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SUMMARY

The ability to efficiently and sparsely represent seismic data
is becoming an increasingly important problem in geophysics.
Over the last decade many transforms such as wavelets, cur-
ervelets, contourlets, surfacelets, shearlets, and many other
types of ’x-lets’ have been developed to try to resolve this
issue. In this abstract we compare the properties of four of
these commonly used transforms, namely the shift-invariant
wavelets, complex wavelets, curvelets and surfacelets. We
also briefly explore the performance of these transforms for
the problem of recovering seismic wavefields from incomplete
measurements.

INTRODUCTION

There exist many different types of transforms which try to
achieve a sparse representation of a signal. Numerous sparsi-
fying transforms have been invented and extensively studied,
and in this work we compare some of the important proper-
ties that these transforms possess. A sparsifying transform is a
linear operator mapping a vector of image data to a sparse vec-
tor. Different types of images will have sparse representation
under different transforms - i.e., there is no single transform
that will sparsely represent all types of images. For example,
piecewise constant images can be sparsely represented by spa-
tial finite differences. Natural, real-life images are known to
have a sparse representation in the discrete cosine transform
(DCT) and wavelet transform domains. It has been recently
shown that the curvelet transform has a sparse representation
of seismic data (the curvelet dictionary consists of prototype
waveform, and since seismic data consists of solutions to the
wave equation, will we have a good sparse representation in
curvelets, see Candès and Demanet (2004)). Surfacelets also
try to achieve the same result, but with a much different con-
struction. The newly developed complex-wavelet transform is
of interest because it has a fixed and low redundancy factor and
has the ability to give signals a multidirectional representation.
Classical shift-invariant wavelets are of interest because com-
putationally they provide a very fast multiscale representation
of a signal although at a price of a high redundancy factor. The
coherence of the transforms is important from a compressive
sampling point of view. All of these factors - redundancy, com-
pressibility, computational complexity and coherence play an
important role in recovering seismic wavefields from incom-
plete measurements.

THE FOUR TRANSFORMS

In this section we investigate the construction and properties
of shift-invariant wavelets, complex wavelets, surfacelets and
curvelets.

The shift-invariant wavelet transform

Numerous variations of the wavelet transforms have been ex-
tensively studied and have appeared in literature as early as
1975. For all classes of wavelets the definition is similar;
wavelets are scaled and shifted versions of a real valued band-
pass wavelet ψ(t), also know as the mother wavelet. When
combined with a carefully chosen lowpass scaling function
φ(t), wavelets form an orthonormal basis expansion for arbi-
trary signals. We can use these wavelet and scaling functions
to decompose any signal x(t) as follows

x(t) =
∞X

n=−∞

c(n)φ(t −n)+
∞X

j=0

∞X
n=−∞

d( j,n)2 j/2
ψ(2 jt −n)

(1)
where c(n) and d( j,n) are the scaling and wavelet coefficients
which are computed by

c(n) =
Z

∞

−∞

x(t)φ(t −n)dt (2)

d( j,n) = 2 j/2
Z

∞

−∞

x(t)ψ(2 jt −n)dt (3)

These coefficients provide a multiscale analysis of the signal
at scale j at different times n. The shift-invariant wavelet
transform (sometimes called the undecimated discrete wavelet
transform UDWT) was independently discovered by several
authors, see for example Shensa (1992). From a filter bank
point of view both the odd and even downsamples are kept and
the lowpass bands are further split to provide more scales in
the decomposition. In the synthesis the odd and even parts are
inverted and the result is averaged. The key properties of the
UDWT are given below;

1. The UDWT is shift-invariant. i.e. a small shift in the
signal does not perturb UDWT’s coefficient oscillation
pattern around singularities.

