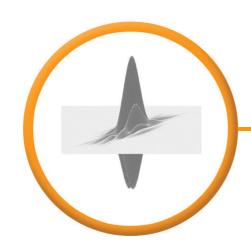
#### THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER





#### **Curvelet-based Migration Preconditioning**

Advantages of a Diagonal Scaling Curvelet Preconditioner

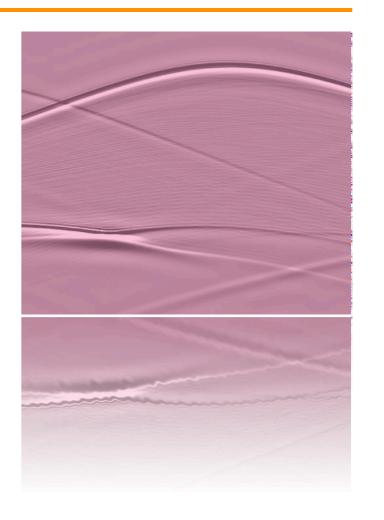
Cody R. Brown cbrown@eos.ubc.ca

Felix J. Herrmann fherrmann@eos.ubc.ca

Peyman Poor Moghaddam ppoor@eos.ubc.ca

Yogi A. Erlangga yerlangga@eos.ubc.ca

Seismic Laboratory for Imaging & Modeling (SLIM)
Department of Earth & Ocean Sciences
The University of British Columbia



SEG 2008 Annual Meeting, Las Vegas Tuesday, November 11th, 2008

### **Principle of Least Effort**

George Kingsley Zipf's principle states that people and even well designed machines will naturally choose the path of least effort.

- □ This is the same for us!
- If we can get to the same solution, lets choose the path that requires the least amount of work.



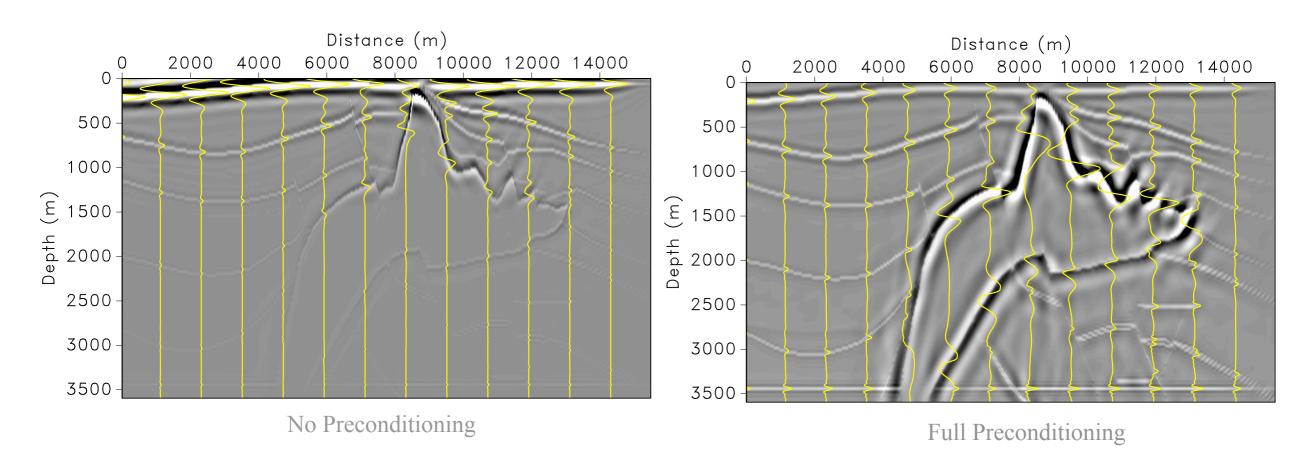
Lazyman Rubik's Cube

#### **Outline**

- Motivation
- □ Definition of our Problem
- Preconditioning Levels:
  - Level I Fractional Differentiation
  - Level II Depth Correction
  - Level III Curvelet-based Diagonal Estimation
- □ Some Data Examples
  - Simple Synthetic Reflector w/ Lens Velocity
  - SEG AA' Model w/ Smooth Velocity
- ☐ Conclusions

#### **What We Want**

- We want to correct amplitudes and regularize reflector information throughout the image.
- □ Stabilize the problem and improve convergence rates.



## Why do we need a (pre)conditioner?

- □ In the seismic world, we deal with extremely large data-sets.
  - Requires a lot of time to do simple operations.
  - Even more time to apply just one migration!
- □ Iterative solvers require significant resources and time.
  - We need to reduce the number of iterations.
- We would like to stabilized the problem.
  - Applying small changes will still allow our LSQR algorithm to converge.

- □ Principle of Least Effort!
  - We want to do all these with the least amount of work.

### Why do we need a (pre)conditioner?

SOLUTION? PRECONDITIONING!

- Preconditioning allows us to increase the convergence of iterative solvers. Reduces the *number of iterations*. Reduces the *overall time* required. And gives us an *improved result*! Preconditioners don't have to be exact. Our examples none of the preconditioners were computed to convergence. Still see significantly improved amplitudes.
- Satisfies Principle of Least Effort!

#### Our Problem

During seismic imaging, the following system of equations needs to be solved:

$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$

Inverting this equation we get:

$$\widetilde{\mathbf{x}}_{LS} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \mathbf{b} := \mathbf{A}^{\dagger} \mathbf{b}$$

- This involves the inversion of the normal equations.
  - With large data, these become quite difficult to compute efficiently.
- Inverting this is not so trivial and we will need to use iterative matrix-free methods such as LSQR.

[Symes, 2008] [Rickett, 2003]

[De Roeck, 2002]

#### **Our Problem**

☐ Inverting this is not so trivial because of the size:

$$\widetilde{\mathbf{x}}_{LS} = \operatorname*{arg\,min} \frac{1}{2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2}$$

- □ We want to condition this as well as possible.
- With accurate background velocity this iterative solution is known to converge quickly.
  - The sheer size of the problem however makes this a very time consuming problem.
- □ A reduction in the number of iterations will be necessary!

#### **Our Solution**

We propose to do this by replacing our initial system with a series of preconditioning levels:

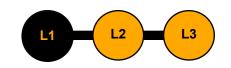
$$\mathbf{M}_L^{-1}\mathbf{A}\mathbf{M}_R^{-1}\mathbf{u} \approx \mathbf{M}_L^{-1}\mathbf{b}, \qquad \mathbf{x} := \mathbf{M}_R^{-1}\mathbf{u}$$

- ☐ This involves a series of *right* and *left* preconditioning matrices.
- These preconditioning matrices all compound together and produce a solid reduction of residual errors per iteration.
- The cost for applying these preconditioners is just a matrix multiplication in the respected domain.

#### **Our Solution**

- Our preconditioners are derived from the following three observations:
  - the normal operator is in d dimensions a (d-1)-order pseudo-differential operator
  - migration amplitudes decay with depth due to spherical spreading of seismic body waves
  - zero-order pseudo-differential operators can be approximated by a diagonal scaling in the curvelet domain

- We propose three levels of preconditioning:
- Level I Scaling in the Fourier domain.
  - Fractional differentiation.
  - Approximate a (d-1)-order pseudo-differential operator.
  - Improve low-frequency components.
- Level II Scaling in the physical domain.
  - Depth correction.
  - Corrects for amplitude decay of the migration code.
- □ Level III Scaling in the *curvelet* domain.
  - Curvelet-based diagonal estimation.
  - Restores amplitudes throughout the image.



- In data space we apply a multiplication in the temporal Fourier domain.
- ☐ This can be thought as a *left* preconditioning through fractional differentiation:

$$\mathbf{M}_L^{-1} := \partial_{|t|}^{-1/2}$$

- □ Some low-frequency content is restored.
- Sets up the curvelet-based diagonal estimation by approximating a (d-1)-order pseudo-differential operator.

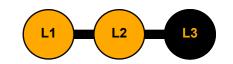


☐ *Right* preconditioning by scaling in the physical domain:

$$\mathbf{M}_{R}^{-1} = \mathbf{D}_{z} := \operatorname{diag}\left(\mathbf{z}\right)^{\frac{1}{2}}$$

- ☐ Reflected waves travel from the source at the surface down to the reflector and back.
- This gives a quadratic depth dependence.

 Everything is compounded together. This can be removed if desired.



☐ *Right* preconditioning by scaling in the curvelet domain:

$$\Psi \mathbf{r} \approx \mathbf{C}^* \mathbf{D}_{\Psi}^2 \mathbf{C} \mathbf{r}, \quad \mathbf{D}_{\Psi}^2 := \operatorname{diag} (\mathbf{d}^2)$$

$$\mathbf{M}_R^{-1} = \mathbf{D}_z \mathbf{C}^* \mathbf{D}_{\Psi}^{-1}$$

- Estimation of the diagonal in the curvelet domain.
- □ The cost to compute this diagonal is one migration and one remigration.
  - This is equivalent to one iteration of LSQR.

