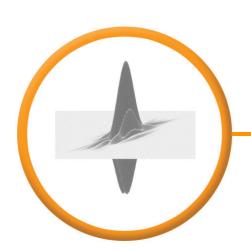
Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2008 SLIM group @ The University of British Columbia.

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER



Curvelet-domain matched filtering

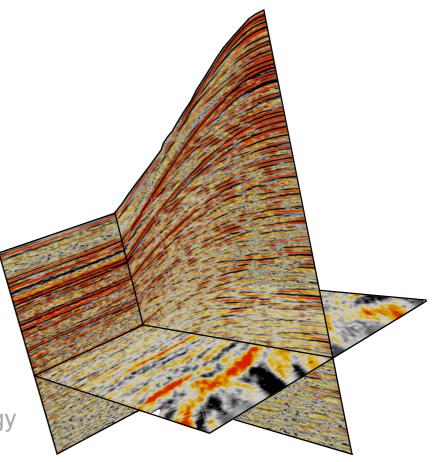
Felix J. Herrmann*

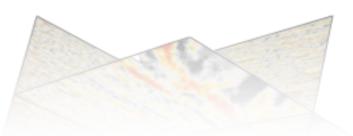
Deli Wang** wangdeli@email.jlu.edu.cn

Thanks to Gilles Hennenfent & Eric Verschuur

Seismic Laboratory for Imaging & Modeling Department of Earth & Ocean Sciences The University of British Columbia

**Jilin University College of Geoexploration Science and Technology





SEG Las Vegas, November 9-14

Motivation

- Transform-domain matched-filtering forms the basis of
 - adaptive subtraction during surface-related multiple elimination [Verschuur '97]
 - *idem* during surface-wave removal with interferometry [Vasconcelos '08, Wapenaar '08]
 - scaling during migration "preconditioning" based on migrated-remigrated image matching [Symes '08,F.J.H. et. al, '08]
- Fourier-based matching
 - accounts for amplitude-spectra mismatches & global kinematic errors
 - fails for errors that vary spatially & as function of the local dip
- Spatial & windowed Fourier matching
 - run risk of over fitting (loss of primary energy)
- *Curvelet-domain* matching in phase space
 - corrects for *amplitude* errors that vary *smoothly* as a function of position & dip

History

• Fourier-based matched filtering was built on the premise that

$$\mathbf{m}_{\text{true}} \approx \mathbf{F} \mathbf{m}_{\text{predicted}} \text{ with } \mathbf{F} = \mathcal{F}^H \text{diag}\left(\mathbf{\hat{f}}\right) \mathcal{F}$$

Estimated during a global least-squares estimation procedure

$$\mathbf{\hat{f}} = \arg\min_{\mathbf{\hat{g}}} \frac{1}{2} \|\mathbf{\hat{d}} - \mathbf{\hat{g}}\mathbf{\hat{m}}_{\text{predicted}}\|_{2}^{2} + \lambda \|\mathbf{L}_{\mathcal{F}}\mathbf{\hat{g}}\|_{2}^{2}$$

- $L_{\mathcal{F}}$ *Fourier-space* sharpening operator that promotes smoothness for each offset separately
- Estimated primaries:

$$\mathbf{\tilde{p}} = \mathbf{d} - \mathbf{F} \mathbf{m}_{\mathrm{predicted}}$$

History cont'd

- Recently proposed alternatives [F.J.H '04-'08, Neelamani '08]
- Use global Fourier-domain matching to correct the multiples, i.e.,

$$\tilde{\mathbf{m}}_{\text{matched}} = \mathbf{F}\mathbf{m}_{\text{predicted}}$$

 Use these matched predictions as a *template* for a curvelet-domain separation by thresholding [F.J.H '04], i.e.,

$$\tilde{\mathbf{p}} = \mathbf{C}^{H} \mathbf{S}_{\mathbf{W}} (\mathbf{C} \mathbf{d})$$
 with $\mathbf{w} \propto |\mathbf{C} \tilde{\mathbf{m}}_{\text{matched}}|$
 $\mathbf{S}_{w} (x) = \operatorname{sign}(x) \max (0, |x| - w)$

- element-by-element separation
- assumes correct amplitudes
- assumes no kinematic errors

History cont'd

 Soft thresholding special case of weighted one-norm optimization [F.J.H et.al '07]

$$\begin{cases} \tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{A}\mathbf{x} - \mathbf{d}\|_2 + \|\mathbf{x}\|_{1,\mathbf{W}} \\ \tilde{\mathbf{p}} = \mathbf{S}^H \tilde{\mathbf{x}} \end{cases}$$

• and a special case of Neelamani's ['08] elementwise approach

$$\min_{a_{\mu},\phi_{\mu}} |\{\mathbf{C}_{c}\mathbf{d}\}_{\mu} - a_{\mu}\exp(j\phi_{\mu})\{\mathbf{C}_{c}\tilde{\mathbf{m}}_{\text{matched}}\}_{\mu}|$$

subject to
$$a_{\mu}^{min} \leq a_{\mu} \leq a_{\mu}^{max}$$
,
 $\phi_{\mu}^{min} \leq \phi_{\mu} \leq \phi_{\mu}^{max}$,
for $\mu \in \mathcal{M}$

for
$$\phi_{\mu}^{\min/\max} = 0$$

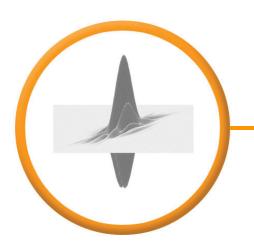
Our focus

- Adaptively correct for *amplitude* errors
 - vary smoothly as a function of position and dip
 - e.g., spherical divergence, incomplete data & other surface-related effects...
- Model driven
 - assume a forward model between predicted and true multiples
 - introduce a *regularized* inversion method based on this *forward* model

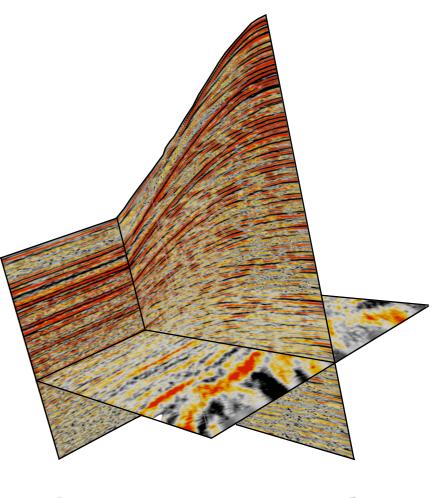
Exploit curvelets

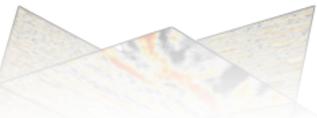
- their phase-space partitioning
- their ability to approximate zero-order *Pseudodifferential* operators [F.J.H et.al. '08]
- their *sparsity* [Wang et. al. '08] (during the non-adaptive Bayesian separation)