2. In 2D the UDWT has a redundancy factor of 3L + 1
where L is the number of scales in the decomposition.

It is important to note that although computational complex-
ity of UDWT is O(LN) (which is at most O(NlogN)) ,the re-
dundancy factor of UDWT is exceedingly high for practical
applications. If we are dealing with a moderatly-sized dataset
that we wish to analyze, perhaps with say scales, this already
amounts to a redundancy factor of 19, which is unpractical for
a lot of applications.
The dual-tree complex wavelet transform ( CWT)
The complex dualt-tree framework proposed by Selesnick et al.
(2005) extends the work of Kingsbury (2560) to use the the fil-
ter bank implementation along with two real desecrate wavelet
transforms (DWTs) which use different sets of filters and sat-
isfy the perfect reconstruction conditions. One of the DWTs



gives the real part of the CWT’s coefficients while the other
DWT gives the imaginary part of the coefficients. These fil-
ters are designed in such a way so that the overall CWT is
approximately analytic. If we let h0(n) and h1(n) be the low-
pass/highpass pair for one of the filterbanks and g0(n) and
g1(n) be the lowpass/highpass pair for the other filterbank than
we can display the analysis/synthesis for the CWT in schemat-
ical format as shown in Figure 1.

These filters are designed in such a way so that the wavelet

Figure 1: Left: two levels of the analysis filter bank of CWT.
Right: synthesis filter bank of CWT.

ψ(t) := ψh(h) + iφg(t), where ψg(t) is the Hilbert transform
of ψh(t), is approximately analytic. The key properties of the
CWT are outlined below;

1. The CWT is nearly shift invariant.

2. The CWT is a multiscale transform with 12 distinct
directions at every scale.

3. A complex wavelet is strictly localized in the spatial
domain.

4. Regardless of the number of scales used in the decom-
position, the redundancy factor of CWT is always 4 in
2D.

The curvelet transform
The shift-invariant and complex wavelet transforms provide
a multiscale representation of signals. The CWT provides a
limited number of directions in the representation. We now
explore two transforms which provide an arbitrary number of
directions in the decomposition.
The 2 dimensional discrete curvelet transform, proposed by
Candès and Donoho (2002), takes a 2D signal of the form
f (n1,n2), 0 ≤ n1,n2 < n as input and outputs a collection of
coefficients that are obtained by computing inner products of
the signal with curvelet window functions at different scales
and directions. The curvelet coefficients c( j, l,k) at scale j,
orientation l and spatial location k are defined by

c( j, l,k) =
X
n1,n2

ϕ j,l,k(n1,n2) f (n1,n2), (4)

where ϕ j,l,k(n1,n2) is the curvelet function. The outline of the
curvelet transform algorithm is as follows; A 2D fast Fourier
transform is applied to f (n1,n2) to get f̂ (ω1,ω2) with −n/2≤
ω1,ω2 < n/2. Next the Fourier samples of the input image
are multiplied with the curvelet window functions Ũ j,l(ω1,ω2)
at different scales and directions to obtain the product a j,l =
Ũ j,l(ω1,ω2) f̂ (ω1,ω2). This product is wrapped around the
origin to produce W (a j,l)(ω1,ω2). No wrapping is required

at coarsest and finest scales. Lastly, a windowed 2D inverse
fast Fourier transform is applied and the curvelet coefficients
c( j, l,k) are collected.
We list some of the main properties of the curvelet transform
below.

1. The curvelet transform provides a tight-frame expan-
sion for any function f (x1,x2) ∈ L2(R2) as a series of
curvelets f =

P
j,l,k〈ϕ j,l,k, f 〉ϕ j,l,k

2. A single curvelet is strictly localized to one angular
wedge in the frequency domain and has fast decay in
the spatial domain. The effective support of ϕ j,l,k(x)
obeys a parabolic scaling relation with width ∝ length2.
At scale j a curvelet is a ’fat needle’ of length 2− j/2

and width 2− j.
3. A curvelet is smooth along its major axis and is oscil-

latory along its minor axis.
4. The curvelet transform is approximately 8 times redun-