□ Improves amplitudes throughout the image.

CONSTRUCTING THE CURVELET DIAGONAL.

- We require a migrated and re-migrated image.
- We use one lambda parameter to control smoothing.
- We then solve the system with a limited memory Quasi-Newton method: L-BFGS.
  - No need to solve to convergence, approximating the diagonal is good enough.
  - Can see a rough approximation already improves imaged results.

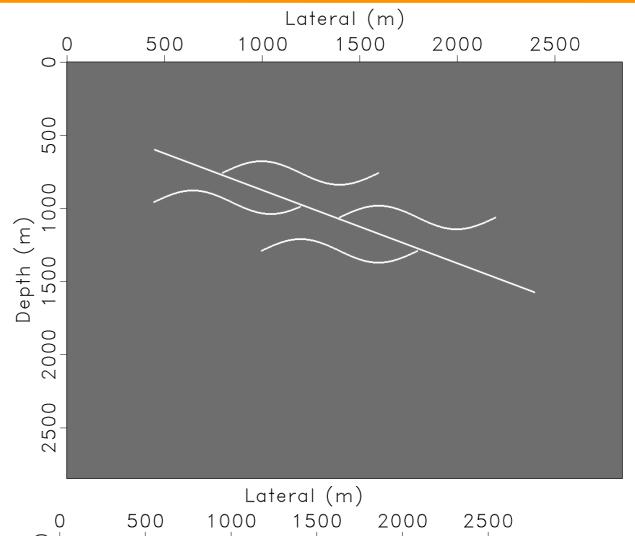
More information about this process can be found in the references.

WHY CURVELETS?

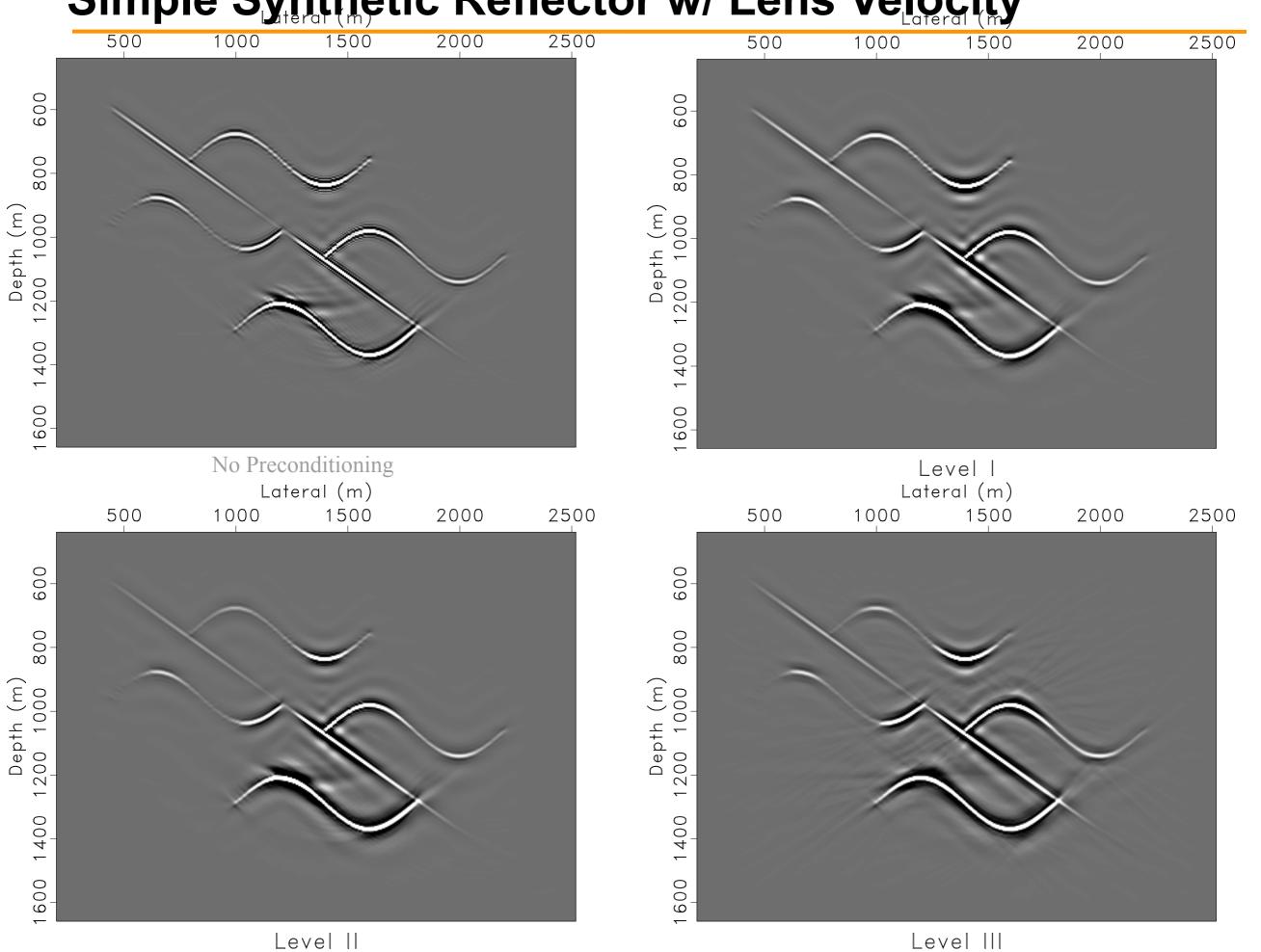
- Well-documented approximate invariance of curvelets under the linearized Born-scattering operator.
  - Consequently the columns of the preconditioned system are curvelet like.
  - For instance, small shifts over the support of a curvelet will not adversely affect the corresponding curvelet coefficient.
- □ Redundancy of the curvelets.
  - Makes this transform less prone to errors in individual entries in the curvelet vector.
- □ Redundancy spreads coherent noise over more coefficients.
  - A small subset of localized curvelets contribute to a particular feature. Thus only
    a small fraction of the 'noise' will contribute to the reconstruction.

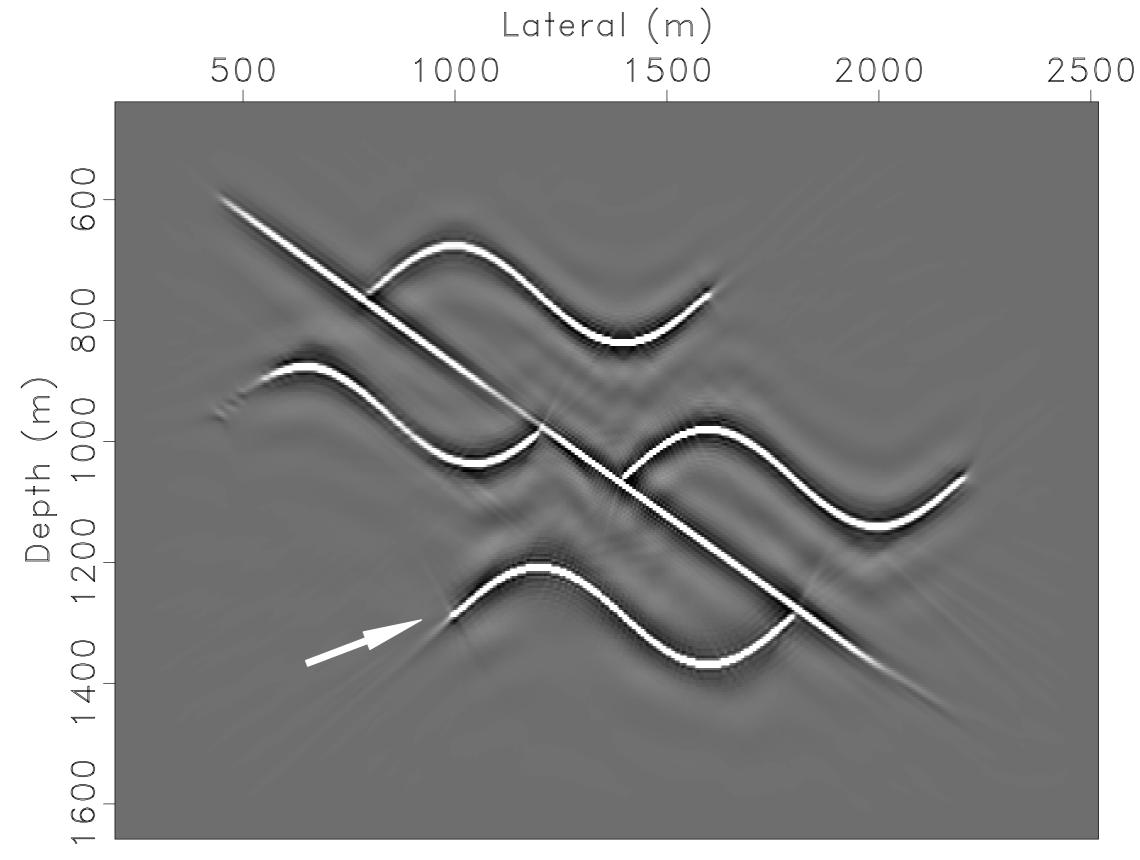
- We will look at a simple three reflector w/ fault model.
- Our hope is to correct amplitudes in the model.
  - Each preconditioning level should improve amplitudes further.
- ☐ We also want to *increase residual decay* per iteration for our iterative method.

