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SUMMARY

We present an algorithm which allows us to model wavefields
with frequency-domain methods using a much smaller num-
ber of frequencies than that typically required by the classical
sampling theory in order to obtain an alias-free result. The
foundation of the algorithm is the recent results on the com-
pressed sensing, which state that data can be successfully re-
covered from an incomplete measurement if the data is suffi-
ciently sparse. Results from numerical experiment show that
only 30% of the total frequency spectrum is need to capture
the full wavefield information when working in the hard 2D
synthetic Marmousi model.

INTRODUCTION
Seismic wavefield modeling is a technique which can be car-
ried out in either the time domain or the frequency domain.
When solutions to the Helmholtz equation for all frequencies
are available, modeling in the frequency domain is equal to
modeling with time-stepping methods (Symes (2007)). How-
ever, if we fail to accurately obtain solutions for the entire dis-
cretized spectrum of the signal, aliasing artifacts will be visible
in the resulting modeled wavefield.

We are motivated by the long-standing observation that seis-
mic imaging algorithms formulated in the frequency domain
can yield useful alias-free images by acting only on a very
limited number of frequencies; see Sergue and Pratt (2004)
and Mulder and Plessix (2004). In this respect, seismic inver-
sion in the frequency domain is considered more serviceable
compared to time-stepping, where by definition every time step
must be considered in order to obtain results. Sergue and Pratt
(2004) showed that the extent to which we can exploit this
property of frequency-based inversion is related to the range
of available offsets in the seismic data, and furthermore pre-
sented a strategy for selecting an optimal subset of frequencies
to consider.

Following the spirit of frequency-based seismic inversion, we
believe that a similar property of information redundancy ex-
ists for the seismic wavefield itself in the frequency domain,
which we can apply to save computation in seismic wavefield
modeling. As we shall see, our conjecture follows naturally
from considering a subset of monochromatic Helmholtz equa-
tion solutions as a restricted sampling of the modeled seismic
wavefield in the Fourier domain, which has been demonstrated
earlier by Lin and Herrmann (2007). In this approach, the
mathematical machinery of compressed sensing ( Candès et al.
(2006); Donoho (2006)) naturally leads to a robust method
of anti-aliasing the modeled wavefield in the time domain by
solving a de-noising problem, an idea introduced in Hennen-
fent and Herrmann (2006).

In this paper, we describe an algorithm for computing acous-
tic wavefields by using only a limited number of frequencies.

The algorithm is based on sparsity-promoting recovery formu-
lated in the context of compressed sensing. We also present
experimental results showing that this algorithm can compute
wavefield using only 30% of the total frequency information
even in models with sharp discontinuities, such as the hard 2D
Marmousi model.

Computing solutions to the Helmholtz equation
Solving the Helmholtz equation is the standard way to model
the propagation of seismic wavefield in the frequency domain
through an inhomogeneous media. By applying a Fourier trans-
form in the time axis, the standard acoustic wave equation can
be converted to the Helmholtz equation:

H (ω)u(ω,xs;x) :=
„
−∇

2 +
ω2

c2(x)

«
u(ω,xs;x) = b(ω,xs),

(1)
with ω = 2π f , f being the frequency in Hz, u(ω,xs;x) the so-
lution in terms of scalar pressure field in the spatial domain.
The initial term b(ω,x) is the frequency component of the
source wavefield corresponding to ω in H (ω), and c(x) is
the background velocity model. To obtain the propagation be-
havior of the initial source wavefield f (ω,x) we need to solve
Equation 1 for all frequencies. In matrix notations, this com-
putation can be expressed as, for one shot position xs,264 u(ω1)

...
u(ωn f )

375 =

264H −1(ω1) · · · 0
...

. . .
...

0 · · · H −1(ωn f )

375
264 b(ω1)

...
b(ωn f )

375 ,

(2)
with n f the number of frequencies. Note that we have dropped
x and xs to simplify our notations. We then obtain the modeled
wavefield in the time domain with an inverse Fourier transform
F−1 in the time axis, defined as u(t) = F−1u(ω).

