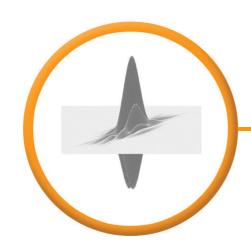
THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER



Curvelet-based Migration Preconditioning

Advantages of a Diagonal Scaling Curvelet Preconditioner

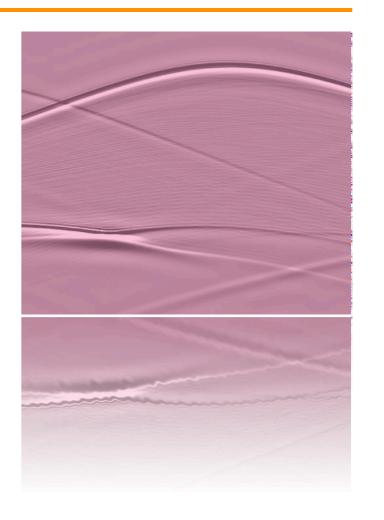
Cody R. Brown cbrown@eos.ubc.ca

Felix J. Herrmann fherrmann@eos.ubc.ca

Peyman Poor Moghaddam ppoor@eos.ubc.ca

Yogi A. Erlangga yerlangga@eos.ubc.ca

Seismic Laboratory for Imaging & Modeling (SLIM)
Department of Earth & Ocean Sciences
The University of British Columbia



SEG 2008 Annual Meeting, Las Vegas Tuesday, November 11th, 2008

Principle of Least Effort

George Kingsley Zipf's principle states that people and even well designed machines will naturally choose the path of least effort.

- □ This is the same for us!
- If we can get to the same solution, lets choose the path that requires the least amount of work.

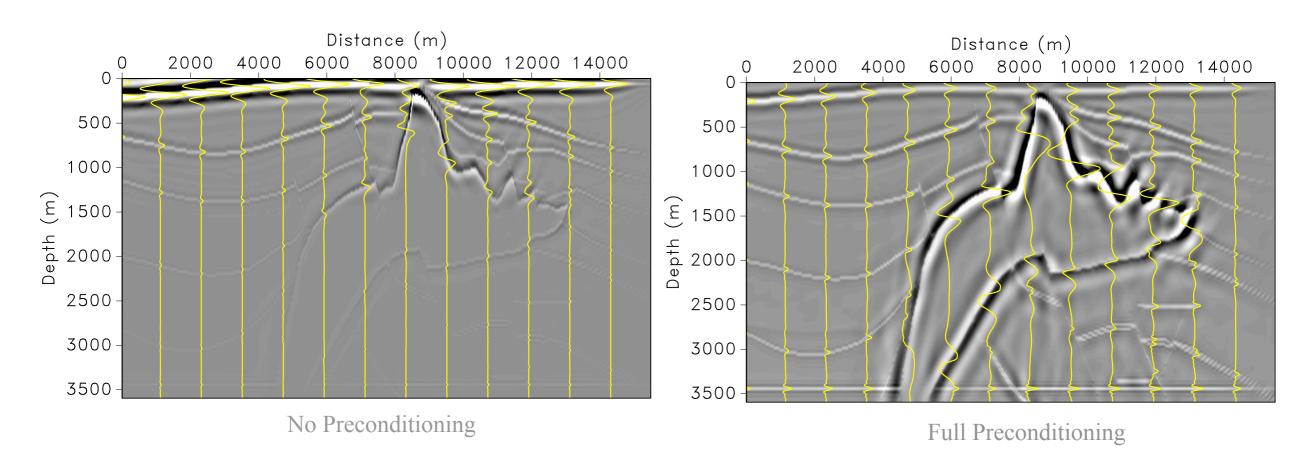
Lazyman Rubik's Cube

Outline

- Motivation
- □ Definition of our Problem
- Preconditioning Levels:
 - Level I Fractional Differentiation
 - Level II Depth Correction
 - Level III Curvelet-based Diagonal Estimation
- □ Some Data Examples
 - Simple Synthetic Reflector w/ Lens Velocity
 - SEG AA' Model w/ Smooth Velocity
- ☐ Conclusions

What We Want

- We want to correct amplitudes and regularize reflector information throughout the image.
- □ Stabilize the problem and improve convergence rates.



Why do we need a (pre)conditioner?

- □ In the seismic world, we deal with extremely large data-sets.
 - Requires a lot of time to do simple operations.
 - Even more time to apply just one migration!
- □ Iterative solvers require significant resources and time.
 - We need to reduce the number of iterations.
- We would like to stabilized the problem.
 - Applying small changes will still allow our LSQR algorithm to converge.

- □ Principle of Least Effort!
 - We want to do all these with the least amount of work.

Why do we need a (pre)conditioner?

SOLUTION? PRECONDITIONING!

- Preconditioning allows us to increase the convergence of iterative solvers. Reduces the *number of iterations*. Reduces the *overall time* required. And gives us an *improved result*! Preconditioners don't have to be exact. Our examples none of the preconditioners were computed to convergence. Still see significantly improved amplitudes.
- Satisfies Principle of Least Effort!

Our Problem

During seismic imaging, the following system of equations needs to be solved:

$$\mathbf{A}\mathbf{x} \approx \mathbf{b}$$

Inverting this equation we get:

$$\widetilde{\mathbf{x}}_{LS} = (\mathbf{A}^* \mathbf{A})^{-1} \mathbf{A}^* \mathbf{b} := \mathbf{A}^{\dagger} \mathbf{b}$$

- This involves the inversion of the normal equations.
 - With large data, these become quite difficult to compute efficiently.
- Inverting this is not so trivial and we will need to use iterative matrix-free methods such as LSQR.

[Symes, 2008] [Rickett, 2003]

[De Roeck, 2002]

Our Problem

☐ Inverting this is not so trivial because of the size:

$$\widetilde{\mathbf{x}}_{LS} = \operatorname*{arg\,min} \frac{1}{2} \|\mathbf{b} - \mathbf{A}\mathbf{x}\|_{2}^{2}$$

- □ We want to condition this as well as possible.
- With accurate background velocity this iterative solution is known to converge quickly.
 - The sheer size of the problem however makes this a very time consuming problem.
- □ A reduction in the number of iterations will be necessary!

Our Solution

We propose to do this by replacing our initial system with a series of preconditioning levels:

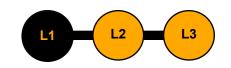
$$\mathbf{M}_L^{-1}\mathbf{A}\mathbf{M}_R^{-1}\mathbf{u} \approx \mathbf{M}_L^{-1}\mathbf{b}, \qquad \mathbf{x} := \mathbf{M}_R^{-1}\mathbf{u}$$

- ☐ This involves a series of *right* and *left* preconditioning matrices.
- These preconditioning matrices all compound together and produce a solid reduction of residual errors per iteration.
- The cost for applying these preconditioners is just a matrix multiplication in the respected domain.

Our Solution

- Our preconditioners are derived from the following three observations:
 - the normal operator is in d dimensions a (d-1)-order pseudo-differential operator
 - migration amplitudes decay with depth due to spherical spreading of seismic body waves
 - zero-order pseudo-differential operators can be approximated by a diagonal scaling in the curvelet domain

- We propose three levels of preconditioning:
- Level I Scaling in the Fourier domain.
 - Fractional differentiation.
 - Approximate a (d-1)-order pseudo-differential operator.
 - Improve low-frequency components.
- Level II Scaling in the physical domain.
 - Depth correction.
 - Corrects for amplitude decay of the migration code.
- □ Level III Scaling in the *curvelet* domain.
 - Curvelet-based diagonal estimation.
 - Restores amplitudes throughout the image.



- In data space we apply a multiplication in the temporal Fourier domain.
- ☐ This can be thought as a *left* preconditioning through fractional differentiation:

$$\mathbf{M}_L^{-1} := \partial_{|t|}^{-1/2}$$

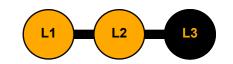
- □ Some low-frequency content is restored.
- Sets up the curvelet-based diagonal estimation by approximating a (d-1)-order pseudo-differential operator.

☐ *Right* preconditioning by scaling in the physical domain:

$$\mathbf{M}_{R}^{-1} = \mathbf{D}_{z} := \operatorname{diag}\left(\mathbf{z}\right)^{\frac{1}{2}}$$

- ☐ Reflected waves travel from the source at the surface down to the reflector and back.
- This gives a quadratic depth dependence.

 Everything is compounded together. This can be removed if desired.



☐ *Right* preconditioning by scaling in the curvelet domain:

$$\Psi \mathbf{r} \approx \mathbf{C}^* \mathbf{D}_{\Psi}^2 \mathbf{C} \mathbf{r}, \quad \mathbf{D}_{\Psi}^2 := \operatorname{diag} (\mathbf{d}^2)$$

$$\mathbf{M}_R^{-1} = \mathbf{D}_z \mathbf{C}^* \mathbf{D}_{\Psi}^{-1}$$

- Estimation of the diagonal in the curvelet domain.
- □ The cost to compute this diagonal is one migration and one remigration.
 - This is equivalent to one iteration of LSQR.