- Simple reflector w/ fault reflectivity.
- □ Low velocity lens model.
- ☐ 40 shots.
- We use the linearized Born-scattering forward modeling operator to produce the data.









LSQR Result w/ Level III Preconditioning

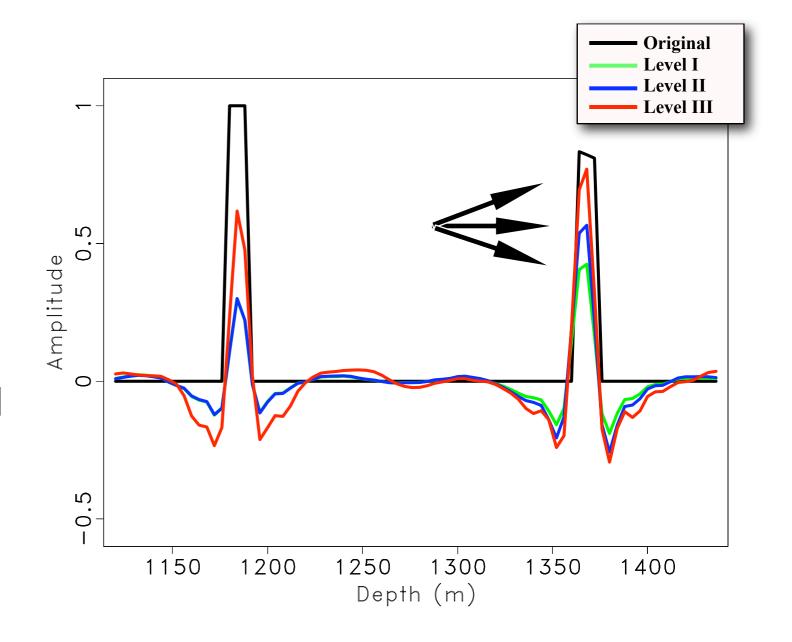
- Signal-to-Noise Ratio (SNR) to original reflectivity, after one iteration.
- □ Defined as follows, with L2 values normalized to one:

$$SNR = 20 \log \|\mathbf{x}_s\|_2 / \|\mathbf{x}_n - \mathbf{x}_s\|_2$$

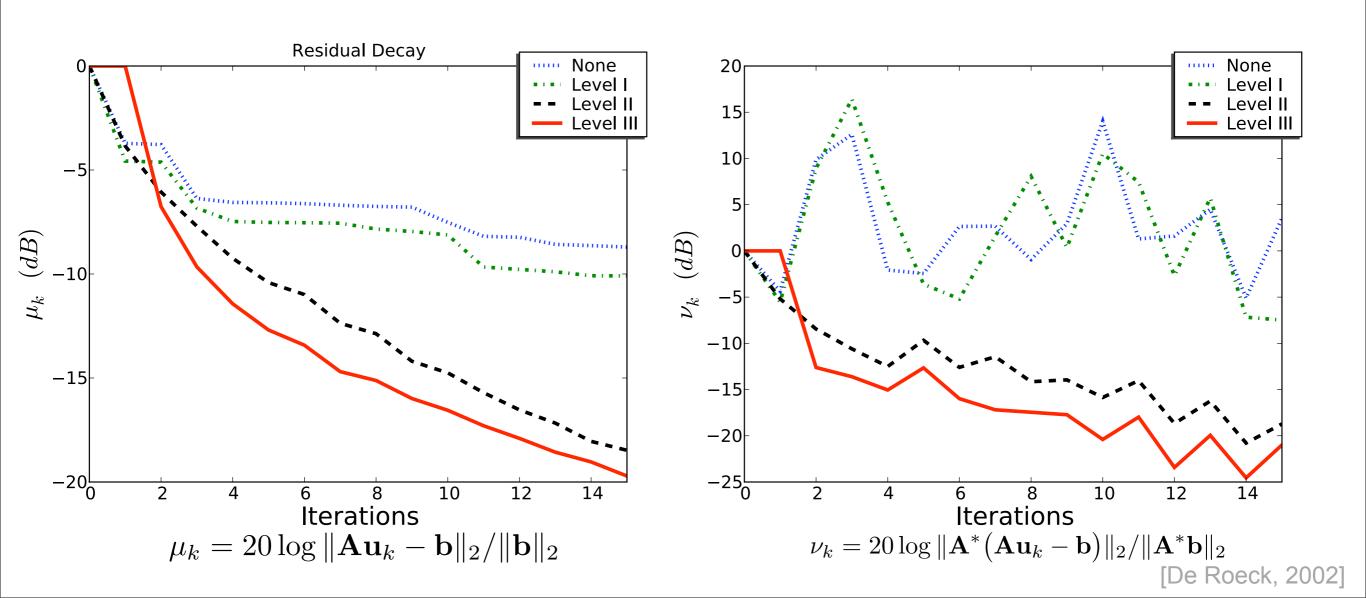
|                    | One iteration SNR |  |
|--------------------|-------------------|--|
| No Preconditioning | 0.9414            |  |
| Level I            | 1.2779            |  |
| Level II           | 1.0652            |  |
| Level III          | 1.7166            |  |

Vertical trace near the center of the model.

- □ Vertical trace at 1424m.
- Each preconditioning level is restoring the amplitudes closer to the original black line.
- Level III (curvelet-based diagonal) is doing the most significant amplitude recovery in this case.

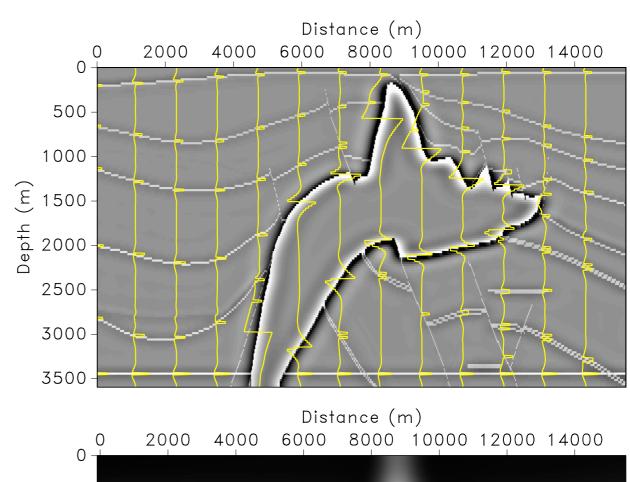


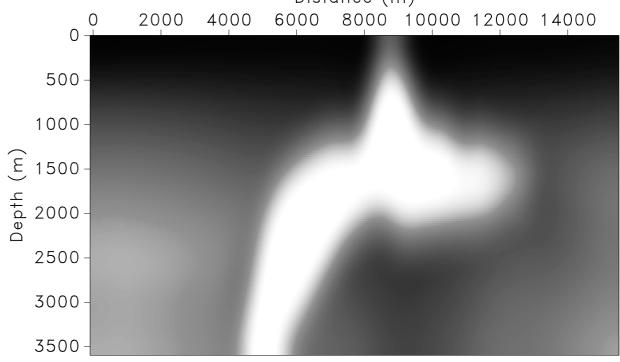
- □ Residual decay for the data-space and model-space residuals.
- Even after our first iteration of level III preconditioning, we are always below the other cases in each figure.
- The red line has already seen one migration-remigration due to the curvelet diagonal estimation process.