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER



The curvelet transform



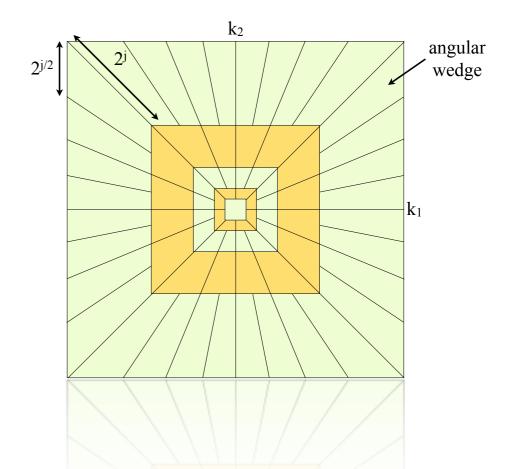


SEG Las Vegas, November 9-14

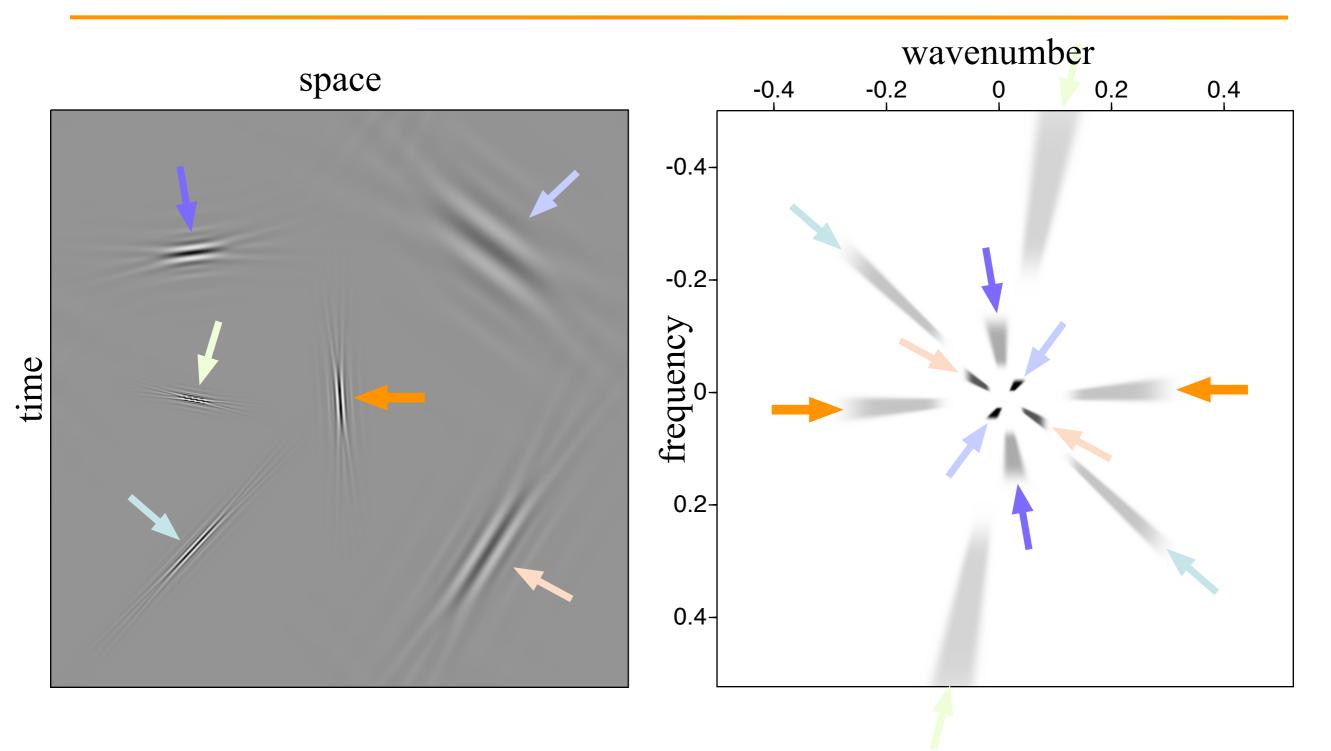
Representations for seismic data

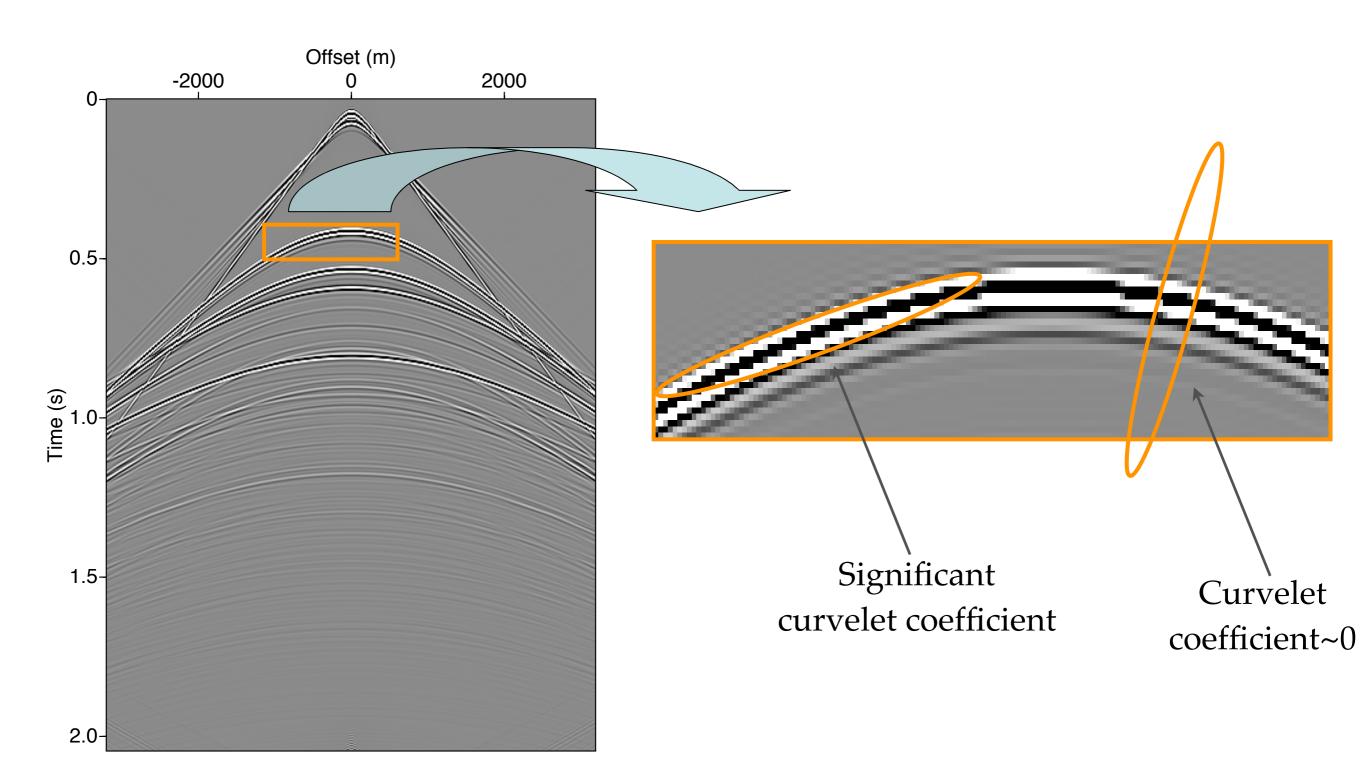
Transform	Underlying assumption
FK	plane waves
linear/parabolic Radon transform	linear/parabolic events
wavelet transform	point-like events (1D singularities)
curvelet transform	curve-like events (2D singularities)

- curvelet transform
 - multiscale: tiling of the FK domain into dyadic coronae
 - multidirectional: coronae subpartitioned into angular wedges, # of angles doubles every other scale
 - anisotropic: parabolic scaling principle
 - local

