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SUMMARY

Inverting seismic wavefields lies at the heart of seismic data
processing and imaging— whether one is applying “a poor
man’s inverse” by correlating wavefields during imaging or
whether one inverts wavefields as part of a focal transform in-
terferrometric deconvolution or as part of computing the ’data
inverse’. The success of these wavefield inversions depends
on the stability of the inverse with respect to data imperfec-
tions such as finite aperture, bandwidth limitation, and missing
data. In this paper, we show how curvelet domain sparsity pro-
motion can be used as a suitable prior to invert seismic wave-
fields. Examples include, seismic data regularization with the
focused curvelet-based recovery by sparsity-promoting inver-
sion (fCRSI), which involves the inversion of the primary-
wavefield operator, the prediction of multiples by inverting the
adjoint of the primary operator, and finally the inversion of the
data itself — the so-called ’data inverse’. In all cases, curvelet-
domain sparsity leads to a stable inversion.

INTRODUCTION

In this paper, we demonstrate that the discrete curvelet trans-
form (Candes et al., 2006; Hennenfent and Herrmann, 2006)
can be used to invert seismic wavefields stably, even in case
where the data volumes are sampled incompletely. The crux of
our method lies in the combination of the curvelet transform,
which attains a fast decay for the magnitude-sorted curvelet
coefficients for arbitrary wavefields (see e.g. Candes et al.,
2006; Hennenfent and Herrmann, 2006; Herrmann et al., 2008;
Herrmann and Hennenfent, 2008, and the references therein),
with a sparsity promoting program. By themselves sparsity-
promoting programs are not new to the geosciences (Sacchi
et al., 1998). However, sparsity promotion with the curvelet
transform is relatively new (see e.g. Herrmann et al., 2008, for
an overview). The curvelet transform’s unparalleled ability to
detect wavefront-like events that are locally linear and coher-
ent means it is particularly well suited to seismic data prob-
lems. In this paper, we show how this transform can be used
to regularize the inversion of seismic wavefields. This type of
inversion proves difficult in practice because of the problem
size, finite aperture, source/receiver signatures and the pres-
ence of noise. By using 3-D curvelets in the shot-receiver-time
domain, we leverage continuity along multidimensional wave-
fronts maximally. As opposed to damped least-squares— a
popular method for the regularization of geophysical inverse
problems at the expense of additional smoothing— curvelet-
domain sparsity promotion preserves wavefronts. This prop-
erty explains our recent successes applying this strategy to syn-
thetic and real field data with applications ranging from wave-
field reconstruction (Herrmann and Hennenfent, 2008; Hen-
nenfent and Herrmann, 2008), wavefield separation, migration
amplitude recovery (Herrmann et al., 2008), and compressed
wavefield extrapolation (Lin and Herrmann, 2007).

In this paper, we continue to leverage curvelet-domain spar-
sity promotion towards wavefield inversion with applications
including the inversion of primary wavefields part of focusing,
the inversion of the adjoint of the primary wavefield part of
defocusing for multiple prediction, and finally the stable com-
putation of Berkhout’s data inverse Berkhout (2006); Berkhout
and Verschuur (2007). First, we briefly introduce the curvelet
transform, followed by a common-problem formulation for
curvelet-based wavefield inversion (CWI) by sparsity promo-
tion and its application.

CURVELETS

Curvelets are localized ’little plane-waves’ (see e.g. Hennen-
fent and Herrmann, 2006) that are oscillatory in one direc-
tion and smooth in the other direction(s). They are multiscale
and multi-directional. Curvelets have an anisotropic shape—
they obey the so-called parabolic scaling relationship, yield-
ing a width ∝ length2 for the support of curvelets in the phys-
ical domain. This anisotropic scaling is necessary to detect
wavefronts and explains their high compression rates on seis-
mic data and images, as long as these datasets can be repre-
sented as functions with events on piece-wise twice differen-
tiable curves. Then, the events become linear at the fine scales
justifying an approximation by the linearly shaped curvelets.
Even seismic data with caustics, pinch-outs, faults or strong
amplitude variations fit this model, which amounts to a preser-
vation of the sparsity attained by curvelets.