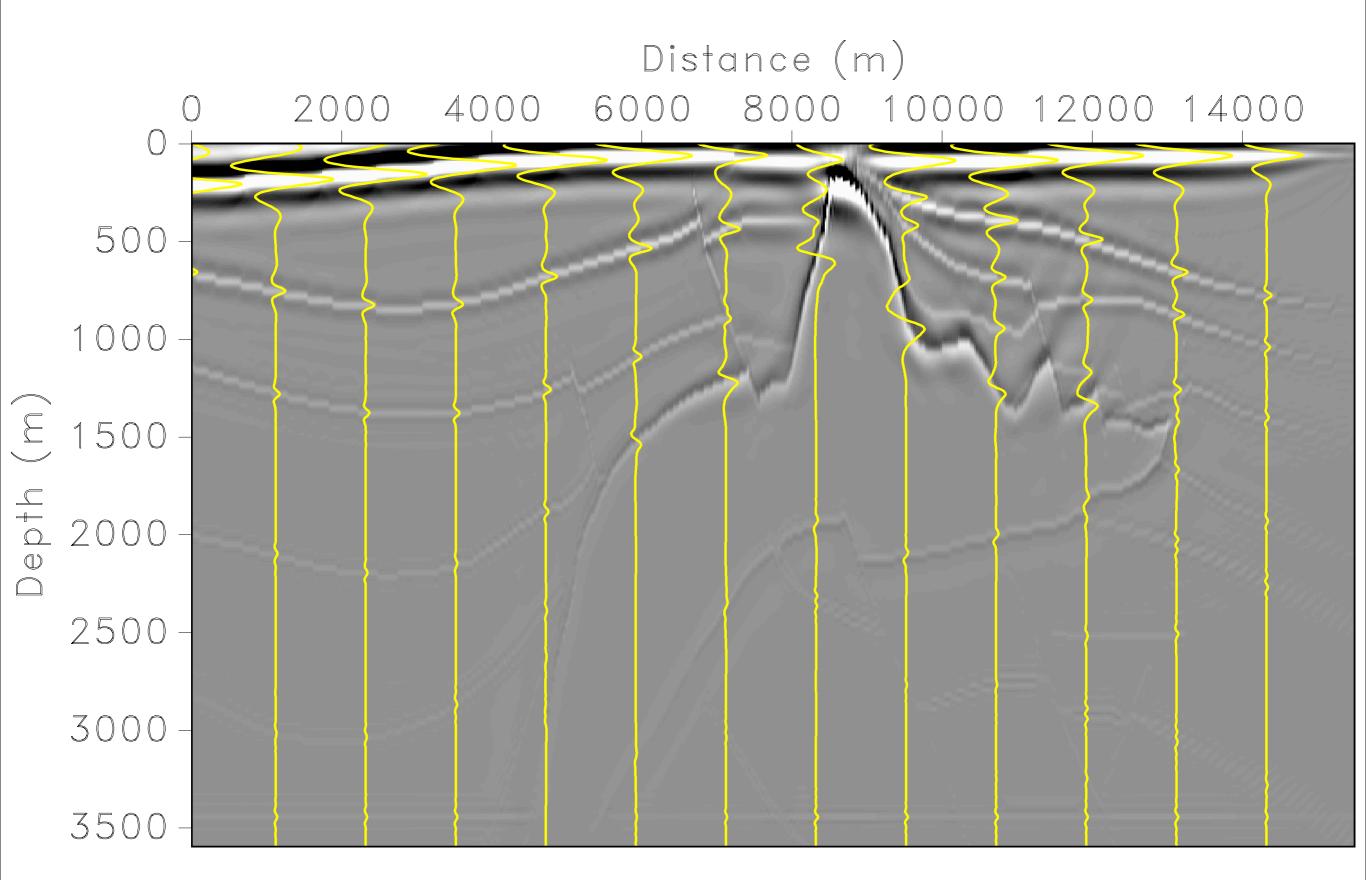


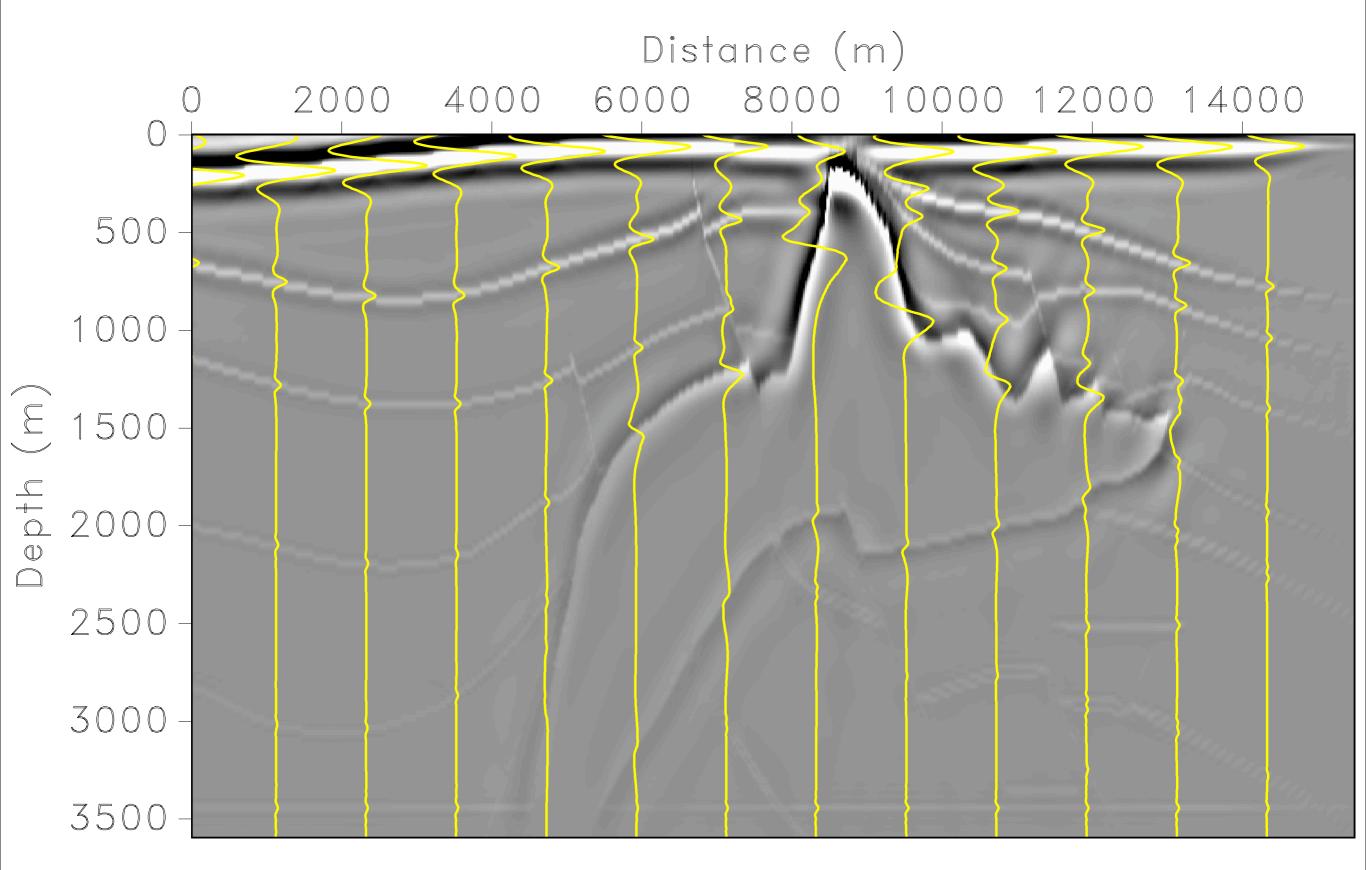
- □ SEG AA' salt model.
- Our goal is to improve amplitude recovery, especially for the reflectors under the salt model.
- We also want to increase residual decay for our iterative method.

- ☐ SEG AA' salt model.
- □ Smooth velocity model.
- ☐ 324 shots.
- Each shot 176 traces of6.4s with a trace interval of24m.
- ☐ Maximum offset of the data is 4224m.