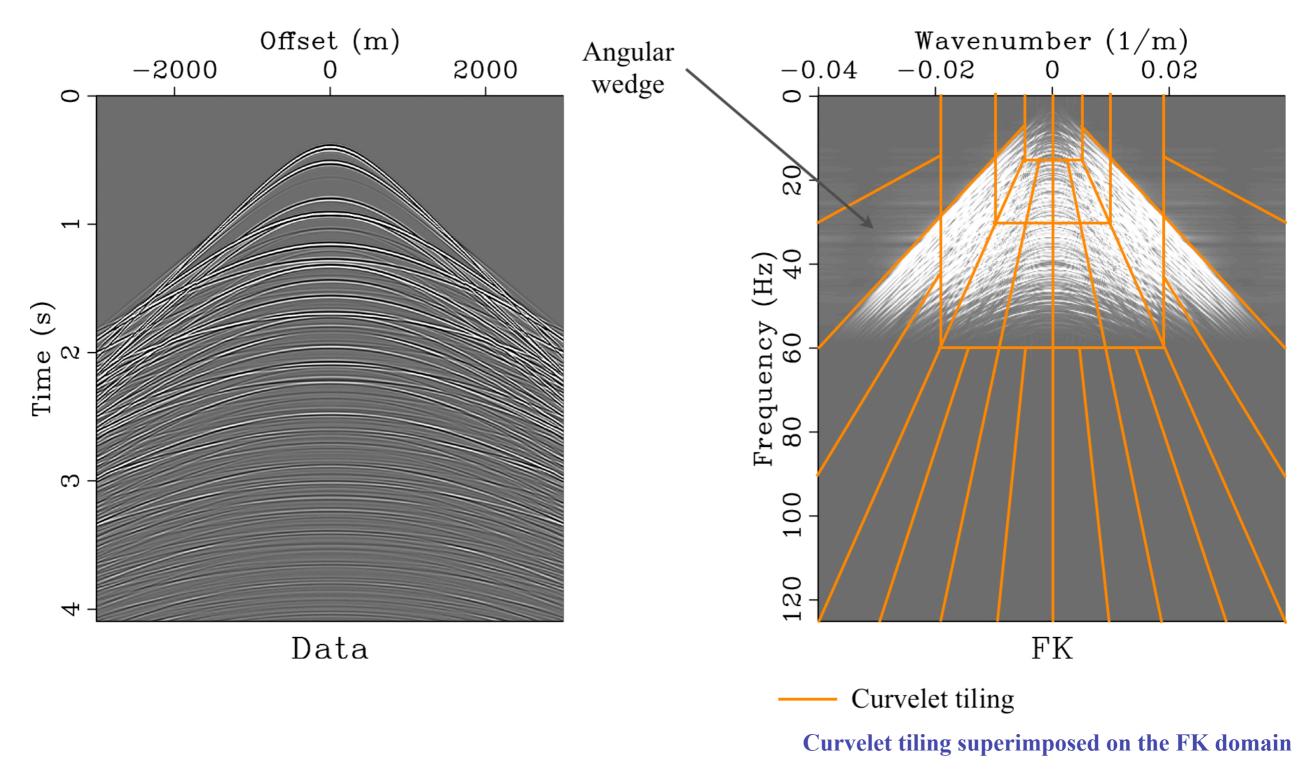


2D discrete curvelets



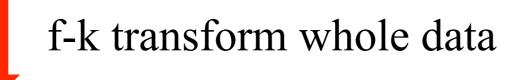


Curvelet tiling & seismic data



Curvelet processing workflow (forward transform C)

t-x domain data



f-k domain data

cover the f-k domain with dyadic tiling to determine appropriate curvelet transform

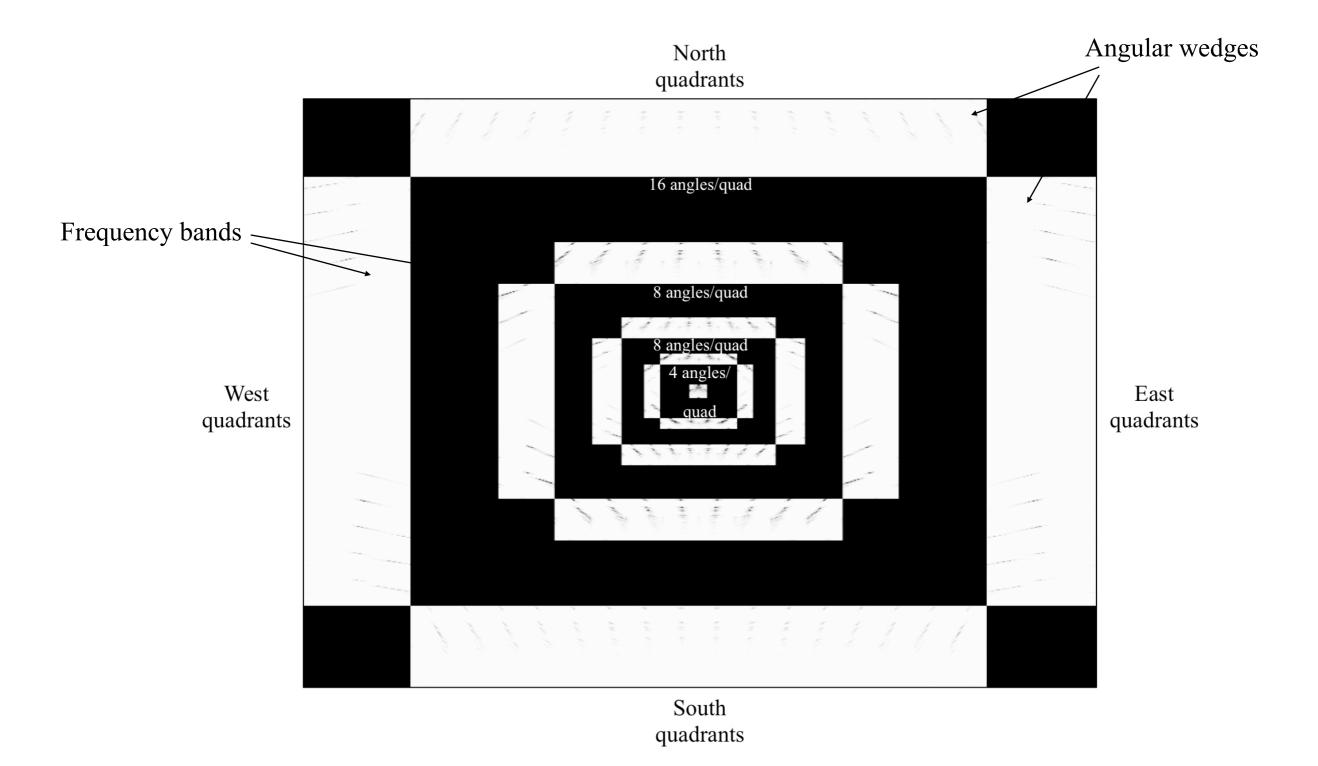
tiled f-k domain data

window each tile segment in the f-k domain

tiled curvelet domain data

(This is the domain in which curvelet operations takes place)