Curvelets represent a specific tiling of the 2-D/3-D frequency
domain into strictly localized wedges. Because the directional
sampling increases every-other scale doubling, curvelets be-
come more anisotropic at finer scales. Curvelets compose multi-
D data according to f = CCCTCCCf with CCC and CCCT the forward
and inverse discrete curvelet transform matrices (defined by
the fast discrete curvelet transform, FDCT, with wrapping, a
type of periodic extenstion, see Candes et al., 2006; Ying
et al., 2005). The symbol T represents the transpose, which is
equivalent to the inverse for this choice of curvelet transform.
This transform has a moderate redundancy (a factor of roughly
8 in 2-D and 24 in 3-D) and a computational complexity of
O(n logn) with n the length of f.

COMMON PROBLEM FORMULATION

Curvelet based inversion by sparsity promotion: Our so-
lution strategy is built on the premise that seismic data and im-
ages have a sparse representation, x0, in the curvelet domain.
To exploit this property, our forward model reads

y = AAAx0 +n (1)

with y a vector of noisy and possibly incomplete measure-
ments; AAA the modeling matrix that includes CCCT , and n, a zero-
centered white Gaussian noise. Because of the redundancy of
CCC and/or the incompleteness of the data, the matrix AAA can not
readily be inverted. However, as long as the data, y, permits a
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sparse vector, x0, the matrix, AAA, can be inverted by a sparsity-
promoting program (Candès et al., 2006; Donoho, 2006):

Pε :

(ex = argminx ‖x‖1 s.t. ‖AAAx−y‖2 ≤ εef = SSST ex (2)

in which ε is a noise-dependent tolerance level, SSST the inverse
transform and ef the solution calculated from the vector ex (the
symbol e denotes a vector obtained by nonlinear optimization)
minimizing Pε . The difference between ex and x0 is propor-
tional to the noise level.

Nonlinear programs Pε are not new to seismic data process-
ing as in spiky deconvolution (Taylor et al., 1979; Santosa and
Symes, 1986) and Fourier transform-based interpolation (Sac-
chi et al., 1998). The curvelets’ high compression rate makes
the nonlinear program Pε perform well when CCCT is included in
the modeling operator. Despite its large-scale and nonlinearity,
the solution of the convex problem Pε can be approximated
with a limited (< 250) number of iterations of a threshold-
based cooling method derived from work by Figueiredo and
Nowak (2003); Daubechies et al. (2005); Elad et al. (2005). At
each iteration the descent update (x← x+AAAT `

y−AAAx
´
), min-

imizing the quadratic part of Equation 2, is followed by a soft
thresholding (x← Tλ (x) with Tλ (x) := sgn(x) ·max(0, |x| −
|λ |)) for decreasing threshold levels λ . This soft threshold-
ing on the entries of the unknown curvelet vector captures the
sparsity and the cooling, which speeds up the algorithm, allows
additional coefficients to fit the data.

Wavefield inversion: Following Berkhout’s work on the fo-
cal transform (Berkhout and Verschuur, 2006), we introduce
seismic data volumes as operators—i.e., we define the follow-
ing linear wavefield operators VVV · = FFFHblockdiag

`bV´
FFF · and

VVV H ·= FFFHblockdiag
`bVH´

FFF · with bV the temporal Fourier-
domain data matrix, blockdiag

`bV´
the multi-frequency data-

matrix operator —i.e., data is organized as a block-diagonal
matrix with each individual block containing a single monochro-
matic shot-receiver gather, H the Hermitian transpose and FFF
the temporal Fourier transform. Applying this linear opera-
tor to a wavefield collected in a data matrix (a tall vector with
the monochromatic blocks) corresponds to applying the tem-
poral Fourier transform, followed by a matrix-matrix multipli-
cation for each frequency (this implements a multidimensional
convolution) and an inverse Fourier transform. To simplify
notation, we refer to the block-diagonal matrix and wavefield
vector interchangeably. For primary wavefields—i.e., VVV = ∆∆∆PPP
with ∆∆∆PPP the primary wavefield (to be more precise, the wave-
field without surface related multiples but with internal mul-
tiples), ∆∆∆PPPPPP (ignoring surface related effects) adds one in-
teraction with the surface and turns primaries into first-order
surface-related multiples. Conversely, applying the pseudo in-
verse of ∆∆∆PPP to first-order multiples yields primaries. To com-
pute this inverse stably, we propose, with some abuse of nota-
tion, to compound the curvelet synthesis matrix with the wave-
field operator—i.e.,