dant in 2D.
The surfacelet transform
Similar to the curvelet transform, the surfacelet transform, pro-
posed by Do and Lu (2007) is another redundant multiscale
and multidirectional signal decomposition system for signal of
2 or more dimensions. The surfacelet transforms conceptually
begins from a much different construction than the curvelet
transform. The surfacelet construction begins by extending the
directional filter bank (DFB) that was proposed by Bamberger
and Smith (1992) to an arbitrary number (N ≥ 2) of dimen-
sions. The DFB partitions the frequency plane into 2l , l ∈ N
triangular wedges of equal area by radial lines passing through
the origin of the (ω1,ω2) plane. In the case for a general N, the
n-dimensional filter bank (NDFB) will partition the frequency
spectrum by rectangular based pyramids radiating from the
origin. Lets consider a 3D example; to achieve the desired
frequency partitioning, the NDFB (now N = 3) partitions the
frequency cube into three hourglass-shaped subbands that are
aligned the the ω1,ω2 and ω3 axes, respectively. Next, two It-
eratively Resampled Checkerboard filterbanks (IRC), that act
along the (n1,n2) and (n1,n3) planes, are applied to each of
the hour-glass shaped frequency subbands. The resulting out-
put is 3 ·2l directional subbands. This NDFB is a critical part
of the surfacelet transform; it efficiently captures surface sin-
gularities by a tree-stuctured bank. One desirable aspect of
the transform is the multiresolution property. We would like
to be able to decompose signals not just into multidirectional
components but also into a multiscale structure to be able to
capture singularities of different size. The combination of the
NDFB with a multiscale structure is similar to the contourlet
construction, proposed by Do and Vetterli (2005). The result-
ing algorithmic construction is the following; the frequency
spectrum of the signal gets inputed into first level of the multi-
scale pyramid where a highpass filter H(ω) and a lowpass filter
L(ω) act on the signal. The output of H(ω) is inputed into the
NDFB, and this returns the fine scale directional approxima-
tion to the signal. At the lowpass branch of the pyramid the
signal is upsampled by a factor of two followed by an anti-
alliasing filter S(ω), and then the signal is downsampled by a
factor of 3. The output of this branch is a coarse approxima-
tion to the signal, which gets inputed into the next level of the



multiscale pyramid. At the subsequent lowpass branches S(ω)
is no longer applied and the signal only gets downsampled by
a factor of 2. Once again, we list the essential properties of the
surfacelet transforms;

1. Just like the curvelet transform, the 2D surfacelet trans-
form provides a redundant, multiscale and multidirec-
tional decomposition for functions f (x1,x2) ∈ L2(R2).
The transform is tight frame.

2. Unlike curvelets, which are strictly localized to one
angular wedge, a surfacelet is spread across an entire
scale in the frequency domain. In the spatial domain
surfacelets also obey a parabolic scaling relation of width ∝

length2, with most of the oscillations occurring along
the minor axis.

3. In the 2D case the surfacelet transform is approximately
5 times redundant.

Nonlinear approximation
The ability to sparsely represent seismic data is often a nec-
essary condition for many `1 solvers that are used either for
denoising or for signal recovery and in this section we com-
pare the coefficient decay rate of the four different transforms.
We take the seismic signal shown in Figure 2(a) as input and
plot it’s normalized transform coefficients in Figure 2(b). To
make a fare comparison of the decay rates we must account
for the different redundancies of the transforms. To remedy
this problem we randomly sample the coefficients - i.e. if the
curvelet transform is 8 times redundant, we randomly remove
7 out of 8 coefficients, and plot the remaining ones in decreas-
ing order. Similar procedure is done to the other transforms’
coefficients.
Coherence
The coherence of a measurement basis M and a transform
matrix S is defined by

√
m ·maxk,l |mk(sl)H | with mk the kth

row of M and sl the lth row of S. In this section we inves-
tigate the coherence of the four transforms from a qualitative
point of view. In the problem of recovering seismic wavefields
from incomplete data (either from a subset of traces or tempo-
ral frequencies), it is important to have incoherency between
the measurement basis and the sparsifying tranform. Figure
4 shows the frequency response of the four transforms at the
same scale. From Figures 3 and 4 we can see that a curvelet is
strictly localized in the frequency domain. As for surfacelets,
although most of the energy is localized to one angular wedge,
we can see that there is some energy leakage occurring. Un-
like a single curvelet, which is localized to one angular wedge,
a surfacelet is spread across all wedges at a given scale. As for
the other two transforms, due to their construction, it turns out
that complex wavelets and shift-invariant wavelets are strictly
localized in the spatial domain, and in the frequency domain
they are spread out.