Curvelet tiling & seismic data



Curvelet processing workflow (inverse transform C^T)

tiled curvelet domain data

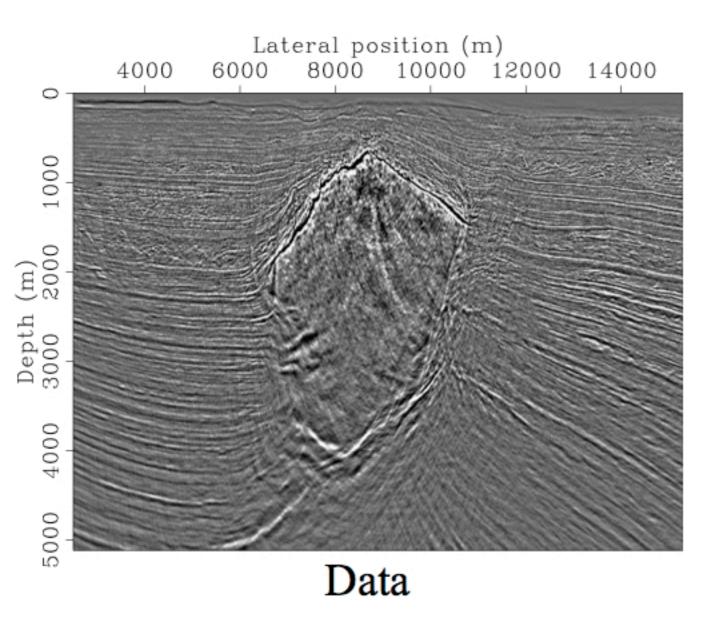
f-k transform each curvelet tile

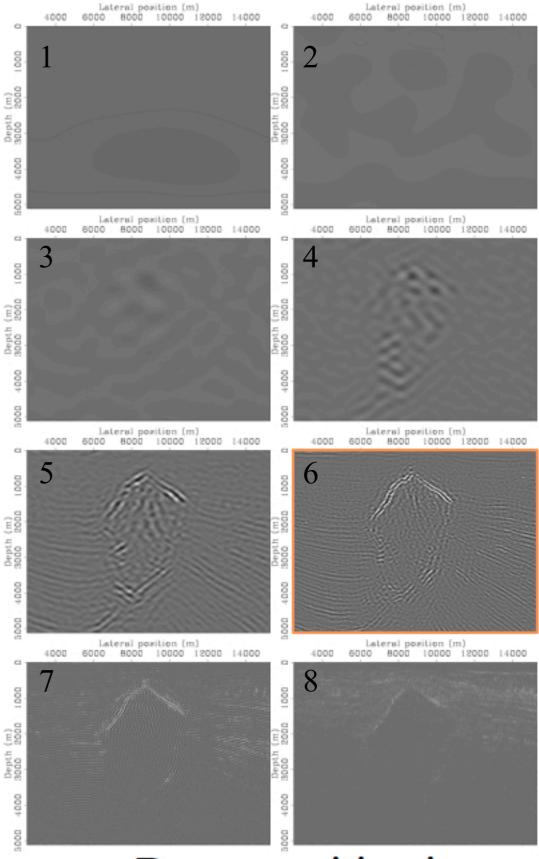
tiled f-k domain data

Inverse f-k transform whole data

t-x domain data

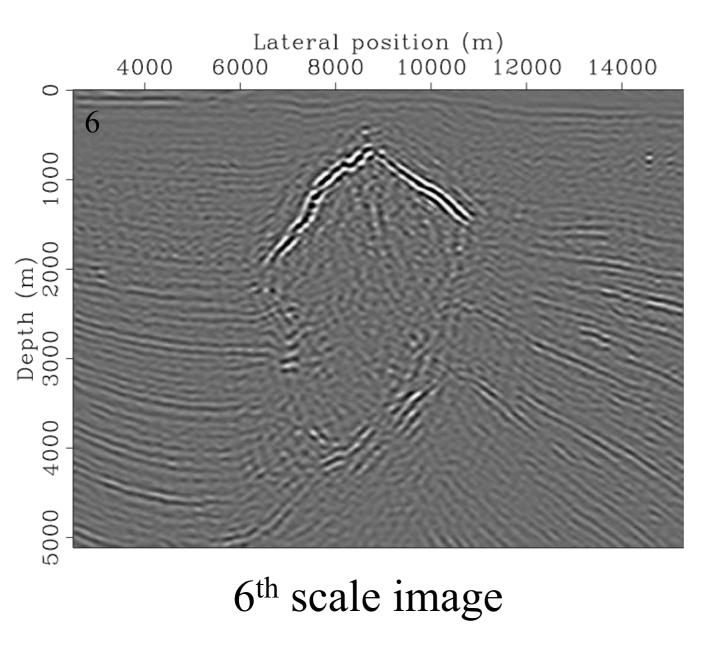
Real data frequency bands example

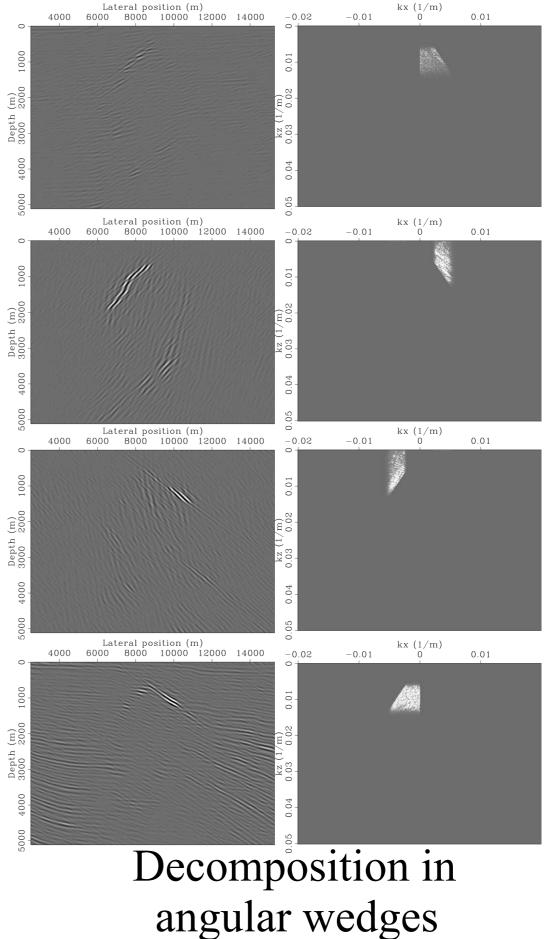




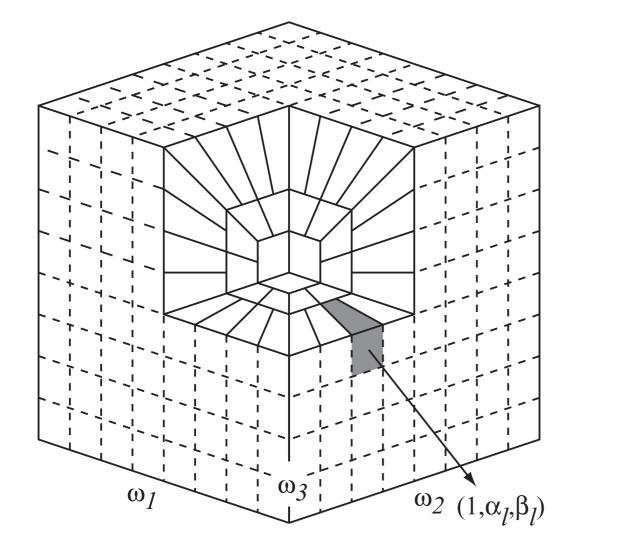
Decomposition in frequency bands

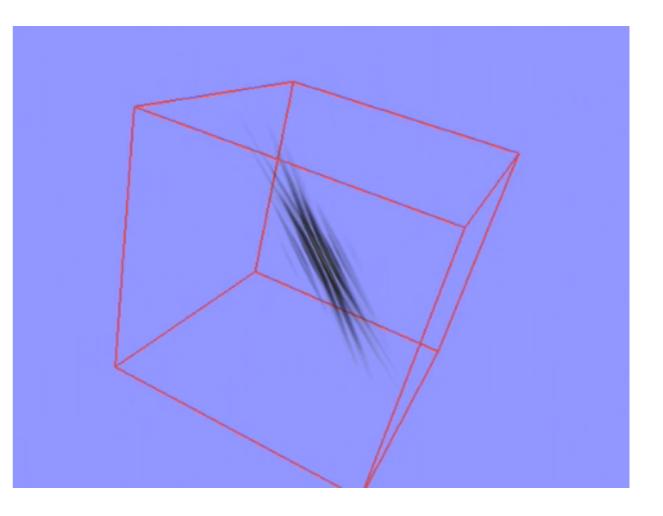
Single frequency band angular wedges

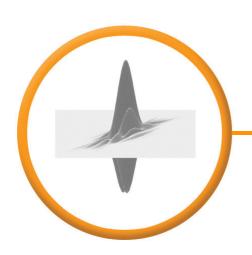




3D discrete curvelets





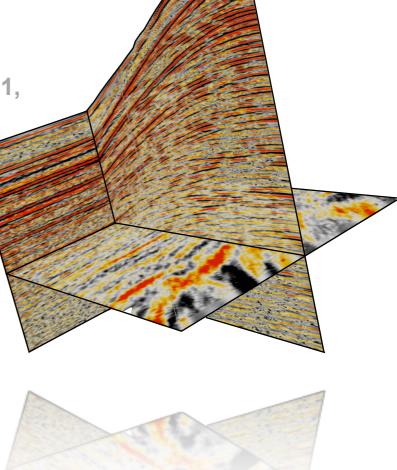


SFG

Curvelet-domain matched filter

Herrmann, F. J., Moghaddam, P. and Stolk, C. Sparsity- and continuity-promoting seismic image recovery with curvelet frames. App. & Comp. Harm. Analys., Vol. 24, No. 2, pp. 150-173, 2008.

Herrmann, F. J., Wang, D and Verschuur, D. J. Adaptive curvelet-domain primary-multiple separation. Geophysics, Vol 73, No. 3, pp. A17-A21, 2008.



The forward model

• Our curvelet-domain matched filtering is built on the premise that

$$\mathbf{m}_{\text{true}} \approx \mathbf{B}\mathbf{m}^0 \text{ with } \mathbf{B} = \mathcal{F}^H b(x, k) \mathcal{F}$$

 $\mathbf{m}^0 = \tilde{\mathbf{m}}_{\text{matched}}, \text{ and } \mathbf{B} \text{ a zero-order } \Psi \text{DO}.$

- We assume that
 - there are NO kinematic and phase errors
 - global conservative Fourier-domain matching removed the "wavelet" => zero-order
 - corrections by the symbol b vary smoothly as a function of space and angle
- Approximate the action of **B** by curvelet-domain scaling
 - fast evaluation
 - possibility to estimate from data by nonlinear least-squares matching

Diagonalization [F.J.H et. al '08]

Theorem 1. The following estimate for the error holds

$$\|(\Psi(x,D) - C^T \mathbf{D}_{\Psi} C)\varphi_{\mu}\|_{L^2(\mathbb{R}^n)} \le C'' 2^{-|\mu|/2},$$

