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General statement
 Recent resurgence of wavefield inversions

– imaging where the ‘sunken’ source & data-residue wavefields are inverted 
[Claerbout, Berkout and others]

– focal transform where primaries are deconvolved to focus data [Berkhout ‘06]
– interferometric deconvolution where wavefields are inverted [Vasconcelos & 

Snieder ’08, Wapenaar ‘08] 
– data inverse where the data itself is inverted [Berkhout ‘06]

 Challenge is to stably invert these wavefields
– in the presence of noise, finite aperture, and source signatures
– for incomplete & simultaneously acquired data

 Propose a regularization based on curvelet-domain sparsity 
promotion enforced by nonlinear optimization ...
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Inverse data-matrix
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Problem statement
 Seismic wavefield inversions = multi-D deconvolutions 

 Corresponds to the inversion of Berkhout’s [‘82] data matrix
– monochromatic
– inverted by damped & weighted least-squares matrix inversion [Wapenaar ‘08]

 Suffers from instabilities that limit applicability to real data
– noise
– finite acquisition
– incomplete data

 Present a framework for stable inversion with sparsity promotion.
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Motivation
 Successful application of curvelets

– wavefield recovery from missing traces [F.J.H & Hennenfent ’08, Hennenfent & F.J.H ‘08]
– wavefield recovery from compressive simultaneous simulations [F.J.H et. al ‘08]
– curvelet-transform [Candes et. al. ‘06] based sparsity promotion

 Robustness & uplift of focused curvelet-based wavefield recovery
– curvelet-regularized inversion of the primary-data-matrix operator [F.J.H et. al. ‘07-’08]
– incorporation of a priori information
– improved wavefield recovery from missing traces

 Insights from compressive sampling [Donoho ’06, Candes et.al ’06, Lin & F.J. H ‘07]
– jittered sampling [Hennefent & F.J.H]
– blended-source design [F.J.H et.al ‘08]
– one-norm solvers [Hennefent et. al. ‘08]

 Move from multi-D correlations to multi-D deconvolutions ....
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2D discrete curvelets
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Sparsity-promoting program
Solve for

with 

Observations:
– exploits sparsity in the curvelet domain as a prior
– finds the sparsest set of curvelet coefficients that match (incomplete) data
– inverts an underdetermined system

x0

A

with

redundant sparsifying 
transform

restriction operator

A := RS
H

complete wavefield
 (transform domain)

acquired
data

b

[Sacchi et al.‘98]
[Xu et al.‘05]

[Zwartjes and Sacchi‘07]
[F.J.H and Hennenfent‘08]

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

g̃ = SH x̃

=

x0
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Data matrix (2D seismic line)

Receivers
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Subsampling by restriction (picking)

For each time-slice along source-receiver coordinates

or more succinctly with Kronecker products

For all time slices in the data matrix, we have

b =
(
RΣs ⊗RΣr

)
vec (U)

B =

remove rows︷︸︸︷
RΣr U

remove cols︷ ︸︸ ︷(
RΣs

)∗

R =
(
RΣs ⊗RΣr ⊗ I

)
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Incomplete data
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Curvelet-domain sparsity promotion
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Wavefield recovery by sparsity promotion

Curvelet sparsity underlies success of wavefield recovery
• from large percentages of traces missing [F.J.H & Hennenfent ‘08]
• improvements from jittered subsampling [Hennenfent & F.J.H ‘08]

Formulation 
• only exploits curvelet-domain sparsity
• misses focusing with wavefields

Can we extend this formalism to invert wavefields ....?






R =
(
RΣs ⊗RΣr ⊗ I

)
(source-receiver restriction)

b = Rvec (U) (incomplete data)
A = RSH

x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

Ũ = vec−1
(
ST x̃

)
(recovered data)
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Common-problem formulation
 Extension of curvelet-based wavefield recovery to include (de)focusing 

with data-matrices defined by wavefields [F.J.H et.al ’07-’08]
– define linear data-matrix operators
– multi-D convolutions 
– and their adjoint multi-D correlations

 Incorporates prior  information 

 Use transform-domain sparsity to stably invert for all frequencies

 Combination of sparsity and focusing
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Common approach: damped least-squares
Monochromatic forward model:

Monochromatic pseudo-inverse:

Receivers

Shots

Shots

Receivers

Frequency

 