y =

AAAz}|{
VVVCCCT x0

vec
`
UUU

´
= vec

`
VVV vec−1`

CCCT x0
´´

,

where the linear operation vec reorganizes the data matrix into
a long vector and vec−1 reorganizes a data vector into a data
matrix. Since seismic wavefields compress in the curvelet do-
main, we can by solving Pε find the set of curvelet coefficients
whose inverse curvelet transform, acted upon by the wavefield,
generates the data—i.e., the wavefield UUU , to some tolerance
ε . This solution involves the inversion of the compound op-
erator AAA = VVVCCCT , which corresponds to a curvelet-regularized
(through sparsity promotion) inversion of the wavefield VVV , given
the wavefield UUU (reorganized in the vector y). By choosing the
wavefields UUU and VVV appropriately, we can solve different prob-
lems in seismic imaging.

FOCUSED WAVEFIELD RECOVERY

To illustrate the stability of our curvelet-based formulation of
wavefield inversion, consider the recovery of seismic wave-
fields with the curvelet-regularized focal transform with the
observed data vector and modeling operator given by y = RRRPPP
= vec

`
RRRsPPPRRRT

r
´

=
`
RRRr ⊗ RRRs

´
vec

`
PPP

´
with RRRr,s restrictions in

the receiver and source coordinates,⊗ the outer product, PPP the
total wavefield and AAA = RRR∆∆∆PPPCCCT the modeling matrix with ∆∆∆PPP
the primary-wavefield operator.

According to these definition, the solution of Pε corresponds
to a curvelet-regularized focal transform during which the re-
stricted primary operator is inverted, given incomplete data.
As such, we ’deconvolve’ the incomplete data with the (incom-
plete) primaries, yielding an additional focusing of the energy
by converting first-order multiples to primaries and primaries
to a directional line source. This focusing corresponds to a col-
lapse of 3-D primary events onto an approximate line source,
which has a sparser representation in the curvelet domain. Ap-
plying the inverse curvelet transform, followed by ’convolu-
tion’ with ∆∆∆PPP, yields the interpolation, i.e. SSST := ∆∆∆PPPCCCT . Com-
paring the curvelet recovery with the focused curvelet recovery
(Figure 1(c) and 1(d)) shows an overall improvement in the re-
covered details.

DEFOCUSSED MULTIPLE PREDICTION

A second example where the inversion of wavefields may be
useful is in multiple prediction. During standard Surface-Rela-
ted Multiple Elimination (SRME, Verschuur et al., 1992), mul-
tiples are predicted by multidimensional convolutions of the
data matrix with an estimate for the primaries (or the data it-
self). As a result, the ’source wavelet’ appears twice making a
subsequent global wavelet matching necessary to remove this
wavelet from the prediction. By choosing the wavefield in
terms of the total data, UUU = PPP and the operator VVV as the ad-
joint of the primary operator—i.e., VVV = ∆∆∆PPPH , solving Pε with
SSST = CCCT yields an estimate for the multiples obtained by ’de-
convolving’ the data matrix with the adjoint of the primaries.
Since this procedure involves inverting ∆∆∆PPPH , we can expect
a deconvolution of the ’source wavelet’. Indeed, we observe
an increase in the frequency content of multiples predicted by
solving Pε , compared to calculating the multiples via PPPPPP. The
observed artifacts are likely caused by remnant multiple en-
ergy and 3-D effects present in the primary wavefield, which
we used to define the operator used to predict the multiples.
Also notice the improved amplitudes for the far offsets.
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DATA INVERSE

As a final example, we show how the presented methodology
can be used to calculate the inverse data space. As shown by
Berkhout (2006), the data inverse leads to a natural separation
of the primary wavefield and the surface related effects—i.e.
the multiple-generation boundary condition at the surface and
the source and receiver characteristics. Mathematically, the
data ’inverse’ (see also Sheng, 1995), which represents the in-
verse of the forward scattering series, can be written as

PPP† = ∆∆∆PPP†−A , (3)

where the symbol † denotes the pseudo inverse rather than an
ordinary inverse and where A contains the boundary condi-
tion at the surface and the inverse of the source and receiver
signatures (see e.g. Berkhout and Verschuur, 2006). With this
example, we illustrate how curvelet regularization overcomes
practical difficulties related to computing wavefield inverses
on (real) data.