where C'' is a constant depending on Ψ .

Lemma 1. With C' some constant, the following holds

$$\|(\Psi(x,D) - a(x_{\nu},\xi_{\nu}))\varphi_{\nu}\|_{L^{2}(\mathbb{R}^{n})} \le C'2^{-|\nu|/2}.$$
(14)

To approximate Ψ , we define the sequence $\mathbf{u} := (u_{\mu})_{\mu \in \mathcal{M}} = a(x_{\mu}, \xi_{\mu})$. Let \mathbf{D}_{Ψ} be the diagonal matrix with entries given by \mathbf{u} . Next we state our result on the approximation of Ψ by $C^T \mathbf{D}_{\Psi} C$.

Estimation matched filter

• Action of **B** can be approximated

 $\mathbf{m}_{\text{true}} \approx \mathbf{B}\mathbf{m}^0 \text{ with } \mathbf{B} \approx \mathbf{C}^H \text{diag}(\mathbf{b}) \mathbf{C}, \quad \{b\}_{\mu \in \mathcal{M}} > 0$

 Diagonal can be estimated during a *global nonlinear* least-squares estimation procedure [Symes '08, F.J.H et. al. '08]

$$\tilde{\mathbf{z}} = \arg\min_{\mathbf{Z}} \frac{1}{2} \|\mathbf{d} - \mathbf{C}^T \operatorname{diag} \left(\mathbf{C}\mathbf{m}^0\right) e^{\mathbf{Z}} \|_2^2 + \gamma \|\mathbf{L}_{\mathcal{C}} e^{\mathbf{Z}}\|_2^2$$

– $L_{\mathcal{C}}$ curvelet-domain sharpening operator that promotes smoothness

- guarantees the solution to be *positive*

$$\tilde{\mathbf{m}}_{\text{matched}} = \mathbf{B}\mathbf{m}_0 \text{ with } \mathbf{b} = e^{\tilde{\mathbf{Z}}}$$

Estimation matched filter

Solve the system

$$\begin{bmatrix} \mathbf{d} \\ \mathbf{0} \end{bmatrix} \approx \begin{bmatrix} \mathbf{C}^T \operatorname{diag} \{ \mathbf{Cm}^0 \} \\ \gamma \mathbf{L}_{\mathcal{C}} \end{bmatrix} e^{\mathbf{Z}}$$

$$\mathbf{y} \approx \mathbf{G}_{\gamma} e^{\mathbf{Z}}$$

Use grandient of $J(\mathbf{z}) = \frac{1}{2} \|\mathbf{y} - \mathbf{G}_{\gamma} e^{\mathbf{Z}}\|_2^2$

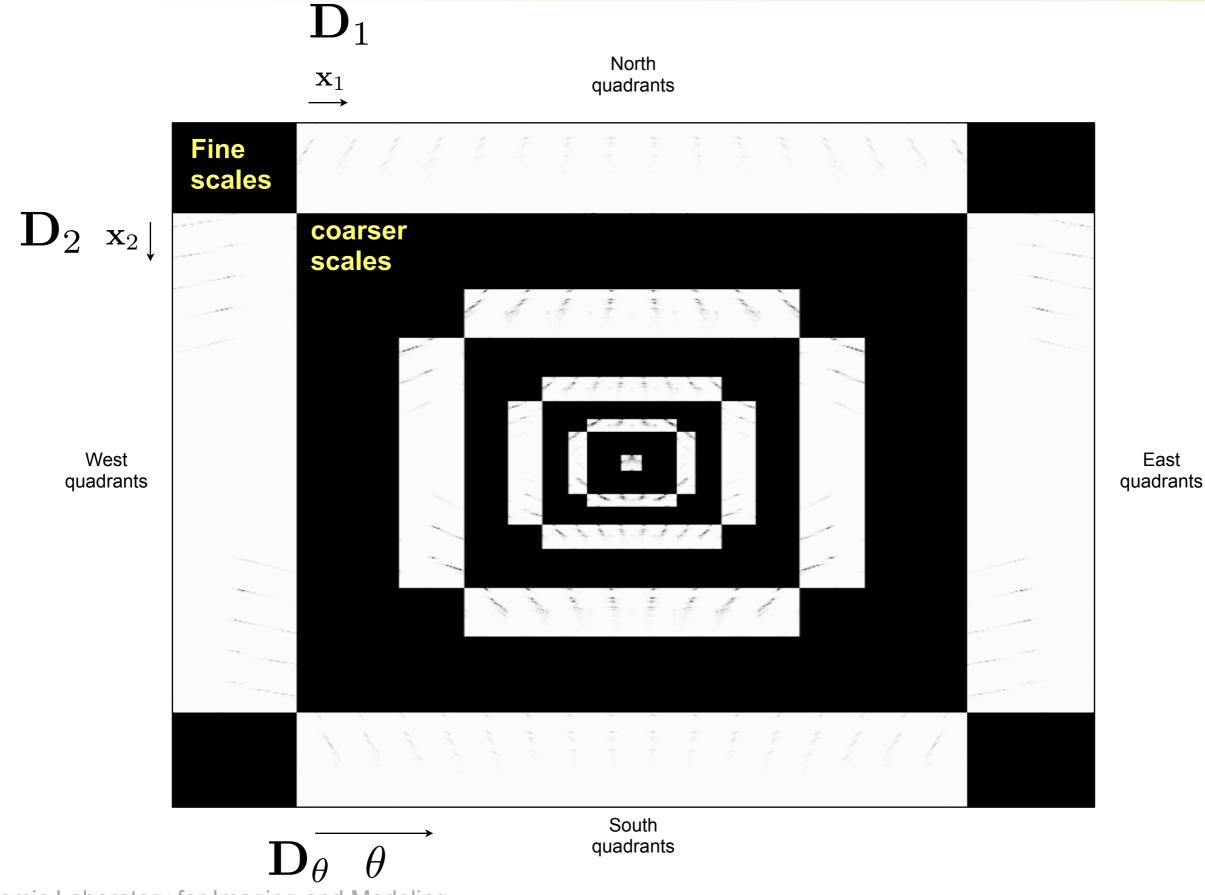
grad
$$J(\mathbf{z}) = \text{diag}\{e^{\mathbf{Z}}\} [\mathbf{G}_{\gamma}^{T} (\mathbf{G}_{\gamma} e^{\mathbf{Z}} - \mathbf{y})]$$