In actual computation, the operator H (ωi), i = 1, . . . ,n f , is
usually discretized with finite difference or finite element meth-
ods into a matrix representation H(ωi). This results in rela-
tively large linear systems

H(ωi)u(ωi) = b(ωi). (3)

For example, if finite difference is used then H(ωi) is repre-
sented by a large sparse matrix consisting of diagonal bands.
Although relatively trivial to implement, this method is highly
susceptible to numerical dispersion. Fine grid spacings must
be used to combat the numerical errors introduced by such
dispersion effects. A common rule of thumb among numer-
ical analysts is that a typical 5-pt stencil finite difference im-
plementation of H(ωi) will require a minimum of 12 samples
per wavelength for acceptable accuracy. For 3D, or even large
2D systems, where the signal band exceeds 50Hz, this would
quickly lead to an astronomically large H(ωi). The computa-
tional cost and storage associated with explicit matrix inverse
methods such as LU decomposition make them practically pro-
hibitive for this purpose.



For systems too large for explicit methods, iterative methods
are usually called upon to solve for a solution to Equation 3.
The strategy is to start with a reasonable guess for u and then
iteratively converge it to the correct solution by updates via
matrix-vector multiplications with H(ωi). The matrix H(ωi) is
typically very sparse and quite storable in memory, so in terms
of computation costs multiplication with H(ωi) is relatively
cheap. However, iterative methods are quite unstable com-
pared to explicit methods, and had traditionally been plagued
with exponentially increasing convergence difficulties for fre-
quencies over 5Hz.

A recent work by Erlangga and Nabben (2007) show that it is
indeed possible for the Helmholtz equation to achieve a con-
vergence rate for iterative methods which is practically inde-
pendent of frequency. They accomplish this by utilizing the
multigrid method within a multilevel Krylov method setting
introduced earlier by Erlangga and Nabben (2008). In this
case, multigrid is applied to a damped, or complex shifted,
Helmholtz operator, used as preconditioner for H(ωi). This
method, termed as the MKMG method, can reach satisfactory
convergence for frequencies as high as 50Hz in an acceptable
number of iterations; see for details another contribution by
one of the authors to the proceedings of this meeting. This is
a drastic improvement over previously available schemes for
iteratively inverting the Helmholtz operator, which would fail
to converge at frequencies as low as 5 Hz. For the first time,
iterative Helmholtz methods are approaching the threshold of
practicality for those interested in the fine details of the in-
verted image.

INTERPOLATION IN THE FOURIER DOMAIN
From equation 2 it is clear that solutions to the Helmholtz are
completely independent in the frequency domain. Following
the discretization of H (ω) described above, Equation 2 be-
comes:

u(ω) :=

264 u(ω1)
...

u(ωn f )

375 =

264H−1(ω1) · · · 0
...

. . .
...

0 · · · H−1(ωn f )

375
264 f(ω1)

...
f(ωn f )

375 .

(4)

Now consider hypothetically the situation where solutions to
the Helmholtz equation are not available for all frequencies.
This would be the case, e.g., if iterative methods failed to con-
verge for certain frequencies, or if the computer exhausted its
storage while explicitly computing the inverse for all frequen-
cies. We can mathematically express this by defining a restric-
tion operator R which removes from its operand a predefined
set of frequency components:

û(ω) = Ru(ω), (5)

with the hat symbol denoting that û(ω) is incomplete in the
Fourier domain. The purpose of this section is to develop a
method which, when provided only with û(ω) and knowledge
of which frequencies are missing from it, we can use to fully
recover the full set of solutions u(ω).

Stable recovery of sparse signals
The problem of stable signal recovery (SSR) is to recover a

vector x0 ∈Rn from an incomplete set of linear measurements
y = Ax0, where A is an n by m, highly underdetermined matrix
with n�m. This problem is resolved by solving the following
`1-regularization minimization:

ex = argmin
x
‖x‖1 s.t. Ax = y. (6)

Recent results show that if the matrix A obeys the uniform
uncertainty principle, and that x0 is sufficiently sparse, then
the solution ex to Equation 6 is going to be exactly x0, Candès
et al. (2006); Donoho (2006).

For data which are not sparse, it is often necessary to employ
a modified formulation of Equation 6 to instead solve for a
sparse representation of x0:(

x̆ = argminx̆ ‖x̆‖1 s.t. ASH x̆ = y,ex = SH x̆.
(7)

Here S is a linear operator, which maps a vector of data x0
to a sparse vector. Hence, S is a sparsity transform. Differ-
ent types of data will have sparse representation under dif-
ferent transforms–i.e., there is no single transform that will
sparsely represent all types of data. For example, piecewise
constant images can be sparsely represented by spatial finite
differences. Real-life images are known to have a sparse rep-
resentation in the discrete cosine transform (DCT), wavelet
transform or curvelets domain.