Again, our curvelet-based formulation comes to our rescue by
setting VVV = PPP and UUU = IIIdΨ with IIIdΨ the bandwidth- and dip-
limited delta-Dirac line source. As can be seen in Figure. 3,
solving Pε for this setting (with SSST = CCCT ), yields a stable es-
timate for the data inverse of real data (Figure 3(a) contains
a shot of this data volume). As we can see, the data inverse
contains mostly acausal energy (as expected, see Figure 3(a))
with a strong bandwidth- and dip-limited pulse (actually a line
source) at zero time. This latter contribution corresponds to the
term A in Equation 3, which contains the surface-related mul-
tiples. To verify whether this property holds, we also invert
our SRME-estimate for the primaries, ∆∆∆PPP. For this primary
wavefield, the large contribution of the directional ’source’ A
is removed, which means that the multiple-generating bound-
ary condition was successfully removed. This removal con-
firms the validity of the concept of the data inverse on real
data. However, artifacts are present in these results and these
are mostly due to remnant multiple energy and 3-D effects.

DISCUSSION AND CONCLUSIONS

In this paper, we presented three different examples that in-
volve the inversion of seismic wavefields. We showed that
curvelet-based sparsity promotion leads to inverses that are
stable with respect to missing data, finite aperture and band-
width limitation. Wavefield reconstruction was improved by
inverting the primary operator, which leads to an increased re-
covery because of focusing towards the source. This focusing
is induced by inverting the primary-wavefield operator. Con-
versely, inverting the adjoint of the primary-wavefield oper-
ator restores the frequency content and far-offset amplitudes
of the predicted multiples. Finally, we also showed that our
curvelet-sparsity promoting formulation can be used on real
data to compute the data inverse, arguably the most challeng-
ing of the three examples. In that case, the surface related mul-
tiples are focused to a directional source while, as expected,
most of the primaries (and internal multiples) are mapped to
negative times.

Our findings are encouraging and may have profound implica-
tions on how wavefields are inverted during (interferrometic)

(a) (b)

(c) (d)

Figure 1: Comparison between 3-D curvelet-based recovery
by sparsity-promoting inversion with and without focusing.
(a) Fully sampled real North Sea field data shot gather. (b)
Randomly subsampled shot gather from a 3-D data volume
with 80% of the traces missing in the receiver and shot di-
rections. (c) Curvelet-based recovery. (d) Curvelet-based re-
covery with focusing. Notice the improvement (denoted by the
arrows) from the focusing with the primary operator.

imaging. The fact that the focal transform images ’the source’—
i.e. the primaries are mapped to a directional line source,
which corresponds to prestack reflectivity when applying the
focal transform after redatuming, supports this claim. This
means that the presented formulation can be used to replace
the current ’poor man’s’ inverse— through multidimensional
correlation— by wavefield deconvolution. The examples on
real data presented in this paper show that further application
of this methodology on real data is well within reach.
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(a) (b) (c) (d)

Figure 2: Comparison between 3-D curvelet-based multiple prediction (via Pε and AAA = ∆∆∆PPPHCCCT and y = vec
`
PPP

´
). (a) A shot from

the conventional multiple prediction according to PPPPPP. (b) The same but not now by inverting ∆∆∆PPPT . (c) The amplitude-normalized
stacked temporal Fourier spectrum of the multiple prediction plotted in (a). (d) The amplitude-normalized stacked temporal Fourier
spectra of the total data (see Fig. 3(a)) and of the multiple prediction obtained by defocusing. Notice the improvement in the
frequency content (e.g. compare the red line for the spectrum of the total data with the blue line for the spectrum of our estimate)
and in the large-offset amplitudes for the multiple predictions obtained by defocusing. The artifacts in the defocused result are due
to remnant multiple energy in the primary wavefield whose adjoint is used to calculate the multiples.

(a) (b) (c) (d)

Figure 3: Example of computing the ’data inverse’ with 3-D curvelet-based sparsity promotion. (via Pε with AAA = PPPCCCT and
y = vec

`
IIIdΨ

´
). (a) A shot from the total data volume. (b) Corresponding shot from the estimate for the data inverse of PPP. (c) A

shot from the SRME-estimate for the primaries. (d) Corresponding shot for the ’data inverse’ of the SRME-predicted primaries.
Notice that the directional line source at time zero for the ’data inverse’ of the total data is more or less completely absent in the
’data inverse’ for the SRME-primaries, an observation consistent with the fact that surface-related multiple energy maps to A .
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