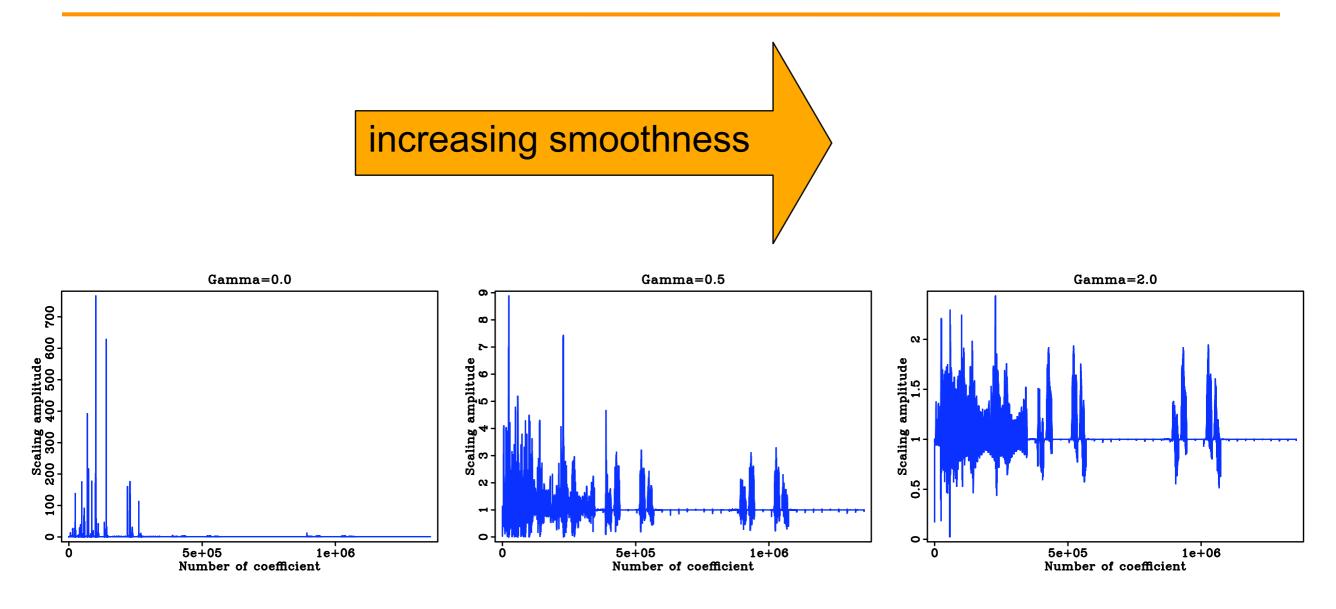
to solve with this system with limited-memory BFGS [Nocedal '89]

Curvelet-domain sharpening operator

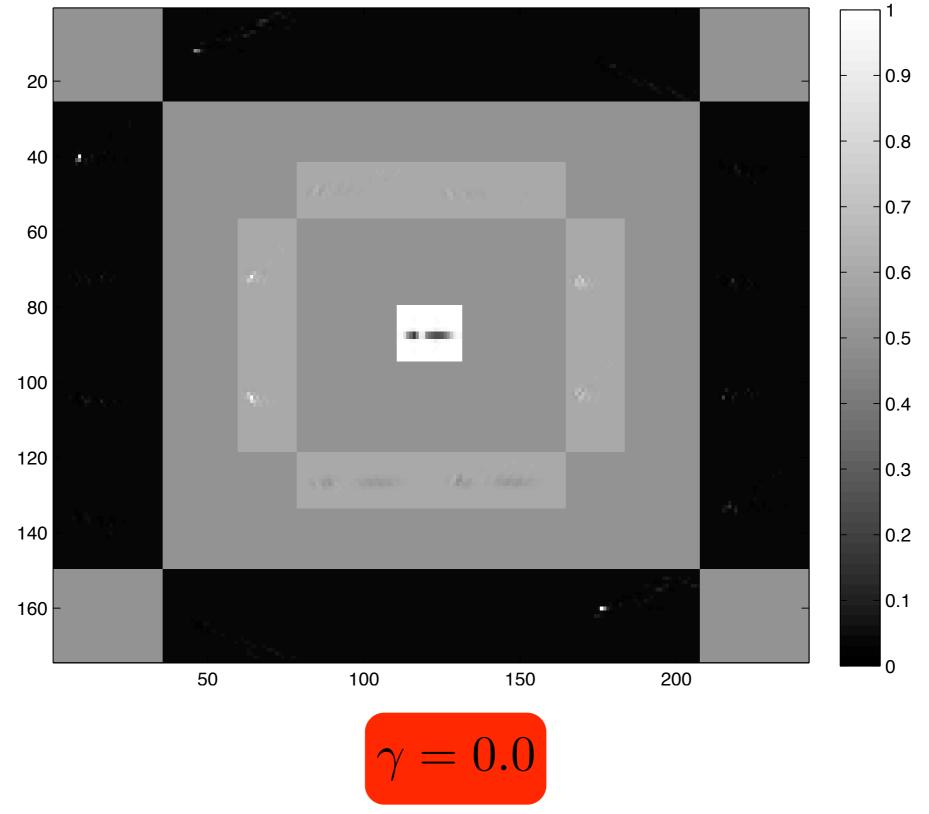
$$\mathbf{L}_{\mathcal{C}} = \begin{bmatrix} \mathbf{D}_1^T & \mathbf{D}_2^T & \mathbf{D}_{\theta}^T \end{bmatrix}^T$$