Ĝ︸︷︷︸
unknown ”image”

to be inverted wavefield︷︸︸︷
Û = V̂︸︷︷︸

known wavefield

Ĝ = V̂Û
H

(
ÛÛ

H
+ ε2I

)−1

[Berkhout ‘82]
[F.J.H ’07-’08]
[Wapenaar ‘08]
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Curvelet-based wavefield inversion (CWI)
Cast into rigorous linear-algebra framework, i.e.

which with the Kronecker identity

becomes for each frequency

Set up a system for all frequencies and incorporate the temporal 
Fourier transform ....

vec (AXB) =
(
BH ⊗A

)
vec (X)

(
I⊗ Ûi

)
vec

(
Ĝi

)
= vec

(
V̂i

)
, i = 1 · · · nf

ĜiÛi = V̂i, i = 1 · · · nf
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Curvelet-based wavefield inversion (CWI)

with                                        (temporal Fourier transform)

Linear system is
– conducive to curvelet-based wavefield inversion with sparsity promotion
– versatile
– conducive to compressive subsampling (e.g. missing trace or blended acquisition)

U︷ ︸︸ ︷

FH




I ⊗ Û1

...
I ⊗ Ûnf



F





g︷ ︸︸ ︷

vec








G1
...

Gnf







 =

v︷ ︸︸ ︷

vec








V1
...

Vnf









F = (I⊗ I⊗ F)
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Focal transform [Berkhout ’06, F.J.H et.al ‘07-’08]

 primary data-matrix operator is inverted
 total data multi-D deconvolved with the primaries
 primaries focused to a directional source
 first-order multiples mapped to primaries






U = ∆P (primary data-matrix operator)
V = P (total data matrix)
b = vec (V)
A = UCH

3 (focused 3-D curvelet transform)
x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

G̃ = vec−1
(
CH

3 x̃
)

(focused data)
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Slice from the total data matrix (V)
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Slice from primary data-matrix operator (U)
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Focused/multi-D deconvolved data (G)
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Curvelet-based wavefield inversion (CWI)

Corresponds to
– curvelet-sparsity regularized inversion
– multi-D deconvolution of the wavefield in the data matrix U with respect to the 

wavefield in the data matrix V

Applications
– focused wavefield recovery
– defocussed multiple prediction
– data inverse
– imaging of blended data

Pε :






b = vec (V)
A = USH

x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

G̃ = vec−1
(
ST x̃

)
≈ U†

︸︷︷︸
”inverse”

V
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Focused wavefield recovery



Seismic Laboratory for Imaging and Modeling

Motivation
 Exploit wavefield focusing in the solution of the recovery problem

– invert subsampled primary data-matrix operator [F.J.H et.al ‘07-’08]
– interpolate by taking the inverse focal and curvelet transforms

 Combination of sparsity and wavefield focusing
– improved focusing => more sparsity
– curvelet sparsity   => better focusing
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Focused wavefield recovery

• Restrictions along the source-receiver coordinates
• Focusing by inversion of the restricted primary-data matrix operator
• Reconstruction by inverse curvelet transform and defocusing






R =
(
RΣs ⊗RΣr ⊗ I

)
(source-receiver restriction)

V = P (total data matrix)
b = Rvec (V) (incomplete data)
U = ∆P (primary data-matrix operator)
A = RSH

SH = UCH
3 (focussed 3-D curvelet transform)

x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

Ṽ = vec−1
(
SH x̃

)
(recovered data)
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Incomplete data
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Curvelet-domain sparsity promotion
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Focused curvelet-domain sparsity promotion
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Defocussed multiple prediction
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Motivation
 Multiple prediction by multi-D convolution with the primary data-

matrix operator
– requires extensive matching to compensate for

• the “source signature”
• finite acquisition aperture
• etc.

 Defocussed multiple prediction by multi-D deconvolution with the 
primary data-matrix operator

– inversion of the adjoint=multi-D correlation with the primary data-matrix operator
– compensates for the amplitudes, finite aperture, & source wavelet
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Defocussed multiple prediction

• Defocusing by inversion of the adjoint of primary-data matrix 
operator

• Multi-D deconvolution of the multi-D correlation with the primaries
• Reconstruction by inverse curvelet transform






U = ∆PH (adjoint primary data-matrix operator)
V = P (total data)
b = vec (V)
A = USH (multi-D correlation)
SH = CH

3 (3-D curvelet transform)
x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

P̃ = vec−1
(
SH x̃

)
(recovered data)
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Defocussed multiple prediction

multi-D convolution multi-D deconvolution
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Amplitude spectra (averaged) 

multi-D convolution multi-D deconvolution
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Stable computation of the ‘data 
inverse’
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Motivation
 Data-matrix inverse domain leads to a natural separation of 

primaries and surface-related multiples [Berkhout ‘06]

– surface-related effects including source signature are mapped to a directional 
source

– primaries are mapped to the inverse of the primary data matrix

 Application to real data hampered by instabilities ...