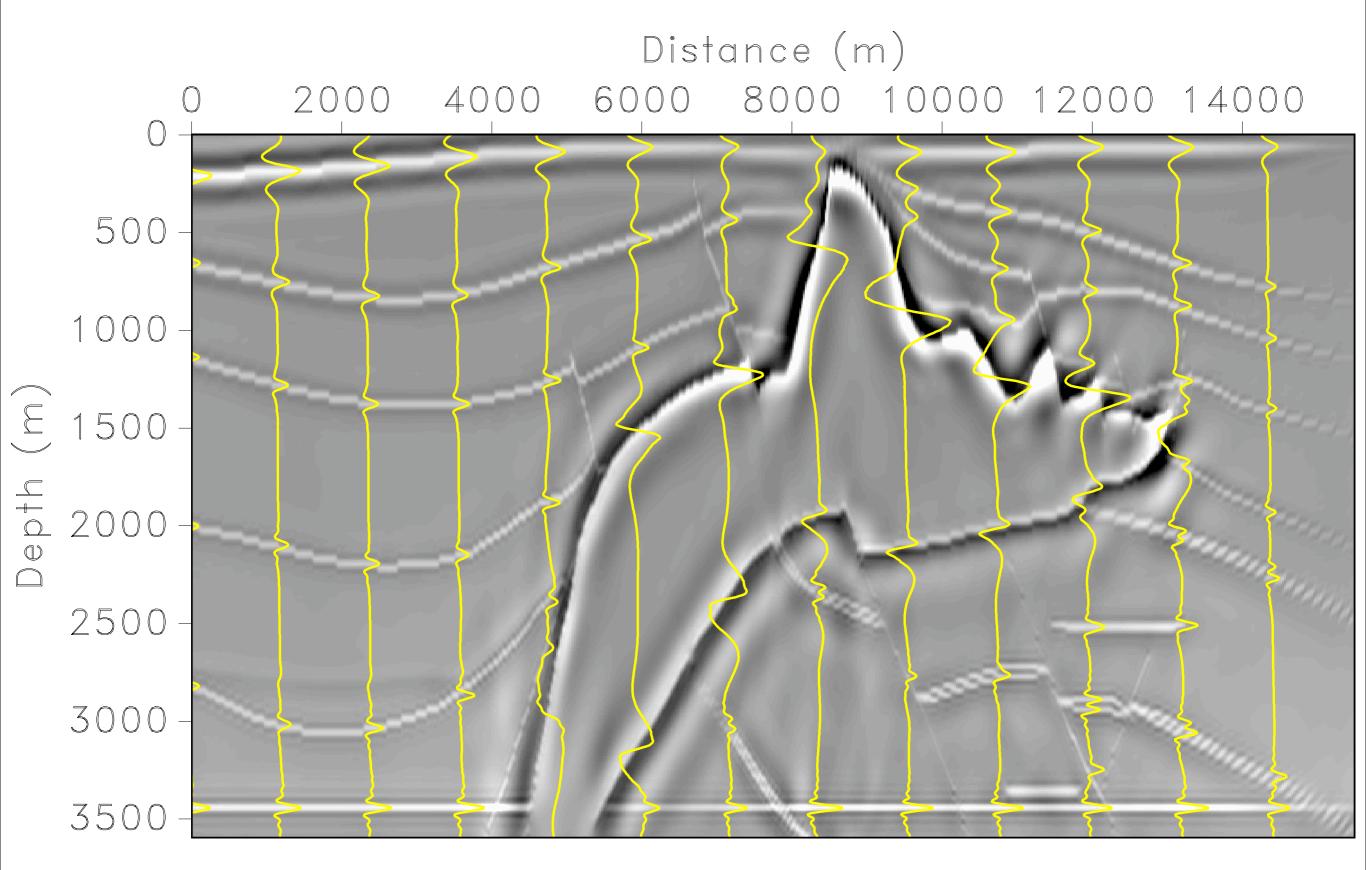




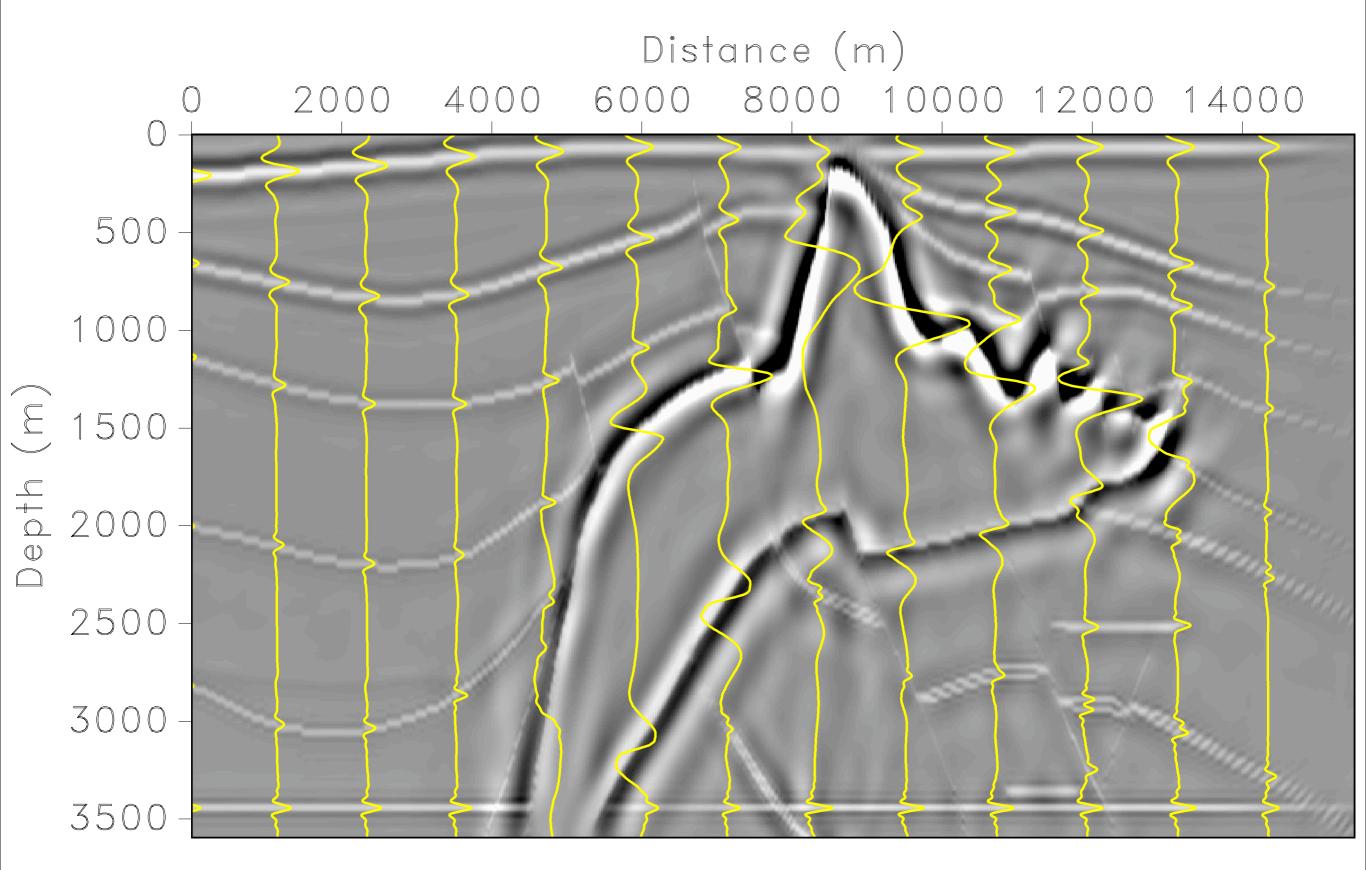




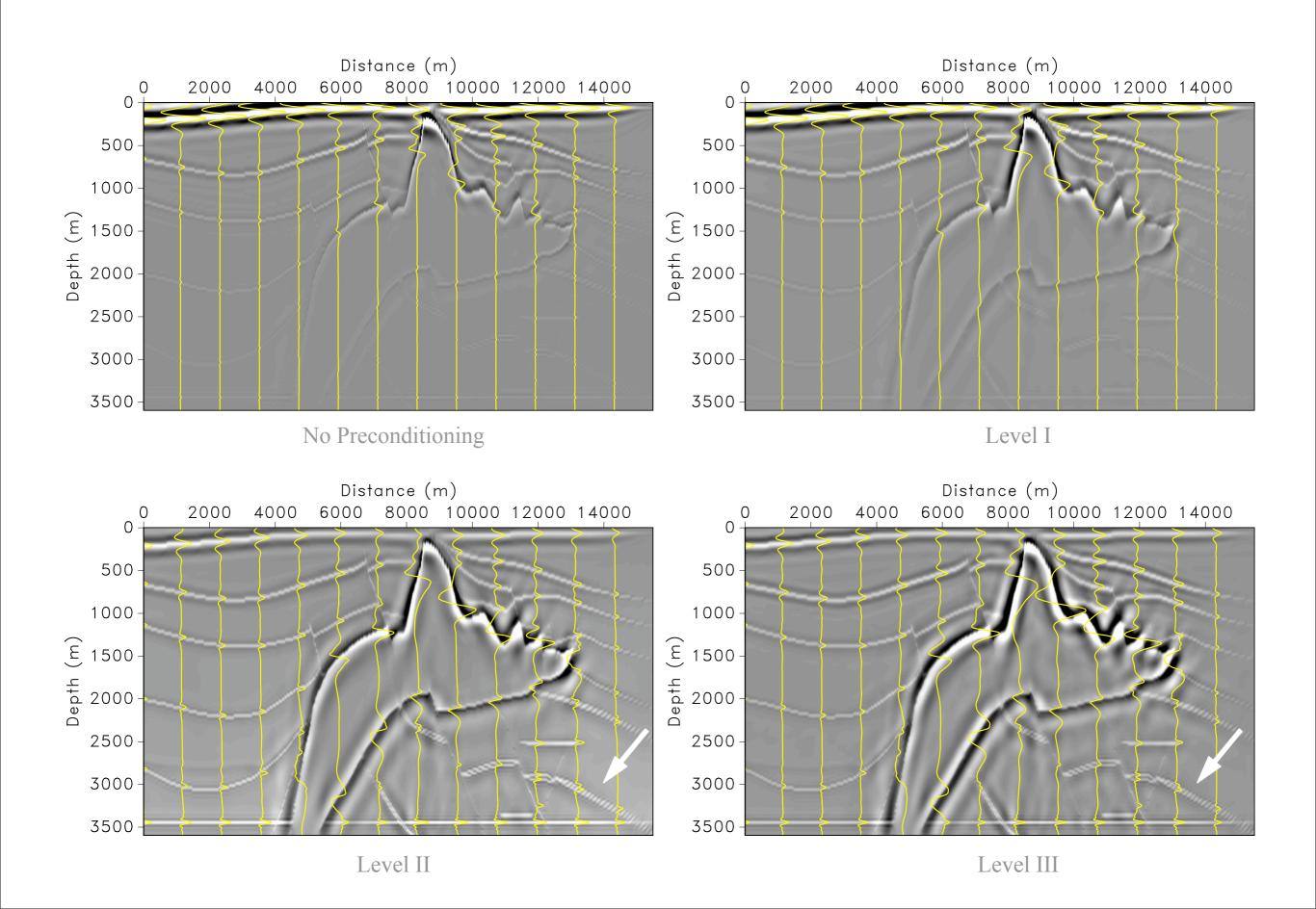
Level I

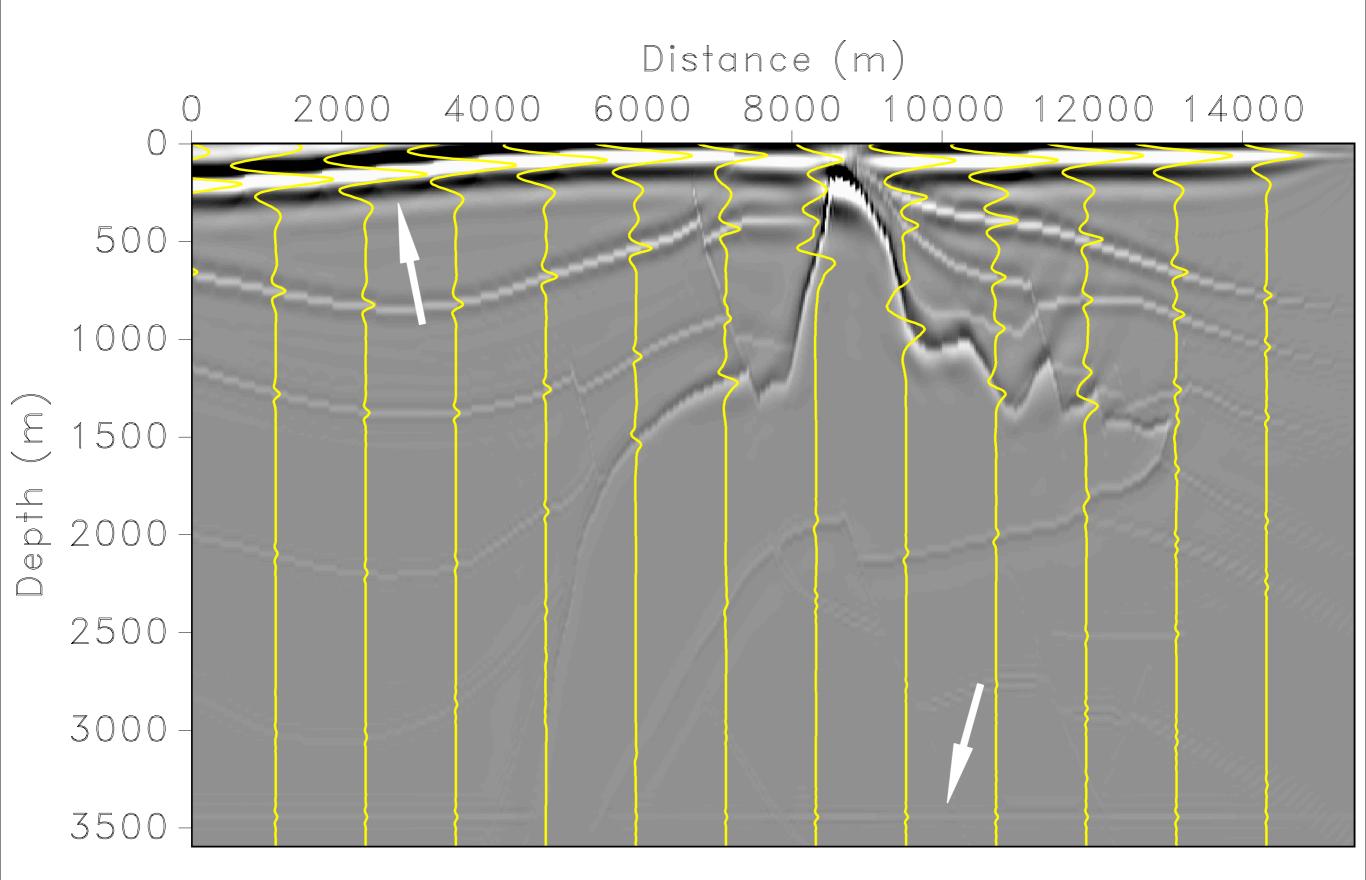


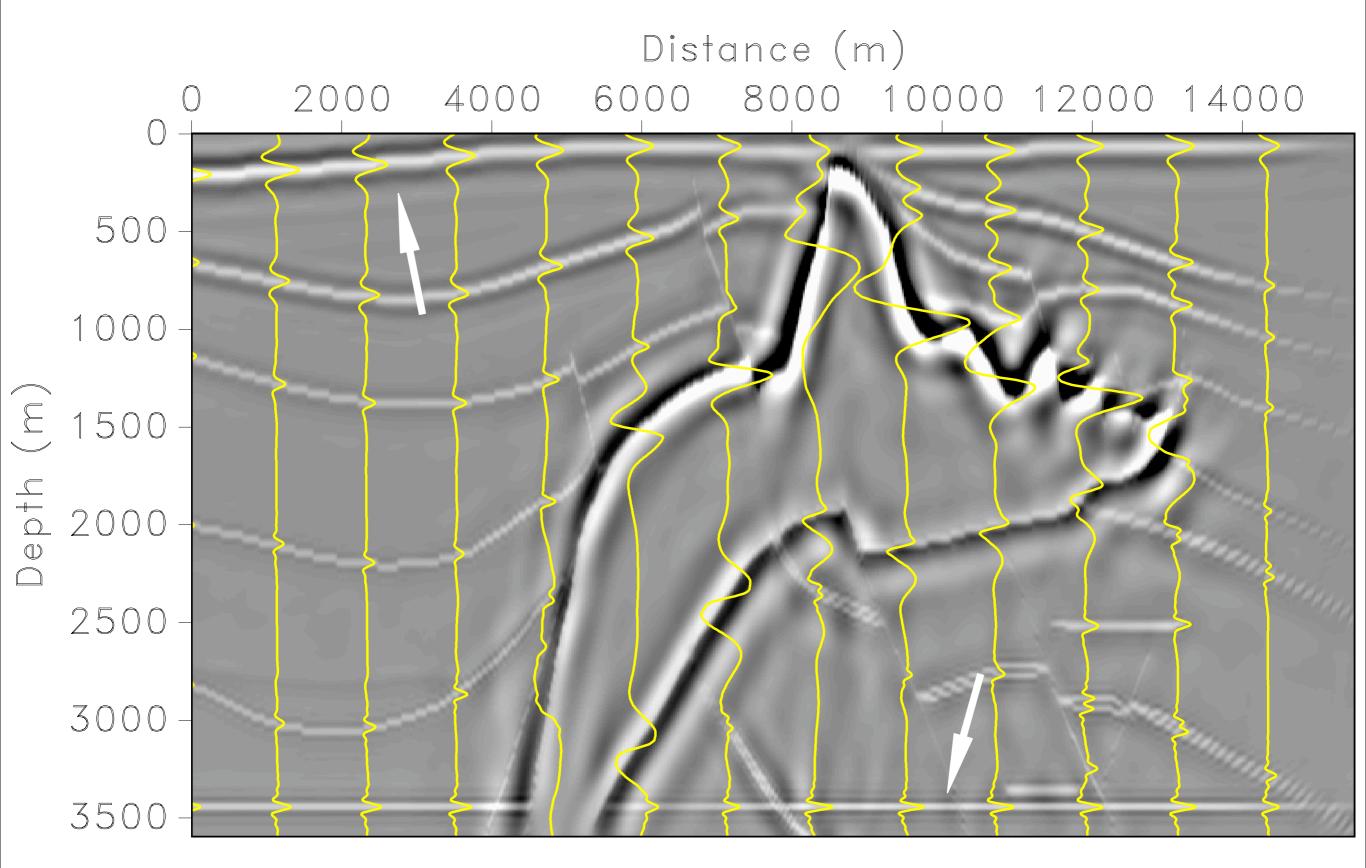
Level II



Level III

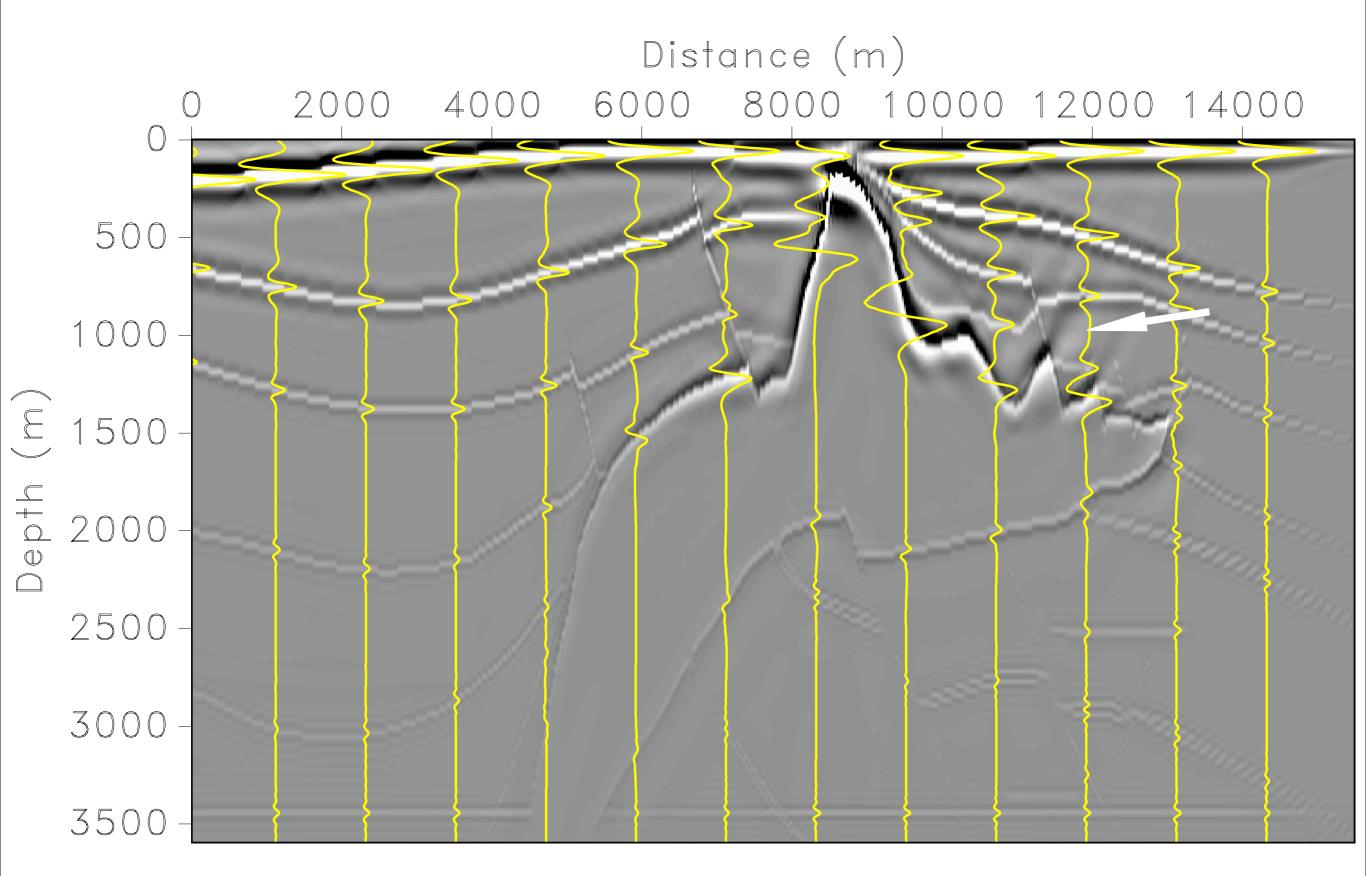






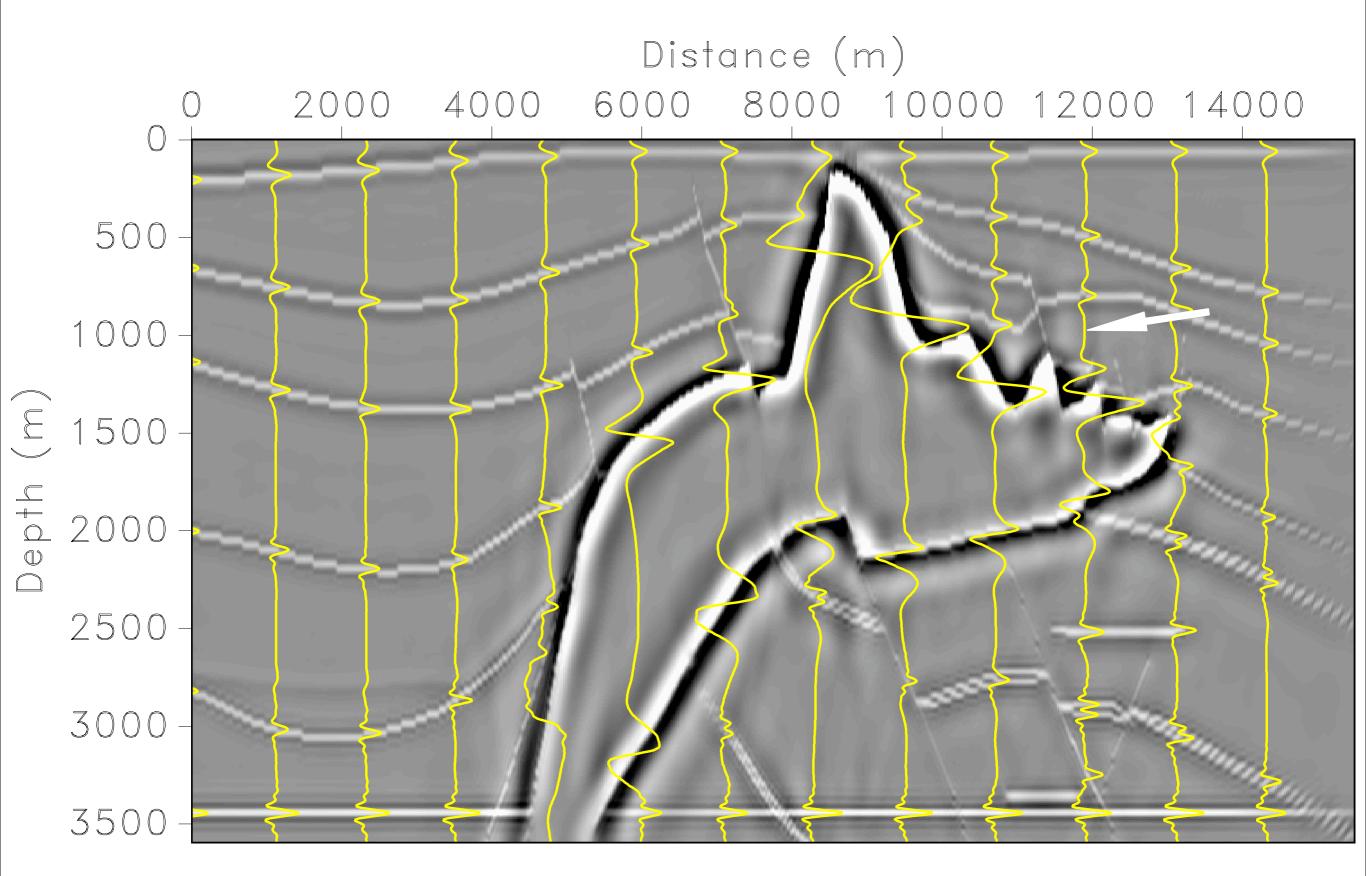
Level III