In the problem of recovering seismic signals from missing tem-
poral frequencies we can expect to see better results from trans-
forms that are more spread in the frequency domain and hence
more incoherent (i.e. shift invariant wavelets) while in the
problem of recovering signals with missing traces we expect
to see the best results from transforms that are more incoher-
ent in the physical domain (i.e. curvelets).
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Figure 2: (a) Seismic signal; (b) Randomly sampled trans-
form coefficients of the four transforms; blue-curvelets, red-
surfacelets, black-wavelets, green- complex wavelets
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Figure 3: Top left- curvelet; top right- surfacelet; bottom left-
wavelet; bottom right- complex wavelet in the spatial domain
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Figure 4: Frequency response of one curvelet, sufacelet,
wavelet and complex wavelet. Top left- curvelet; top right-
surfacelet; bottom left-wavelet; bottom right- complex wavelet

APPLICATIONS

The application of the above-descrived transforms that we are
considering in this section is recovering seismic wavefields
from (1) subset of traces and (2) a subset of temporal fre-
quencies. For more applications see other contributions by the
authors in the proceedings of this conference. To briefly de-
scribe our problem we assume the following foreword model:
y = RMf0 + n where y is a subgroup of the full data f0. The
matrix M refers to the measurement basis (in problem (1) M is
the Dirac measurement basis and in (2) M is the Fourier mea-
surement basis) and the matrix R is a restriction operator; it
extracts those rows from M that represent the samples the are
actually acquired.
We want to find an approximation for f by a sparse superposi-
tion of transform coefficients. The approximation to f is given
by f̃ = SH x̃ where x is obtained by solving the following opti-
mization problem

x̃ = argmin
x
‖x‖1 s.t. ‖y−RMSHx‖2 ≤ ε (5)

and SH refers to the synthesis matrix of one of the four trans-
forms domains described above. Three key ingredients are re-
quired to successfully resolve this problem. They are (1) a
good sampling scheme and for this we use the jitter sampling
proposed by Hennenfent and Herrmann (2008) (2) a good `1
solver and for this we use iterative soft thresholding, proposed
by Daubechies et al. (2004) and lastly (3) a good sparsifying
transforms for the seismic data. We use these sparsifying do-
mains to solve two problems; signal recovery from (1) missing
traces and (2) missing temporal frequencies.

The results in Figure 5 show the recovered signals by the four
different transforms when we restrict 60% of the traces. In
this case the SNRs are: curvelets: 6.42 dB, surfacelets: 4.72
dB; shift-invariant wavelets: 3.54 dB, and complex wavelets:
3.88 dB.Figure 6 shows the recovered results when we re-
strict 60% of the temporal frequencies. In this case the SNRs
are:curvelets: 5.45 dB, surfacelets: 6.16 dB; shift-invariant
wavelets: 9.03 dB, and complex wavelets: 7.04 dB.CONCLUSIONS

Without claiming to be exhaustive, we have presented a brief
comparison on construction and properties of four different
transforms. Although all the constructions are conceptually
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Figure 5: (a) Recovered signal from missing traces by (a)
curvelets (b) surfacelets (c) shift-invariant wavelets (d) com-
plex wavelets
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Figure 6: (a) Recovered signal from missing temporal frequen-
cies by. (a) curvelets (b) surfacelets (c) shift-invariant wavelets
(d) complex wavelets

different, they all try to achieve the same results - to be able to
sparsely represent and efficiently capture certain aspects (like
singularities) of 2D signals. In the problem of recovering seis-
mic wavefields from missing temporal frequencies we observed
the best results from the shift-invariant wavelet transform, al-
though at a cost of high redundancy. Out of the four trans-
forms, shift-invariant wavelets are most incoherent with the
Fourier measurement basis. When recovering the signal from
missing traces, the best results were observed by using curvelets,
which are most incoherent with the Dirac measurement basis.
Therefore The success of of the recovery of the signal appears
to be an intricate play of mutual coherence, redundancy and
compressibility of a signal in some transform domain.
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