□ Improves amplitudes throughout the image.

CONSTRUCTING THE CURVELET DIAGONAL.

- We require a migrated and re-migrated image.
- We use one lambda parameter to control smoothing.
- We then solve the system with a limited memory Quasi-Newton method: L-BFGS.
 - No need to solve to convergence, approximating the diagonal is good enough.
 - Can see a rough approximation already improves imaged results.

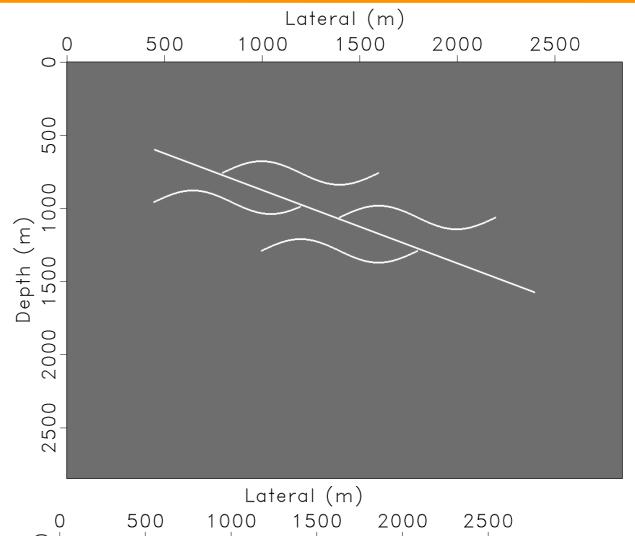
More information about this process can be found in the references.

WHY CURVELETS?

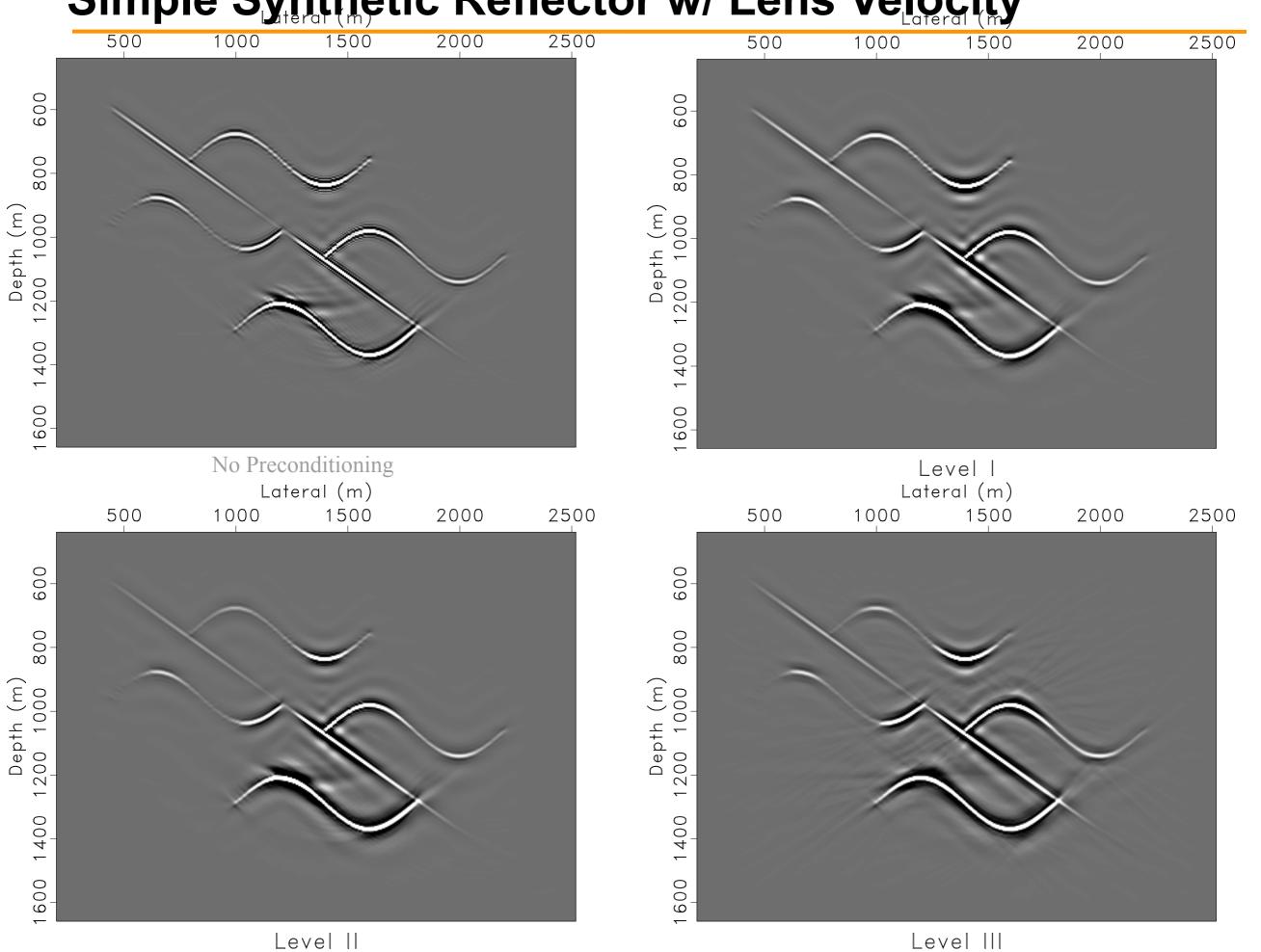
- Well-documented approximate invariance of curvelets under the linearized Born-scattering operator.
 - Consequently the columns of the preconditioned system are curvelet like.
 - For instance, small shifts over the support of a curvelet will not adversely affect the corresponding curvelet coefficient.
- □ Redundancy of the curvelets.
 - Makes this transform less prone to errors in individual entries in the curvelet vector.
- □ Redundancy spreads coherent noise over more coefficients.
 - A small subset of localized curvelets contribute to a particular feature. Thus only
 a small fraction of the 'noise' will contribute to the reconstruction.

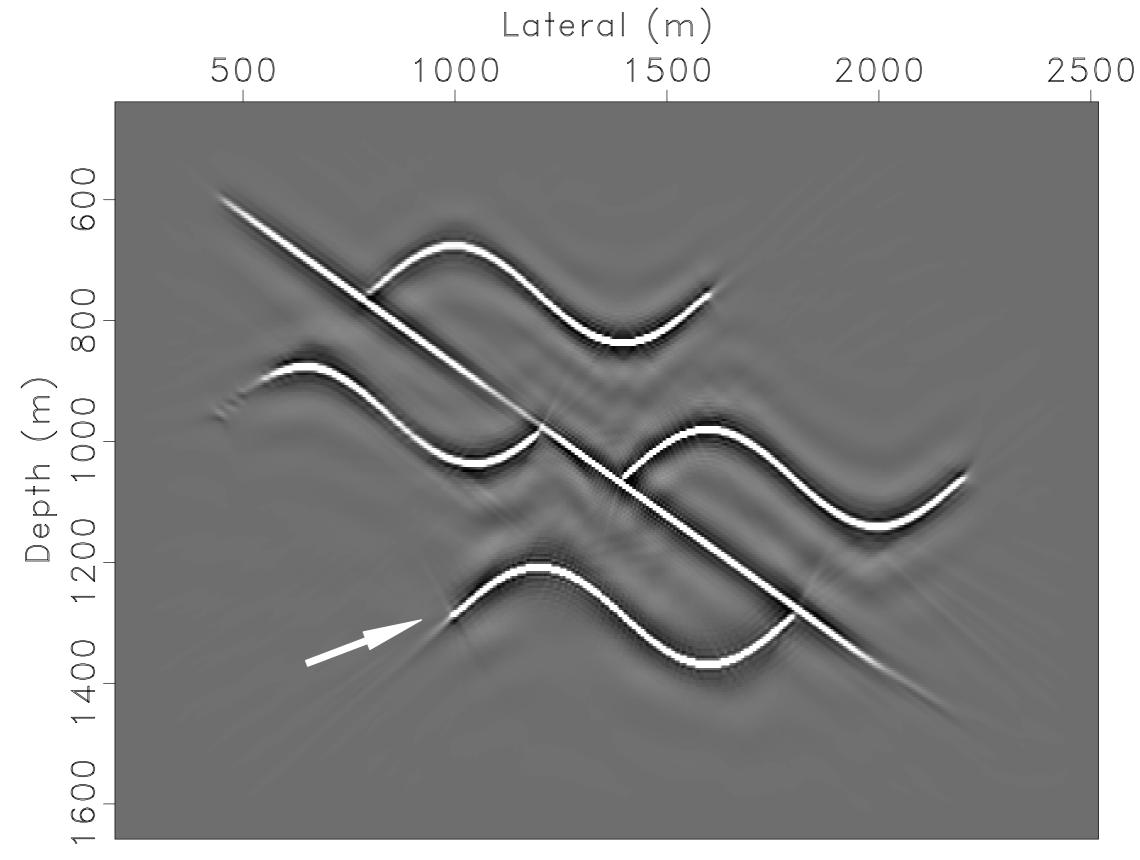
- We will look at a simple three reflector w/ fault model.
- Our hope is to correct amplitudes in the model.
 - Each preconditioning level should improve amplitudes further.
- ☐ We also want to *increase residual decay* per iteration for our iterative method.