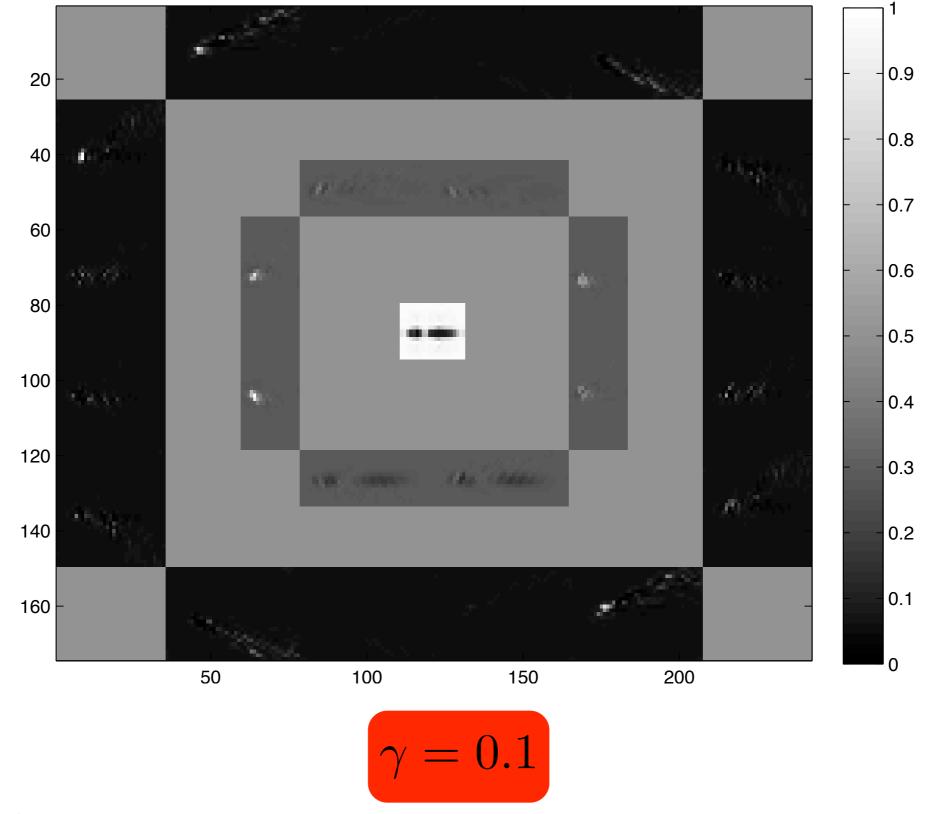
- First-order differences in space and angle directions for each scale
- Regularization parameter controls phase-space smoothness
- Limit overfitting
- Assure positivity with nonlinear least-squares ...
- Matched result is used as input of our Bayesian separation method [Wang et. al. '08]
 - based on sparsity promotion & decorrelation of the signal components
 - offers control on fidelity multiple prediction