### SEG AA' Model w/ Smooth Velocity - LSQR Results



LSQR 10 iterations - No Preconditioning

#### SEG AA' Model w/ Smooth Velocity - LSQR Results



LSQR 10 iterations - Level III

- □ Signal-to-Noise Ratio (SNR) to original reflectivity.
- □ Defined as follows, with L2 values normalized to one:

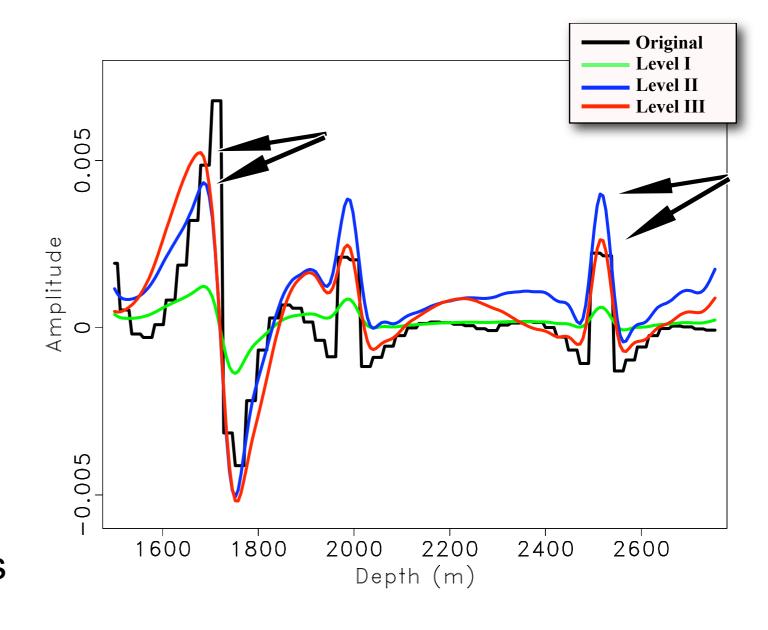
$$SNR = 20 \log \|\mathbf{x}_s\|_2 / \|\mathbf{x}_n - \mathbf{x}_s\|_2$$

|                    | One iteration SNR | LSQR results*<br>SNR |
|--------------------|-------------------|----------------------|
| No Preconditioning | -1.9803           | -0.9939              |
| Level I            | -1.4147           | 0.3312               |
| Level II           | 0.4030            | 3.2690               |
| Level III          | 1.3122            | 3.3230               |

