(e.g. the Fourier basis) and R the (m×N) restriction matrix that
randomly selects m rows with m∼ k (∼ means proportional to
within logN factors). Two basis are incoherent, when the in-
ner products of the columns are small. For instance, Dirac and
Fourier are incoherent and so are any orthonormal basis and a
orthonormalized Gaussian random matrix. CS theory proves
that recovery through sparsity promotion is possible from a



sample size m that is proportional to the signal’s sparsity (here,
the number of non-zeros, k) as opposed to the signal length N.
We use this important finding in our formulation of the com-
pressive or blended simulation problem.

Feasible Helmholtz solver for full-waveform simulation: Since
their inception, iterative implicit matrix-free solutions to the
time-harmonic Helmholtz equation have been plagued by lack
of numerical convergence for decreasing mesh sizes and in-
creasing angular frequencies (Riyanti et al., 2006). By in-
cluding deflation, a way to handle small eigenvalues that lead
to slow convergence, Erlangga and Nabben (2007); Erlangga
and Herrmann (2008) successfully removed this impediment,
bringing 2- and 3-D solvers for the time-harmonic Helmholtz
into reach. For a given shot (right-hand side b) and angular
frequency ω (:= 2π f , with f the temporal frequency in Hz),
the frequency-domain wavefield u is computed with a Krylov
method that involves the following system of equations

H [ω]M−1Qû = b, u = M−1Qû, (1)

where H [ω], M , and Q represent the discretized monochro-
matic Helmholtz equation, the preconditioner, and projection
matrices, respectively. As shown by Erlangga et al. (2004,
2006), convergence is guaranteed by defining the precondi-
tioning matrix M in terms of the discretized shifted or damped
Helmholtz operator M :=−∇ ·∇− ω2

c(x)2 (1−β î), î =
√
−1,

with β > 0. With this preconditioning, the eigenvalues of
H M−1 are clustered into a circle in the complex plane. By
the action of the projector matrix Q, these eigenvalues move
towards unity on the real axis as shown in Figure 1. These
two operations lead to an improved condition number, which
explains the superior performance of this solver.
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Figure 1: Eigenvalues (λ ) of the 1-D Helmholtz operator be-
fore and after preconditioning and spectral shaping. (a) Orig-
inal eigenvalue spectrum of H . (b) Spectrum after precondi-
tioning with M−1. (c) Spectrum after deflation with Q.

Source-receiver CS-sampling equivalence: Aside from the
required number of frequencies, the computational complex-
ity of full-wavefield simulation is determined by the number
of shots—i.e., the number of right-hand sides. In the cur-
rent simulation paradigm, these shots determine the number
of single-source simulations. As prescribed by CS, these costs
can be reduced by designing a survey that consists of a rela-
tively small number of simultaneous ’shots’ with simultaneous
sources that contain subsets of angular frequencies. Mathemat-
ically, we can accomplish this by applying the CS-sampling
matrix, RM, to the individual sources collected in the vector s.
Now, if we can show that the output of this procedure to gener-
ate simultaneous sources, s = RMs, yields the same results as
modeling the complete system followed by compressive sam-
pling then we are in the position to speed up our computations.
This speed up is the result of a decreased number of shots and
angular frequencies (quantities related to the compressed sys-
tem are underlined) that are present in the simultaneous source
vector. For this to work, the solution y must be equivalent
to the solution y obtained by compressively sampling the full
solution. More specifically, we need to demonstrate that the
solutions for the full and compressed systems are equivalent—
i.e., y = y in

P1 :

8><>:
B = D∗s
HU = B

y = RMDU := RMd
⇐⇒P2 :

8><>:
B = D∗s = D∗RMs
HU = B

y = DU.
(2)

Here, H= diag(H [ωi]) is the block-diagonal discretized Helmholtz
equation for each ωi := 2πi ·∆ f , i = 1 · · ·n f , with n f the num-
ber of frequencies and ∆ f its sample interval. The adjoint (de-
noted by ∗) of the detection matrix D injects the individual
sources into the multiple right-hand sides, B = [b1 b2 · · · bns ],
with ns the number of shots. This detection matrix extracts
data at the receiver positions. Its adjoint inserts data at the
co-located source positions. Each column of U contains the
wavefields for all frequencies induced by the shots located in
the columns of B. Consequently, the full simulation requires
the inversion of the block-diagonal system (for all shots), fol-
lowed by a detection—i.e., we have d = DH−1B, with H−1 =
diag(H −1[ωi]), i = 1 · · ·ns. After CS sampling, this volume
is reduced to y = RMd by applying the flat rectangular CS-
sampling matrix RM (defined explicitly in the next section)
to the full simulation. Applying RM directly to the sources s
in P2 leads to a compressed system H, which after inversion
gives y. To illustrate why y is equivalent to y, consider a com-
pressive sampling of the solution over frequency by the sub-
sampling matrix RΩ (for clarity, we removed the orthonormal
measurement matrix). This restriction matrix removes arbi-
trary rows from the right-hand side. By virtue of the block-
diagonal structure of our system, we have RΩH−1 = H−1RΩ