- Simple reflector w/ fault reflectivity.
- □ Low velocity lens model.
- ☐ 40 shots.
- We use the linearized Born-scattering forward modeling operator to produce the data.









LSQR Result w/ Level III Preconditioning

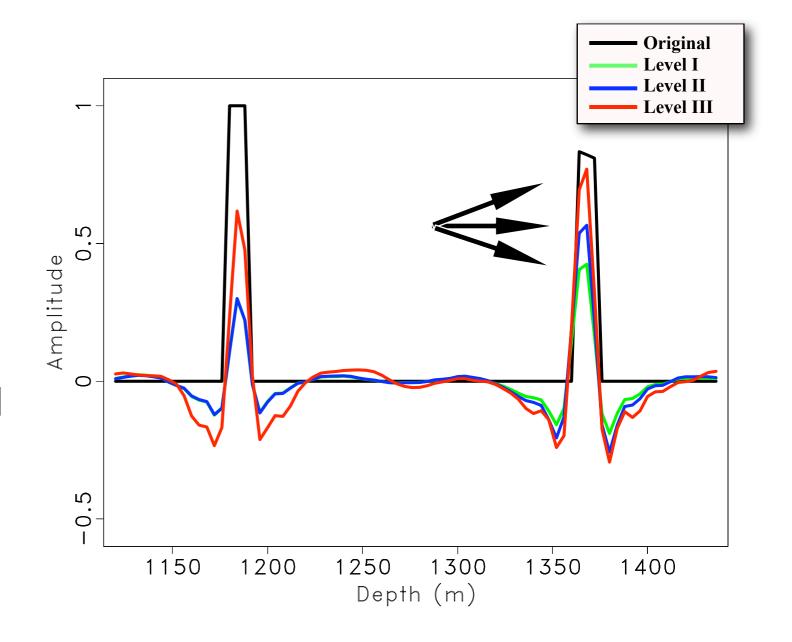
- Signal-to-Noise Ratio (SNR) to original reflectivity, after one iteration.
- □ Defined as follows, with L2 values normalized to one:

$$SNR = 20 \log \|\mathbf{x}_s\|_2 / \|\mathbf{x}_n - \mathbf{x}_s\|_2$$

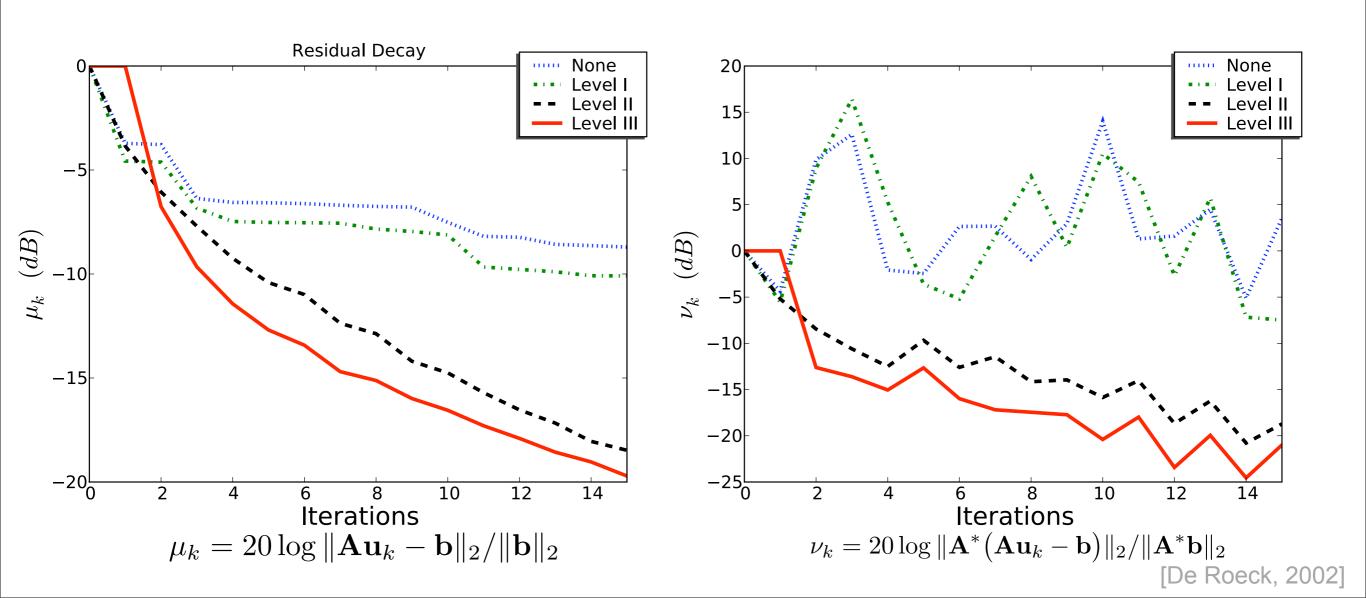
	One iteration SNR	
No Preconditioning	0.9414	
Level I	1.2779	
Level II	1.0652	
Level III	1.7166	

Vertical trace near the center of the model.

- □ Vertical trace at 1424m.
- Each preconditioning level is restoring the amplitudes closer to the original black line.
- Level III (curvelet-based diagonal) is doing the most significant amplitude recovery in this case.

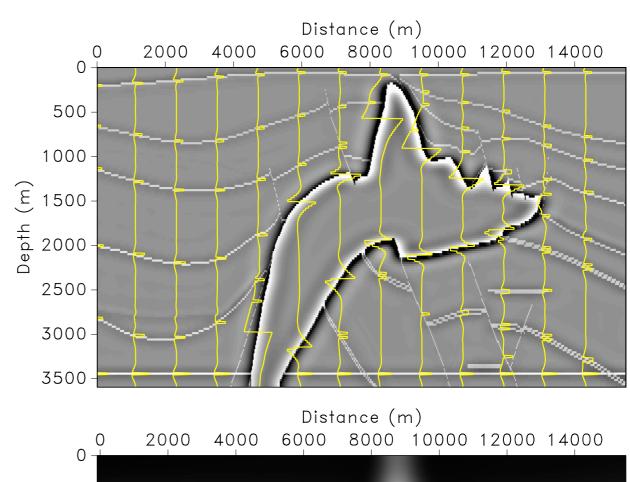


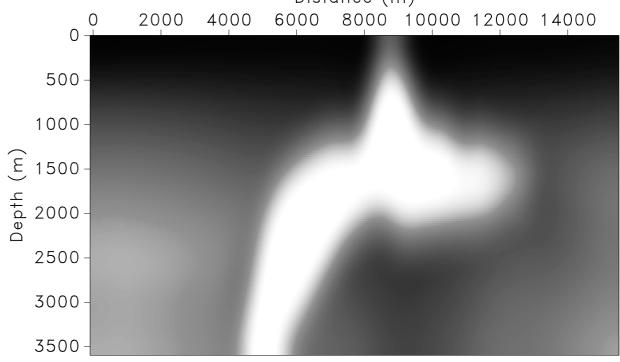
- □ Residual decay for the data-space and model-space residuals.
- Even after our first iteration of level III preconditioning, we are always below the other cases in each figure.
- The red line has already seen one migration-remigration due to the curvelet diagonal estimation process.