\*LSQR to 10 iterations

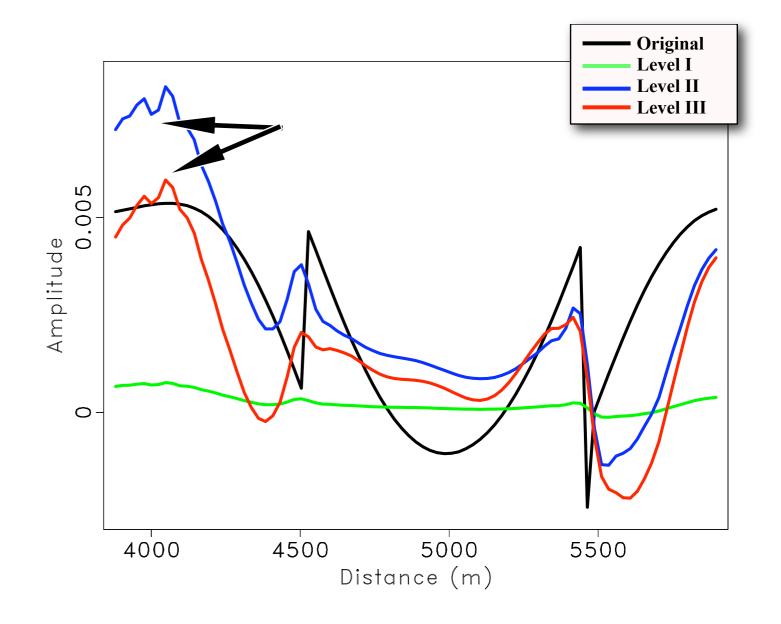
- □ Vertical trace at 12720m through the salt model.
- Each preconditioning level is restoring the amplitudes closer to the original.
- Increase or decrease amplitudes, not just a direct linear scaling.
- Level III (curvelet-based diagonal combination) is doing the most significant amplitude recovery in this case.

Vertical trace near the tip of the salt model.

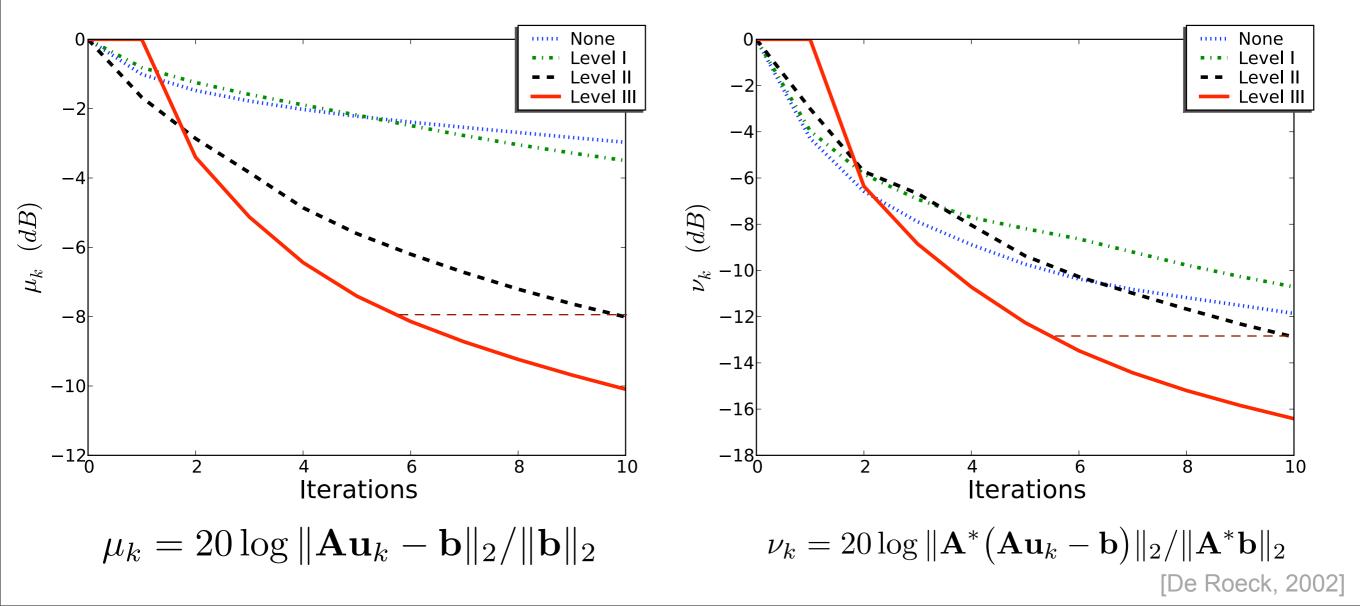


- Horizontal trace at 3438m through the reflector at the bottom.
- Section where the salt model meets the reflector.
- Can see our preconditioner is improving amplitude corrections.

# Horizontal trace where salt model meets the bottom reflector.



- □ Residual decay for the data-space and model-space residuals.
- Even after our first few iterations of level III preconditioning, we quickly improve upon the other levels in each figure.
- The red line has already seen one migration-remigration due to the curvelet diagonal estimation process.



#### Conclusions

- We can achieve significant residual decay using our series of preconditioning matrices.
- Amplitudes throughout the model are recovered more accurately to the original reflectivity.
- We do the same amount of work, but get a better result.

We satisfy Zipf's Principle of Least Effort!

#### **Speculations on Real Data**

- On real data our curvelet-based diagonal estimation should greatly improve the image.
  - Curvelets add robustness to the presence of coherent noise.
  - Also moderates errors in the linearized Born modeling operator.
- Small shifts over the support of a curvelet will not adversely affect the corresponding curvelet coefficient.
  - Allow imperfections in the velocity model.

### Acknowledgments

- All the examples were computed using a SLIMpy script to Madagascar with a wrapper to Symes' RTM Code.
- ☐ We would like to thank:
  - Bill Symes for use of his 2D Acoustic Post-Stack Reverse-Time Migration code.
  - Madagascar Development Team (<a href="http://reproducibility.org/">http://reproducibility.org/</a>).
  - CurveLab Developers (<a href="http://www.curvelet.org/">http://www.curvelet.org/</a>).
  - SLIMpy Developers (<a href="http://slim.eos.ubc.ca/SLIMpy/">http://slim.eos.ubc.ca/SLIMpy/</a>).
- ☐ This work was in part financially supported by the NSERC Discovery (22R81254) and CRD Grants DNOISE (334810-05) of F.J.H. and was in part carried out within the SINBAD project with support, secured through ITF, from BG Group, BP, Chevron, ExxonMobil and Shell.

## **SLIMpy Web Pages**

More information about SLIMpy can be found at the SLIM homepage:

http://slim.eos.ubc.ca

Auto-books and tutorials can be found at the SLIMpy generated websites:

http://slim.eos.ubc.ca/SLIMpy/

#### References

- For more information please look at a recently submitted letter to Geophysics:
  - Herrmann, F. J., C. R. Brown, Y. A. Erlangga, and P. P. Moghaddam, 2008,
     Curvelet-based migration preconditioning, <a href="http://slim.eos.ubc.ca/Publications/">http://slim.eos.ubc.ca/Publications/</a>
     Public/Journals/herrmann08cmp.pdf.
- Other papers to consider looking at:
  - De Roeck, Y., 2002, Sparse linear algebra and geophysical migration: A review of direct and iterative methods: Numerical Algorithms, 29, 283–322.
  - Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008, Sparsity- and continuity-promoting seismic imaging with curvelet frames: Journal of Applied and Computational Harmonic Analysis, 24, 150–173. (doi:10.1016/j.acha. 2007.06.007).
  - Paige, C. C. and M. A. Saunders, 1982, LSQR: An algorithm for sparse linear equations and sparse least squares: ACM TOMS, 8, 43–71.
  - Symes, W. W., 2008, Approximate linearized inversion by optimal scaling of prestack depth migration: Geophysics, 73, R23–R35. (10.1190/1.2836323).