with H−1 = diag(H −1[ωi]), i ⊂ {1 · · ·n f }, yielding RΩU =
H−1B = U, where B := RΩB. This means that frequency
subsampling the right-hand side, followed by solving the sys-
tem for the corresponding frequencies, is the same as solving
the full system, followed by frequency subsampling. A sim-
ilar argument holds when subsampling the shots (removing



arbitrary columns of B). Now, we have the reduced system
RΩU(RΣ)∗ = H−1B = U, with B := RΩB(RΣ)∗. Using Kro-
necker products, these relations can be written succinctly as
(RΣ⊗RΩ)vec(U) = vec(U) and (RΣ⊗RΩ)vec(B) = vec(B)
with vec(·) being a linear operator that maps a matrix into a
lexicographically-sorted array.

The inversion of HU = B is easier because it involves only
a subset of angular frequencies and simultaneous shots—i.e.,
{U,B} contain only n′s columns with n′f frequency compo-
nents each. Finally, the matrix D extracts the compressed data
from the solution.

CS PROBLEM FORMULATION

With the above identification, we can now recover the full data
from compressive simulations. Successful solutions of this re-
covery problem hinge on a delicate interplay between three
key components that need to be implemented at minimal costs
to avoid offsetting our computational gain through system-size
reduction.

The compressive-sampling matrix: The success of com-
pressive simulation depends on a subsampling of the physi-
cally distinct source and frequency axes where coherent inter-
ferences are turned into random noise (Hennenfent and Herr-
mann, 2008). Since speed is of the essence for the recovery,
we follow recent work by Romberg (2008) and implement the
CS matrix through a random phase encoder in Fourier space.
To maximize independence amongst the sources, we apply dif-
ferent restrictions for each of the n′s simultaneous shots—i.e.,
we have

RM =

sub samplerz }| {264 RΣ
1 ⊗ I⊗RΩ

1
...

RΣ
ns′
⊗ I⊗RΩ

ns′

375
random phase encoderz }| {“

F∗2 diag
“

eîθθθ
”
⊗ I

”
F3, (3)

where F2,3 are the 2,3-D Fourier transforms, and where θθθ =
Uniform([0,2π]) is a random phase rotation. Notice that the
F2 and phase rotations act along the source/receiver coordi-
nates.

Application of this CS-sampling matrix, RM, to the original
source wavefields in s turns these single shots into a subset
(n′s � ns) of time-harmonic simultaneous sources that are ran-
domly phase encoded and that have for each simultaneous shot
a different set of angular frequencies missing—i.e., there are
n′f � n f frequencies non-zero (see Figure 2(a)). Because seis-
mic data is bandwidth limited, we sample with a probability
that is weighted by the power spectrum of the source wavelet.
The advantage of this implementation is that it is matrix-free,
fast, and it turns interferences into harmless noise (see Fig-
ure 2(b)).

The sparsfying transform: Aside from proper CS sampling
the recovery from simultaneous simulations depends on a spar-
sifying transform that compresses seismic data, is fast, and rea-
sonably incoherent with the CS sampling matrix. We accom-
plish this by defining the sparsity transform as the Kronecker
product between the 2-D discrete curvelet transform (Candès
et al., 2006) along the source-receiver coordinates, and the dis-
crete wavelet transform along the time coordinate—i.e., S :=
C⊗W with C, W the curvelet- and wavelet-transform matri-
ces, respectively.

Recovery by sparsity promotion: We reconstruct the seis-
mic wavefield by solving the following nonlinear optimization
problem

ex = argmin
x

‖x‖1 subject to Ax = y, (4)

with ed = S∗ex the reconstruction, A := RMS∗ the CS matrix,
and y(= y) the compressively simulated data (cf. Equation 2-
right). Equation 4 is solved by SPG`1 (van den Berg and Fried-
lander, 2008), a projected-gradient algorithm with root finding.