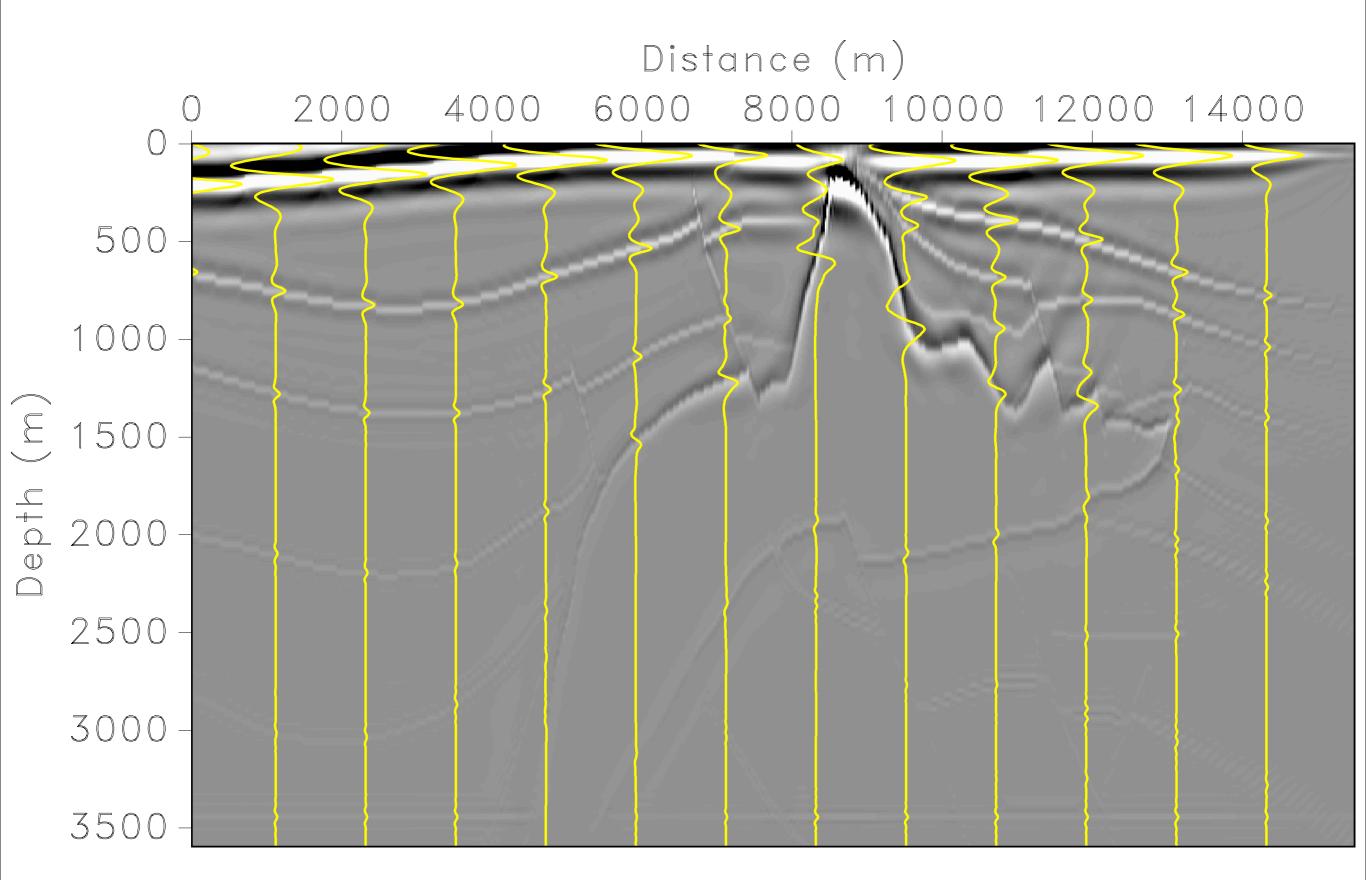


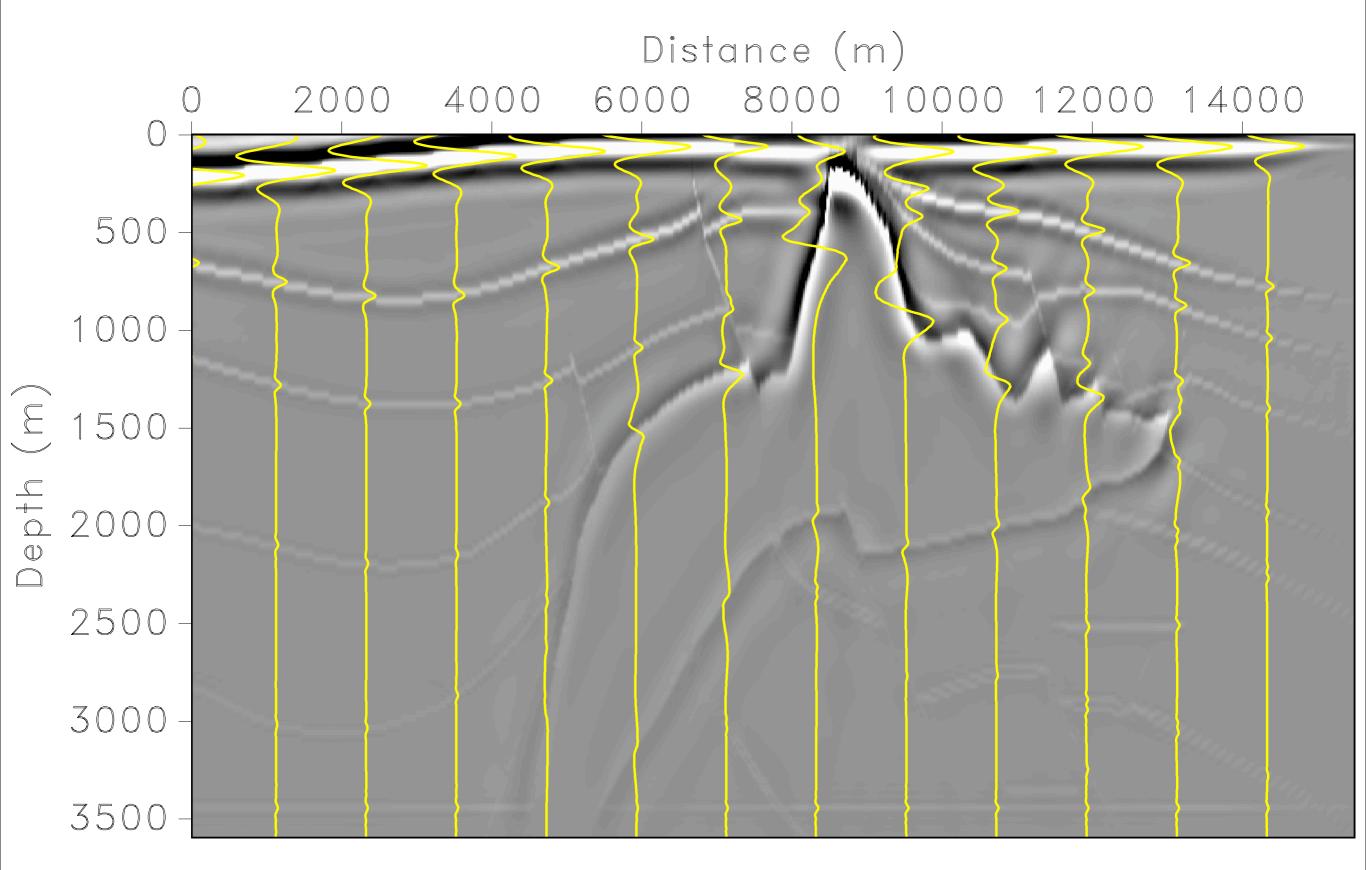
- □ SEG AA' salt model.
- Our goal is to improve amplitude recovery, especially for the reflectors under the salt model.
- We also want to increase residual decay for our iterative method.

- ☐ SEG AA' salt model.
- □ Smooth velocity model.
- ☐ 324 shots.
- Each shot 176 traces of6.4s with a trace interval of24m.
- ☐ Maximum offset of the data is 4224m.