The intricacies of choosing a suitable sparsity basis for suc-
cessful recovery will be discussed in the next section.

Application of stable signal recovery to anti-aliasing
We now return to the problem of recovering the full set of
Helmholtz solutions from frequency-incomplete Helmholtz so-
lutions û(ω). To connect with the theory of stable signal re-
covery, we note that û(ω) can be written as

û(ω) = RFu(t), (8)

where F is a discrete implementation of the Fourier transform.
In other words, û can be described as an incomplete Fourier
measurement of the full Helmholtz solution in the time do-
main. To see the similarity of Equation 8 to incomplete mea-
surements in stable signal recovery, we consider the restricted
Fourier transform RF as the matrix A in Equation 6, and u(t)
the full signal x0 we wish to recover. Here we see that û(ω)
plays the role of the incompletely measured signal y. We can
now propose to recover u(ω) from û(ω) by writing it as a sta-
ble signal recovery problem:(

ŭ(t) = argminŭ ‖ŭ‖1 s.t. RFSHeu(t) = û(ω),
u(t) = SH ŭ(t).

(9)

The results here are significant: if there exists a suitable spar-
sity transform SH , we can then recover the solution of the
acoustic wave equation in the time domain by solving the Helmholtz
equation for only a subset of frequencies. The important thing
to note is that the success of the recovery of a signal depends
on the mutual coherence between the measurement basis and
the sparsifying basis. Numerically, the coherence µ(M,S) of



a measurement basis M and a sparsifying transform S is com-
puted by µ(M,S) =

√
m ·maxk,l |mk(sl)H | with mk the kth

row of M and sl the lth row of S. Results from compressed
sensing tell us that these factors directly influence the num-
ber of frequencies we can restrict while still obtaining correct
solutions. Hennenfent and Herrmann (2006) solved a similar
problem where the measurement basis was the Dirac basis and
the sparsifying transform was the curvelet transform. They
showed that curvelets are incoherent with the spike measure-
ment basis, but have compact support in Fourier. However,
for our purposes we take the restricted Fourier transform as
our measurement basis. Since curvelets are highly coherent
in Fourier, curvelets are not a satisfactory transform to use in
this case. Recent work by Lebed and Herrmann which are pre-
sented in this conference have experimentally shown that if the
measurement basis is a restricted Fourier transform, then a par-
ticularly good sparsity basis is the shift-invariant wavelet ba-
sis. Although it does not promote sparsity in seismic signals as
effectively as curvelets, shift-invariant wavelets are extremely
incoherent in the Fourier domain, which in turn leads to better
performance when performing stable signal recovery from a
restricted Fourier basis.

ALGORITHM FOR INTERPOLATING HELMHOLTZ SO-
LUTIONS
Recently an algorithm has been proposed by Herrmann and
Hennenfent (2007) to solve problems which can be described
by the form stated in Equation 7. The solver is based both
on cooling method optimization and an iterative thresholding
algorithm (see Daubechies et al. (2004)). The cooling method
aims at finding the optimal multiplier λ ∗ for L (x,λ ) := λ‖x‖1 +
‖ASHx− y‖2

2 − ε2, the Lagrangian function of Equation 7,
such that the residual r := ‖ASHx− y‖2 ≤ ε . For the sake of
legibility in presenting the algorithm, in this section we over-
load the symbol x with the definition of x̆ in Equation 7. The
value ε is set by the desired accuracy of the returned vector
x as a solution to the system y = ASHx. The algorithm is as
follows:

x0 := initial guess
λ0 := initial Lagrange multiplier
while r > ε

minx L (x,λk)
λk+1 = αk λk with 0 < αk < 1

end while.

The critical part of this algorithm is the minimization of L (x,λk)
done by the iterative thresholding algorithm presented in Daubechies
et al. (2004). At each sub-iteration, evaluation of

xi+1 = Sλk

“
xi +SAH(y−ASHxi)

”
(10)

with
Sλk

(x) := sign(x) ·max(|x|−λk,0) (11)

yields an approximate estimate for x which converges to the
solution of the sub problem for a large enough number of iter-
ations. The next algorithm outlines this procedure.