COMPUTATIONAL COMPLEXITY ANALYSIS

According to Riyanti et al. (2006), the cost of the iterative
Helmholtz solver equals n f nsnitO(nd), typically with nit =
O(n) the number of iterations. For d = 2 and assuming ns =
n f = O(n), this cost becomes O(n5). Under the same assump-
tion, the cost of a time-domain solver is O(n4). The iterative
Helmholtz solver can only become competitive if nit = O(1),
yielding an O(n4) computational complexity. Erlangga and
Nabben (2007); Erlangga and Herrmann (2008) achieve this
by the method explained earlier. Despite this improvement,
this figure is still overly pessimistic for simulations that permit
sparse representations. As long as the simulation cost exceeds
the `1-recovery cost (cf. Equation 4), CS will improve on this
result. This reduction depends on the cost of A, which is dom-
inated by the CS-matrix. For naive choices, such as Gaussian
projections, these sampling matrices cost O(n3) for each fre-
quency, which offers no gain. However, with our choice of fast
O(n logn) projections with random convolutions (Romberg,
2008), we are able to reduce this cost to O(n2 logn). Remark
that these costs are of the same order as those of calculating the
sparsifying transforms. Now, the leading order cost of the `1
recovery is reduced to O(n3 logn), which is significantly less
than the cost of solving the full Helmholtz system, especially
for large problems (n→ ∞) and for extensions to d = 3.

COMPRESSIVE SIMULATION EXPERIMENT

To illustrate CS-recovery quality, we conduct a series of ex-
periments for two velocity models, namely the complex model
used in Herrmann et al. (2007), and a simple single-layer model.
These models generate seismic lines that differ in complexity.
During these experiments, we vary the subsampling ratio and



the frequency-to-shot subsampling ratio. All simulations are
carried out with a fully parallel Helmholtz solver with β = 0.5,
for a spread with 128 col-located shots and receivers sampled
at a 30 m interval. The time sample interval is 0.004s and the
source function is a Ricker wavelet with a central frequency
of 10 Hz. By solving Equation 4, we recover the full simu-
lation for the two datasets. Comparison between the full and
compressive simulations in Figure 3 shows remarkable high-
fidelity results even for increasing subsampling ratios. As ex-
pected, the SNR for the simple model is better because of the
reduced complexity, whereas the numbers in Table 1 for the
complex model confirm increasing recovery errors for increas-
ing subsampling ratios. Moreover, the bandwidth limitation
of seismic data explains improved recovery with decreasing
frequency-to-shot ratio for a fixed subsampling ratio. Because
the speedup of the solution is roughly proportional to the sub-
sampling ratio, we can conclude that speedups of four to six
times are possible at the expense of a minor drop in SNR.

Subsample ratio 0.25 0.15 0.07

n′f /n′s recovery error (dB)

2 14.3 12.1 8.6
1 18.2 14.5 10.2
0.5 22.2 16.5 10.7

Speed up (%) 400 670 1420

Table 1: Signal-to-noise ratios based on the complex

model, SNR =−20log10(
‖d−ed‖2
‖d‖2

) for reconstructions with the
curvelet-wavelet sparsity transform with different subsample
and frequency-to-shot ratios.

CONCLUSIONS

We have identified simultaneous acquisition as compressive
sensing (CS), which allowed us to derive a rigorous and cost-
effective simulation scheme based on its principles. According
to these principles, wavefields can be reconstructed from sub-
samplings commensurate with their complexity. We arrive at
this result by source-receiver CS-sampling equivalence, which
states that CS sampling seismic simulations is the same as CS
sampling the source wavefield, followed by simulation with
a reduced system. CS predicts improved recovery for com-
pressible signals for increasing number of samples. We veri-
fied this behavior experimentally and this, in conjunction with
the intrinsic linearity of the CS sampling, opens a number of
enticing new perspectives. First, CS applied to simulations
(and possibly during acquisition) decouples simulation- and
acquisition-related costs from the model size. Instead, these
costs depend on sparsity. Second, CS predicts improved re-
covery for increasing sample sizes, which opens the possibil-
ity to improve recovery by adding samples. Third, because
of this linearity, we envision a seamless incorporation of this
paradigm into seismic exploration.
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Figure 2: Compressive sampling with simultaneous sources.
(a) Amplitude spectrum for the source signatures emitted by
each source as part of the simultaneous-source experiments.
These signatures appear noisy in the shot-receiever coordinates
because of the phase encoding (cf. Equation 3). (b) CS-data
after applying the inverse Fourier transform.
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Figure 3: Comparison between conventional and compressive
simulations in for simple and complex velocity models. (a)
Crossing-planes view of the seismic line for the simple model.
(b) The same for the complex model. (c). Recovered simula-
tion (with a SNR of 28.1dB) for the simple model from 25% of
the samples with the `1-solver running to convergence. (d) The
same but for the complex model now with a SNR of 18.2dB.
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