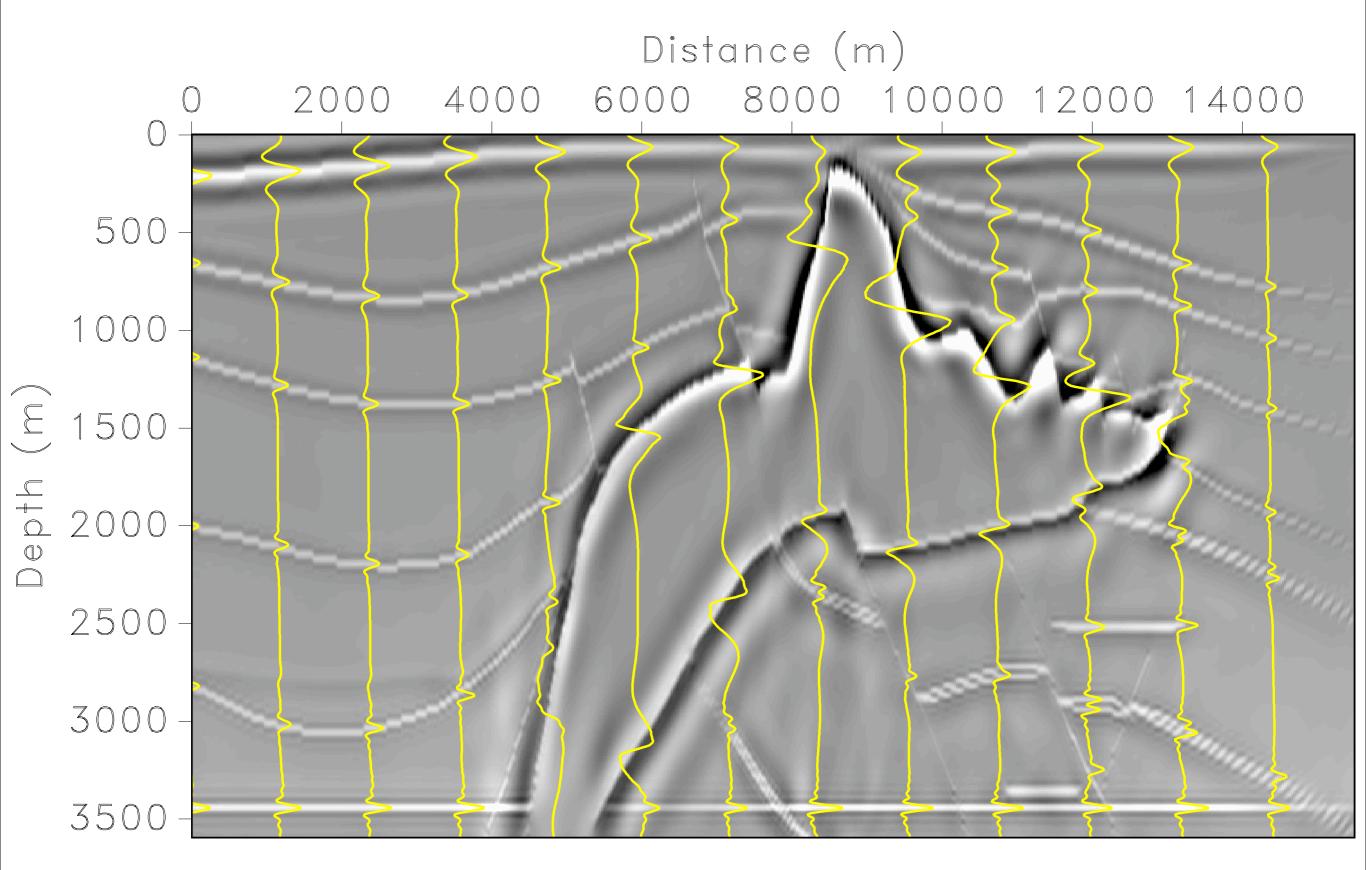




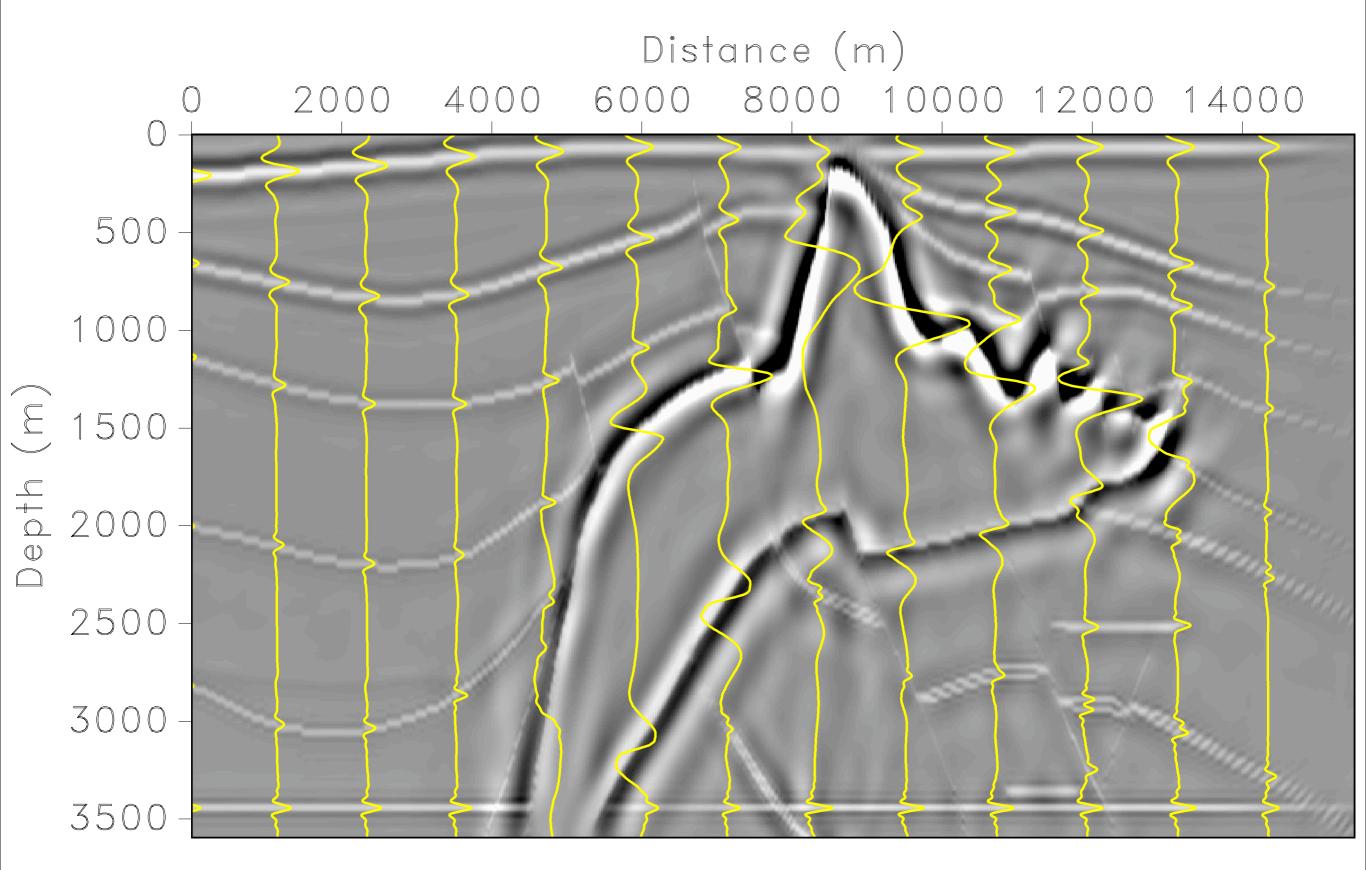




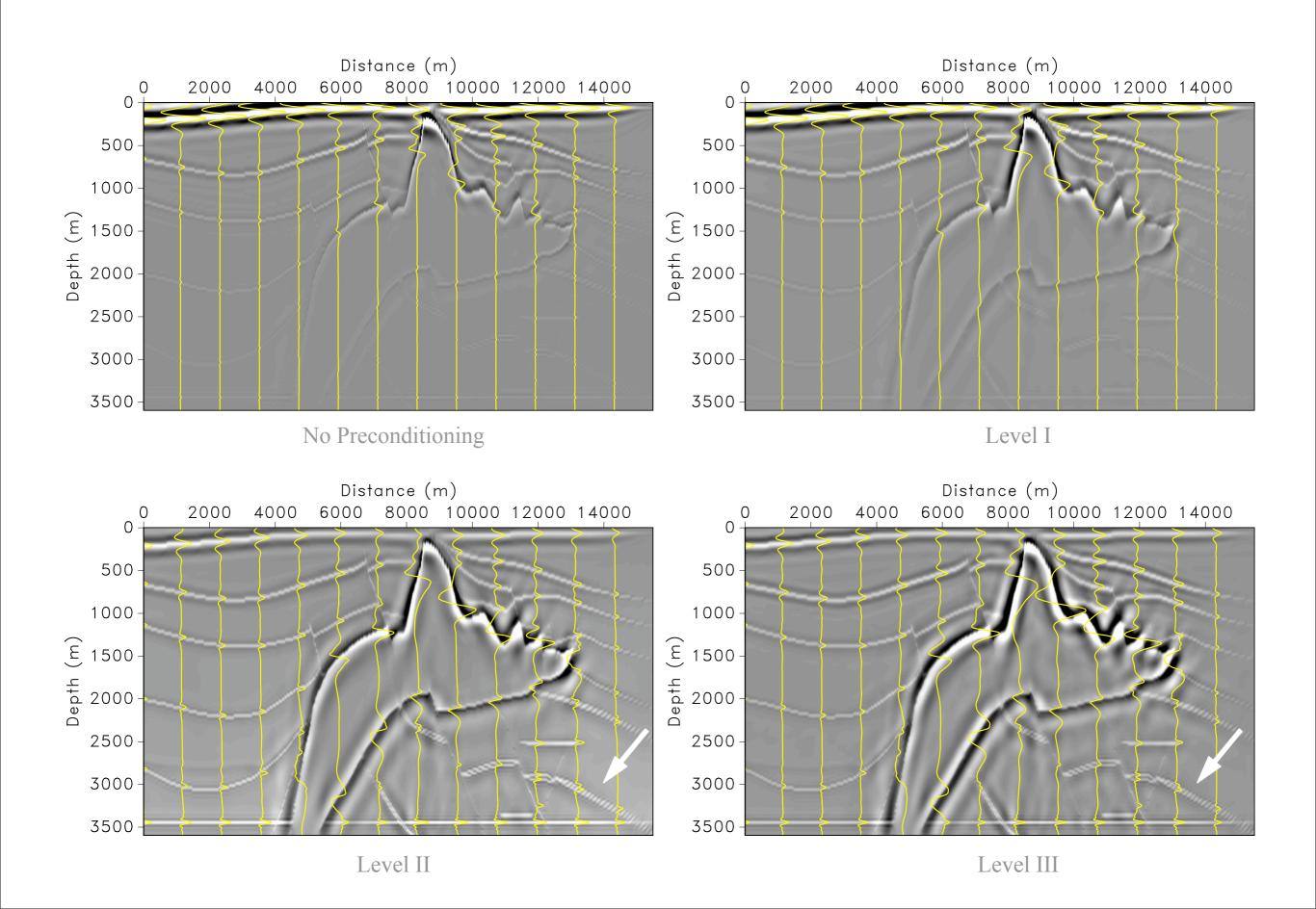
Level I

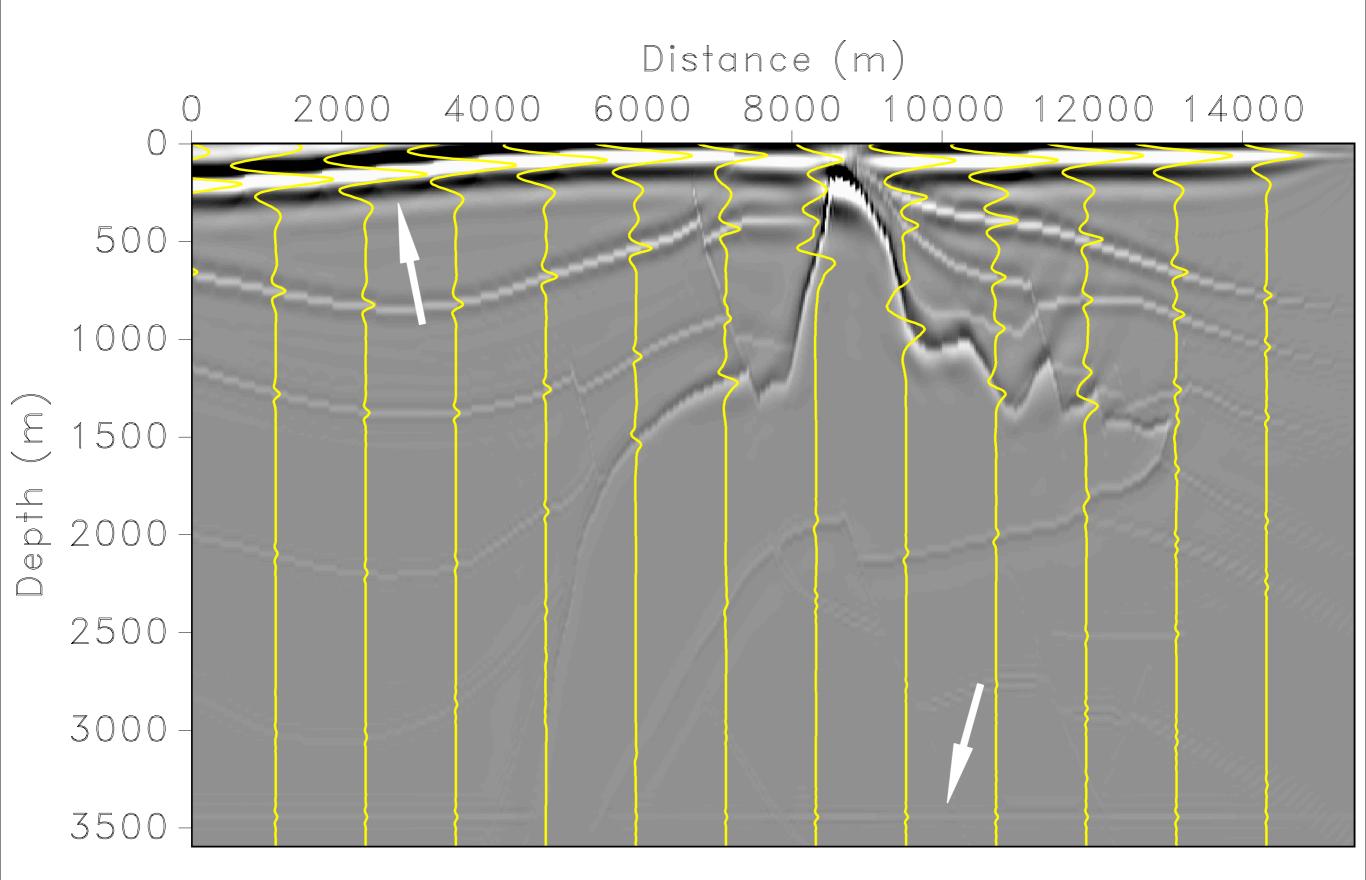


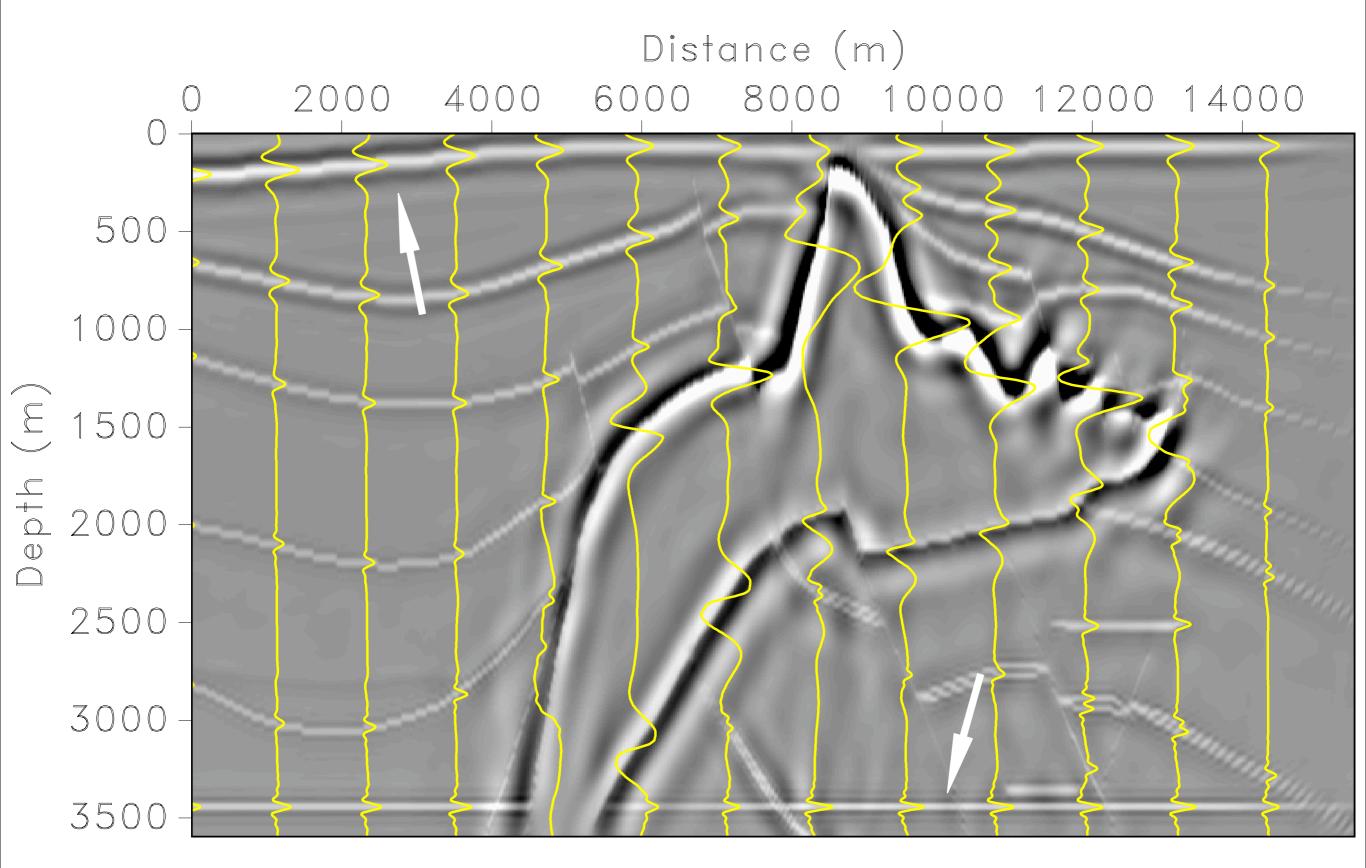