Result: Estimate for x
initialization;1
x0 ←− initial guess for x;2
λ0 ←− initial Lagrange multiplier;3
while ‖Ax−y‖2 ≥ ε do4

while ‖xi+1−xi‖2 ≥ ε̂ do5
i←− i+1;6
xi+1←Sλk

`
xi +SAH(y−ASHxi)

´
;7

end8
λk+1←− αkλk with 0 < αk < 1;9
k←− k +1;10

end11
Algorithm 1: Iterative soft thresholding

In the above algorithm ε̂ refers to the tolerance (or accuracy)
to which we want to the solution of minx L (x,λk) and in prac-
tice, one only needs to approximately solve each sub problem,
which significantly accelerates the overall procedure. In the
examples in the next section we run the algorithm for a fixed
number of inner and outer iterations.

NUMERICAL EXPERIMENT

We perform recovery experiments from forward-modeling in
the full 2D hard (unsmoothed) Marmousi velocity model of
size 762-by-2502 with spatial sampling ∆x = ∆z = 4.167m,
shown in Figure 1. A single Ricker wavelet shot centered
around 15Hz is fired at t = 0.2s, (x,z) = (5200m,200m) as in-
dicated by the orange arrow. Receivers are placed at depth z =
2500m and is depicted by the gray line. They are activated for a
total of 5 seconds with ∆t = 20ms for a total of 250 time sam-
ples. The corresponding discretized frequency domain con-
sists of 125 frequency samples from 0 to 50Hz at ∆ f = 0.4Hz.
Using the MKMG method as described above, we calculated
to convergence a full set of solution to the Helmholtz equation
for this problem in the frequency domain.
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Figure 1: The hard marmousi model used in numerical exper-
iment. Orange arrow indicates shot position and the grey line
represents receiver positions.
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Figure 2: The full time-domain wavefield solution at depth
z = 2500m

Figure 2 shows the time-domain wavefield observed by the full
range of receivers at z = 2500m using a complete set of the so-
lution u(ω). To better present the quality of the interpolation,
we windowed the traces to a range of 2000 to 6350m, indi-
cated by the ball ends of the grey line in Figure 1. To obtain
û, we selected subsets of frequencies at certain percentages of
the whole domain discretized frequency domain and used it
to define a frequency-domain masking operator R. These fre-
quencies are chosen from a weighted random sampling scheme
over the whole domain, using the power spectrum of the shot
source signature as weights. We then attempted to recover the
complete solution u(ω) using the iterative soft thresholding al-
gorithm described in the previous section with A := RF. The
sparsity transform S is chosen to be the shift-invariant wavelet
transform with 7 scales in both axis.

The interpolation results are shown in Figure 3. Figure 3(a)
shows the full solution using all frequencies of the domain.
Figures 3(b)-3(f) shows the frequency-domain interpolated re-
sult from stable signal recovery, such that û(ω) is the subset of
solutions from 50%, 40%, 30%, 20%, 10% of all available fre-
quencies, respectively. The signal-to-noise ratios of the inter-
polated results are in Table 1. The results shown here indicates
that we can limit ourselves to only a random subset of 30% of
the full set of frequencies when computing for the Helmholtz
solutions. The stable signal recovery algorithm shown in this
abstract can then be used to recover the full time-domain wave-
field.

% freq. used 50 40 30 20 10

SNR 24.55 17.36 17.02 12.50 7.81

Table 1: SNR values for the frequency-domain interpolated
wavefields

CONCLUDING REMARKS
The results from our numerical experiments are acquired under
conditions which are known to behave poorly for numerical
computations, using the unsmoothed Marmousi model and set-
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Figure 3: Frequency domain interpolation results. (a) the
original full solution windowed in the x-axis from 2000m to
6350m, (b) wavefield interpolated with iterative soft thresh-
olding using 5 inner loop, 30 outer loop with 50% frequencies
represented in û(ω), (c) same as (a) but with 40% frequencies
used, (d) 30%, (e) 20%, (f) 10%

ting receivers at a large depth for significant scattering. Even
then, we see that not all frequencies are required to obtain the
full result from frequency-domain modeling. With the model
of stable signal recovery formulated under the theory of com-
pressed sensing, we showed that even under such unfavorable
condition a 30% subset of frequencies is enough to contain
most of the wavefield information in time domain. Together
with the newly developed MKMG algorithm as a practical means
of obtaining solutions at high frequencies, exploration seis-
mologists now have some powerful tools for practically work-
ing in the frequency domain.
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