P̂
†

= ∆̂P
†
− Â,

inverted 
data

inverted 
primaries

‘source’
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Data inverse

• Inversion of the full-data matrix operator
• Multi-D deconvolution of the multi-D convolution with the data
• Regularized by curvelet-domain sparsity promotion






U = P (total data operator)
V = IΨ (bandwidth-limited delta)
b = vec (V)
A = USH (multi-D convolution)
SH = CH

3 (3-D curvelet transform)
x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

P̃ = vec−1
(
ST x̃

)
(inverted data)
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   bandwidth-limited pulse                            the same in f-k space
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Data inverse synthetic data

total data total data inverse
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Data inverse synthetic data

estimated primaries estimated-primaries inverse
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Data inverse real data

TextText

total data total-data inverse
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Data inverse real data

estimated primaries estimated-primaries inverse
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An encore: imaging of blended data
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Motivation
 Observation: Blended data acquisition is an instance of 

compressive sensing [F.J.H et. al ‘08]

 Image directly in the simultaneously acquired data domain

 Imaging conditions associated with adjoint-state methods 
[Tarontola ‘80s, Plessix, Pratt ’00’s] for the wave equation are 
based on multi-D correlations of wavefields

– suffer from finite aperture & source effects
– contain interferences due to blended acquisition

 Alternative approach based on wavefield inversion
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Adjoint state or reverse-time methods
 At each depth level multi-D correlation of the monochromatic 

forward and inverse extrapolated wavefields, U and V
 Zero-offset image [Berkhout, Claerbout, and others, ‘80s]

 Consider deconvolution instead, i.e,

 Use wavefield inversion technique
– improve imaging
– recover from blended data = compressively subsampled data

Ĝ=!
(
ÛV̂

†)

δm≈ diag
(
"

(
ÛV̂

∗))
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Wavefields at 30 Hz [real parts]
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Imaging by deconvolution

 Inversion instead of correlation
 Regularized by 2-D curvelet sparsity promotion
 Example for single layer model at transition






b = vec
(
V̂

H
)

A = Û
H
CH

2 (focused 2-D curvelet transform)
x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

G̃ = vec−1
(
CH

2 x̃
)

(imaged data)
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Correlation-based versus wavefield inversion

Image by correlation

Source Position

Re
ce

ive
r P

os
itio

n

50 100 150 200 250

50

100

150

200

250

Image by wavefield inversion

Source Position

Re
ce

ive
r P

os
itio

n

50 100 150 200 250

50

100

150

200

250

Image by correlation Image by deconvolution
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Imaging of blended data

 CS subsampling after Romberg’s [‘08] random convolution
 Regularized by 2-D curvelet sparsity promotion
 Imaged from source-receiver down-sampling after Fourier-space random 

phase encoding

with θ = Uniform([0, 2π]) random phase rotations.






R =
(
RΣs ⊗RΣr

)
(picking operator)

M = F∗2
(
eîθ

)
F2 (random encoder)

b = RMvec
(
V̂

)
(blended wavefield)

A = RMÛ
H
CH

2 (blended focused 2-D curvelet transform)
x̃ = arg minx ‖x‖1 s.t. ‖Ax− b‖2 ≤ ε

G̃ = vec−1
(
CH

2 x̃
)

(imaged data)
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Imaging of blended data
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Imaging of blended data

CS image by wavefield inversion
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Conclusions
 Wavefield inversion is a versatile tool in seismic-data processing & 

imaging

 Curvelet-domain sparsity is a powerful prior that leads to stable 
inversions of

– the primary-matrix operator => improved focusing & recovery
– the adjoint of the primary-matrix operator => improved multiple prediction
– the data-matrix operator
– blended wavefields

 Outlook
– wavefield predictions with improved spectral and amplitude properties
– wavefield predictions from blended data
– sparsity-promoting migration & full waveform inversion
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