Level II



Level III

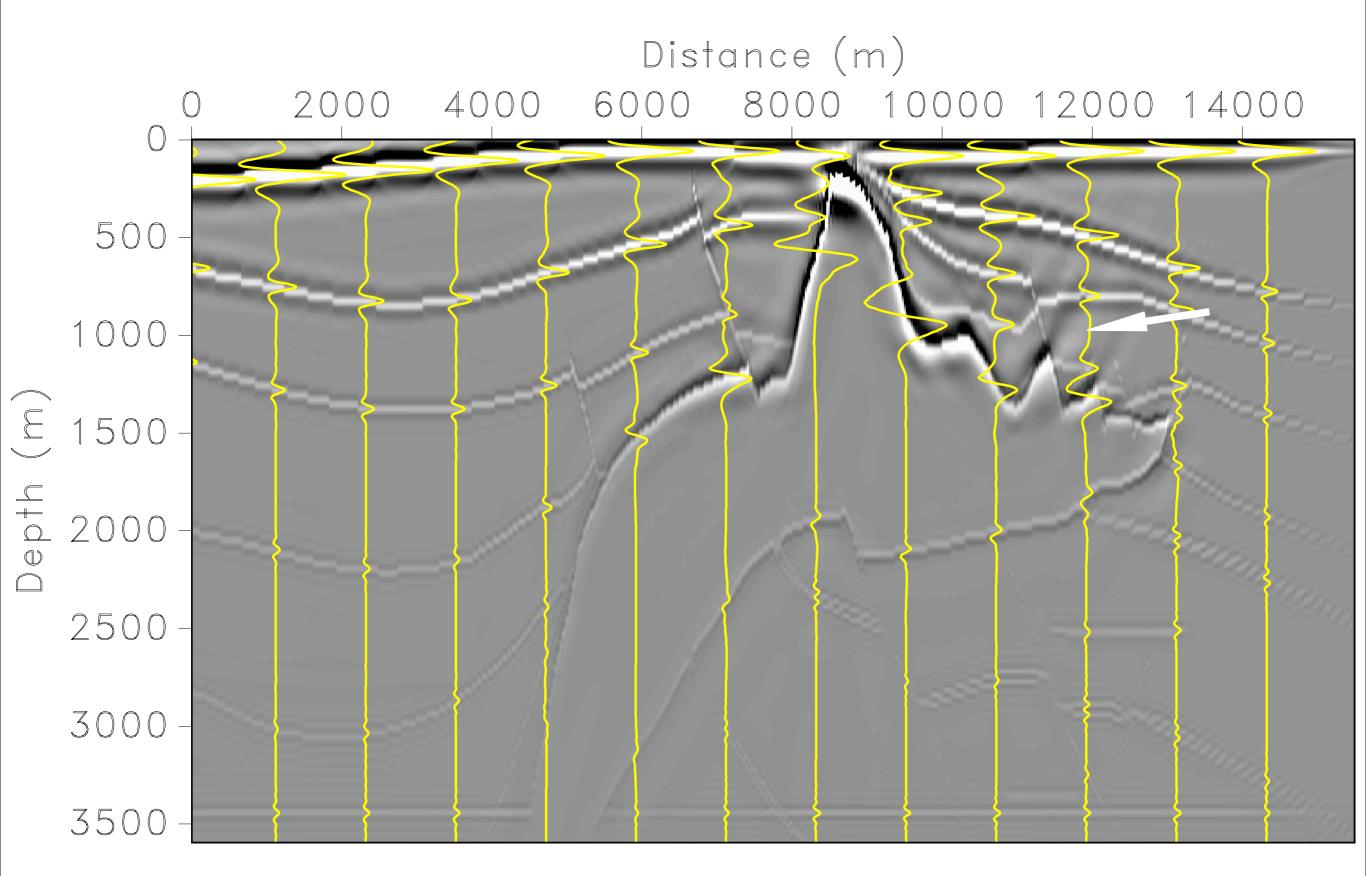






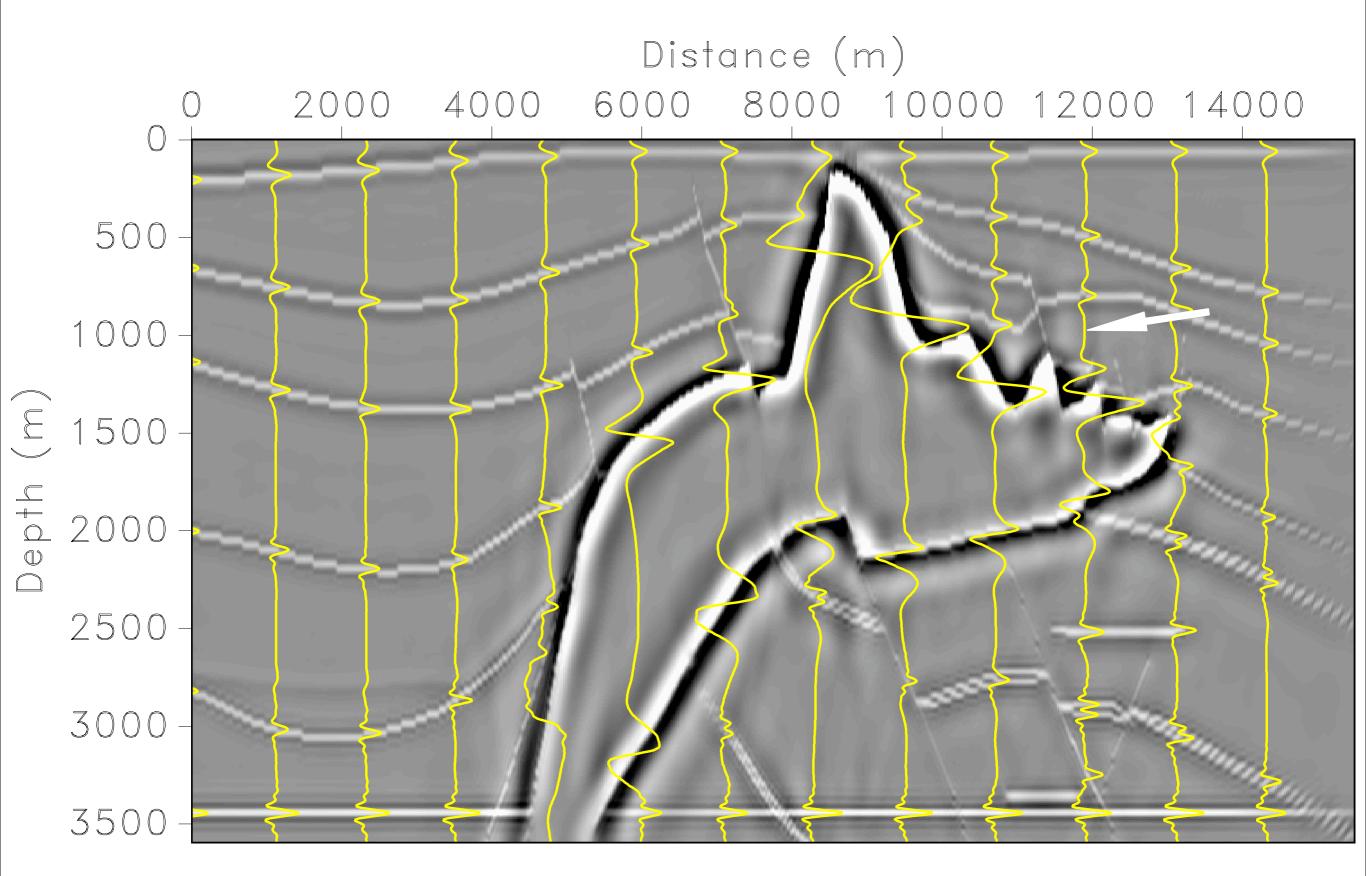
Level III

SEG AA' Model w/ Smooth Velocity - LSQR Results



LSQR 10 iterations - No Preconditioning

SEG AA' Model w/ Smooth Velocity - LSQR Results



LSQR 10 iterations - Level III

- □ Signal-to-Noise Ratio (SNR) to original reflectivity.
- □ Defined as follows, with L2 values normalized to one:

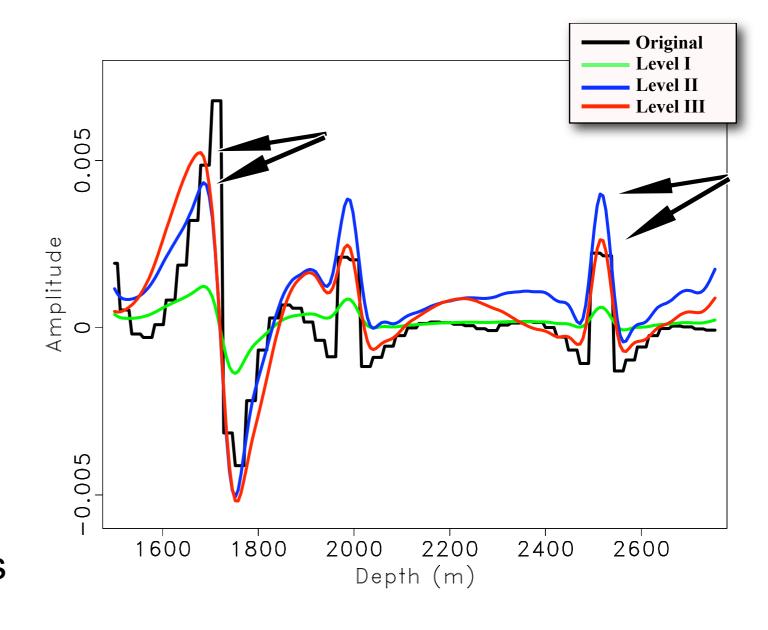
$$SNR = 20 \log \|\mathbf{x}_s\|_2 / \|\mathbf{x}_n - \mathbf{x}_s\|_2$$

	One iteration SNR	LSQR results* SNR
No Preconditioning	-1.9803	-0.9939
Level I	-1.4147	0.3312
Level II	0.4030	3.2690
Level III	1.3122	3.3230

*LSQR to 10 iterations

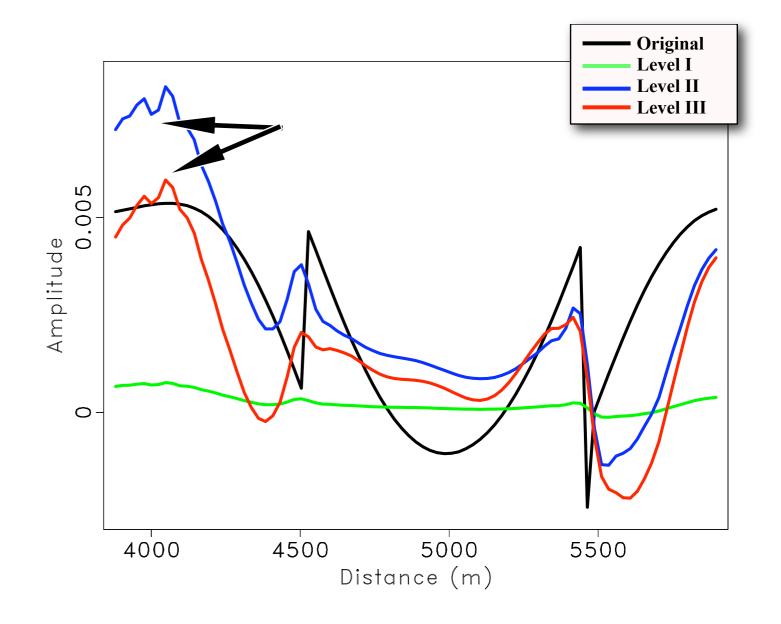
- □ Vertical trace at 12720m through the salt model.
- Each preconditioning level is restoring the amplitudes closer to the original.
- Increase or decrease amplitudes, not just a direct linear scaling.
- Level III (curvelet-based diagonal combination) is doing the most significant amplitude recovery in this case.

Vertical trace near the tip of the salt model.

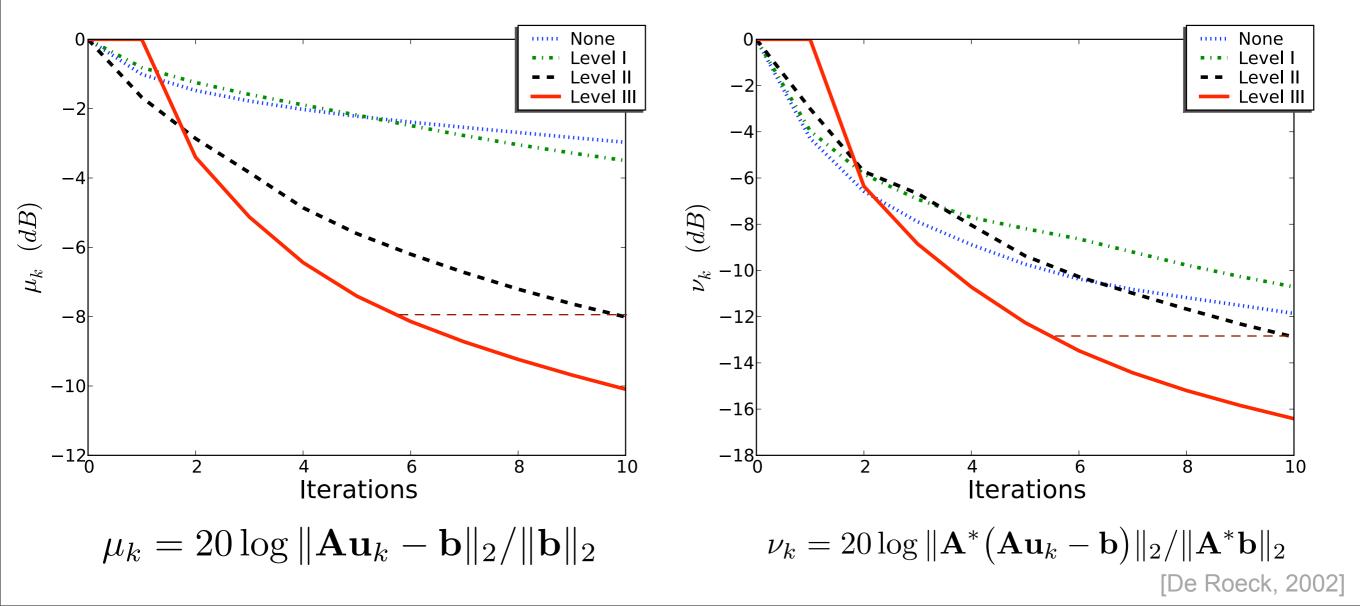


- Horizontal trace at 3438m through the reflector at the bottom.
- Section where the salt model meets the reflector.
- Can see our preconditioner is improving amplitude corrections.

Horizontal trace where salt model meets the bottom reflector.



- □ Residual decay for the data-space and model-space residuals.
- Even after our first few iterations of level III preconditioning, we quickly improve upon the other levels in each figure.
- The red line has already seen one migration-remigration due to the curvelet diagonal estimation process.



Conclusions

- We can achieve significant residual decay using our series of preconditioning matrices.
- Amplitudes throughout the model are recovered more accurately to the original reflectivity.
- We do the same amount of work, but get a better result.

We satisfy Zipf's Principle of Least Effort!

Speculations on Real Data

- On real data our curvelet-based diagonal estimation should greatly improve the image.
 - Curvelets add robustness to the presence of coherent noise.
 - Also moderates errors in the linearized Born modeling operator.
- Small shifts over the support of a curvelet will not adversely affect the corresponding curvelet coefficient.
 - Allow imperfections in the velocity model.

Acknowledgments

- All the examples were computed using a SLIMpy script to Madagascar with a wrapper to Symes' RTM Code.
- ☐ We would like to thank:
 - Bill Symes for use of his 2D Acoustic Post-Stack Reverse-Time Migration code.
 - Madagascar Development Team (http://reproducibility.org/).
 - CurveLab Developers (http://www.curvelet.org/).
 - SLIMpy Developers (http://slim.eos.ubc.ca/SLIMpy/).
- ☐ This work was in part financially supported by the NSERC Discovery (22R81254) and CRD Grants DNOISE (334810-05) of F.J.H. and was in part carried out within the SINBAD project with support, secured through ITF, from BG Group, BP, Chevron, ExxonMobil and Shell.

SLIMpy Web Pages

More information about SLIMpy can be found at the SLIM homepage:

http://slim.eos.ubc.ca

Auto-books and tutorials can be found at the SLIMpy generated websites:

http://slim.eos.ubc.ca/SLIMpy/

References

- For more information please look at a recently submitted letter to Geophysics:
 - Herrmann, F. J., C. R. Brown, Y. A. Erlangga, and P. P. Moghaddam, 2008,
 Curvelet-based migration preconditioning, http://slim.eos.ubc.ca/Publications/
 Public/Journals/herrmann08cmp.pdf.
- Other papers to consider looking at:
 - De Roeck, Y., 2002, Sparse linear algebra and geophysical migration: A review of direct and iterative methods: Numerical Algorithms, 29, 283–322.
 - Herrmann, F. J., P. P. Moghaddam, and C. C. Stolk, 2008, Sparsity- and continuity-promoting seismic imaging with curvelet frames: Journal of Applied and Computational Harmonic Analysis, 24, 150–173. (doi:10.1016/j.acha. 2007.06.007).
 - Paige, C. C. and M. A. Saunders, 1982, LSQR: An algorithm for sparse linear equations and sparse least squares: ACM TOMS, 8, 43–71.
 - Symes, W. W., 2008, Approximate linearized inversion by optimal scaling of prestack depth migration: Geophysics, 73, R23–R35. (10.1190/1.2836323).