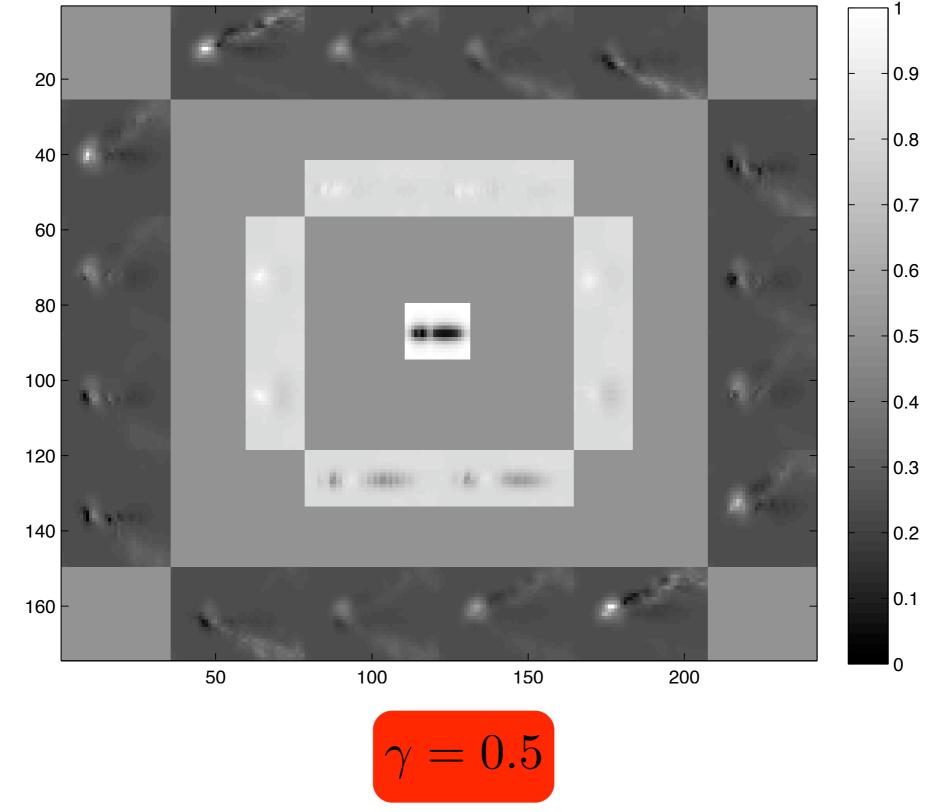


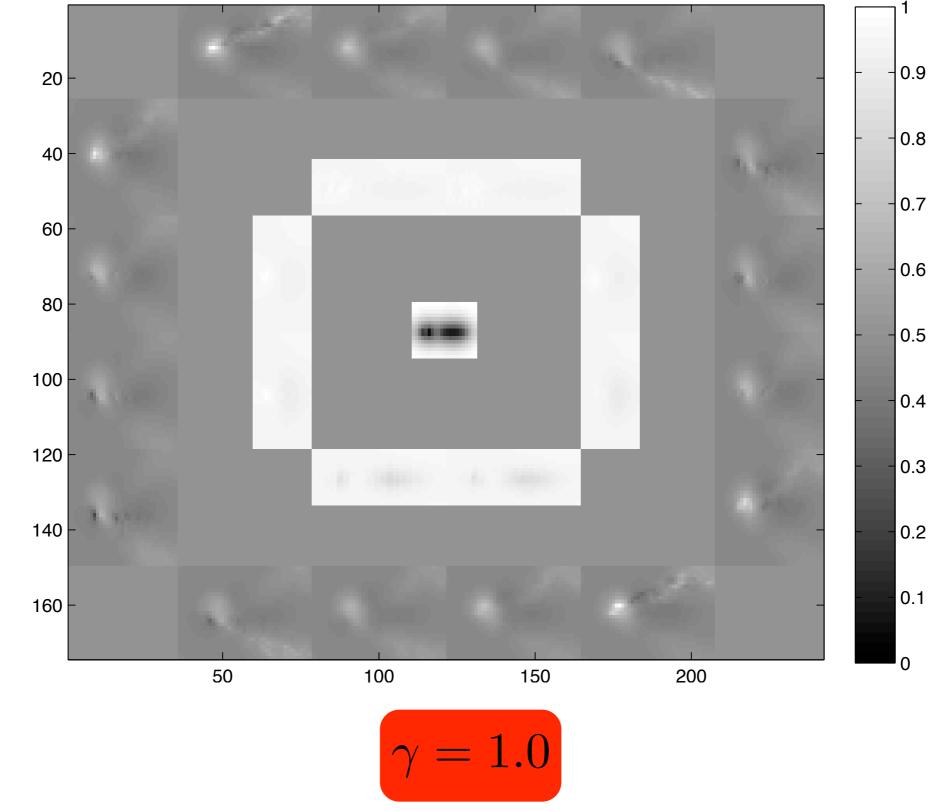


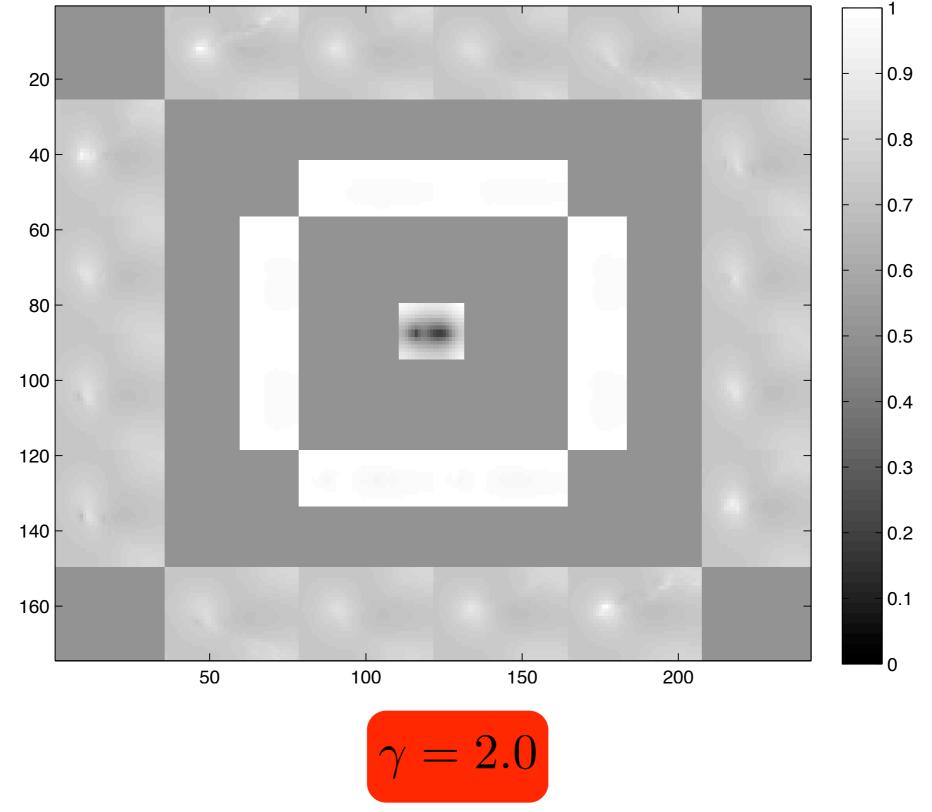
- reduces overfitting
- scaling is positive and reasonable

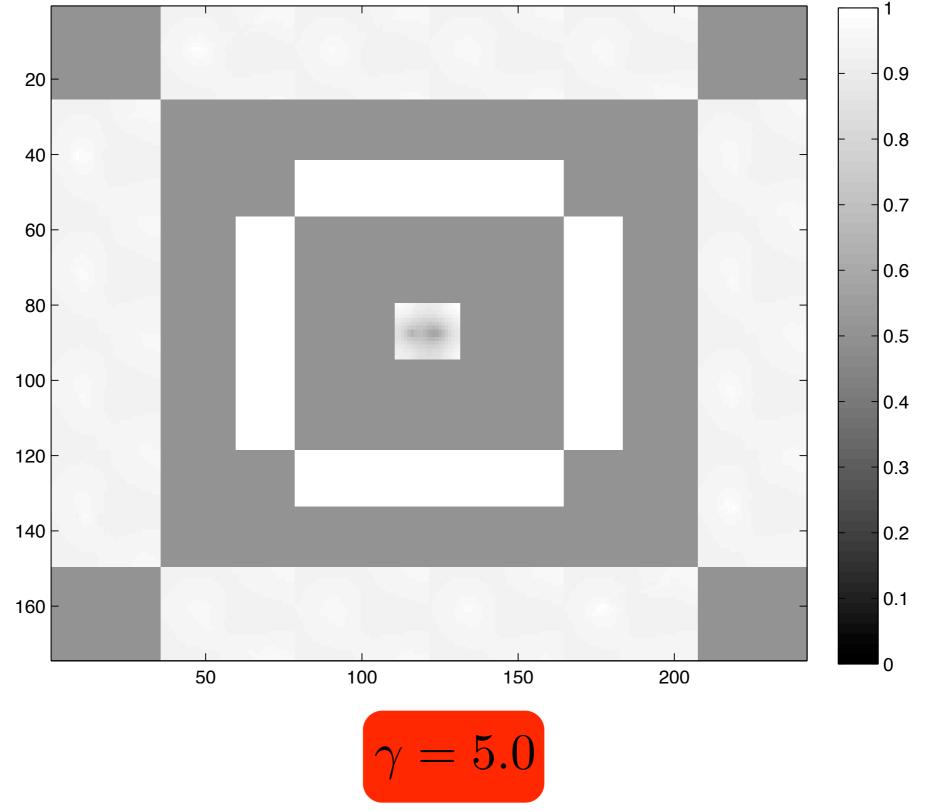




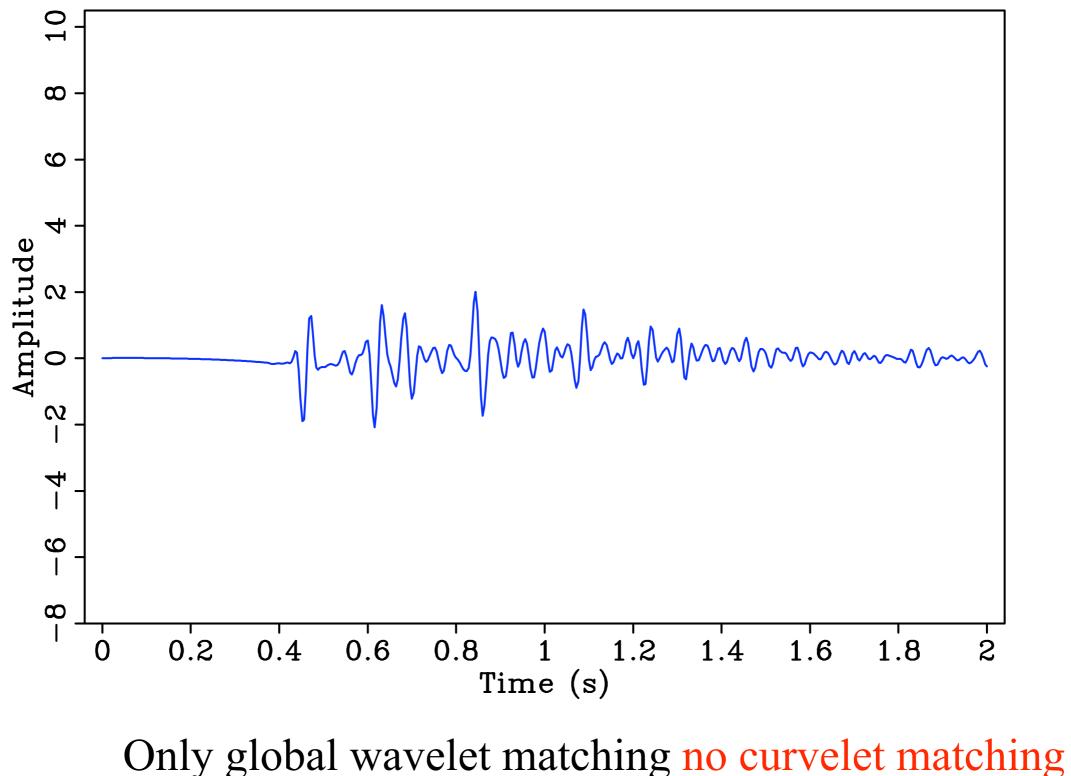


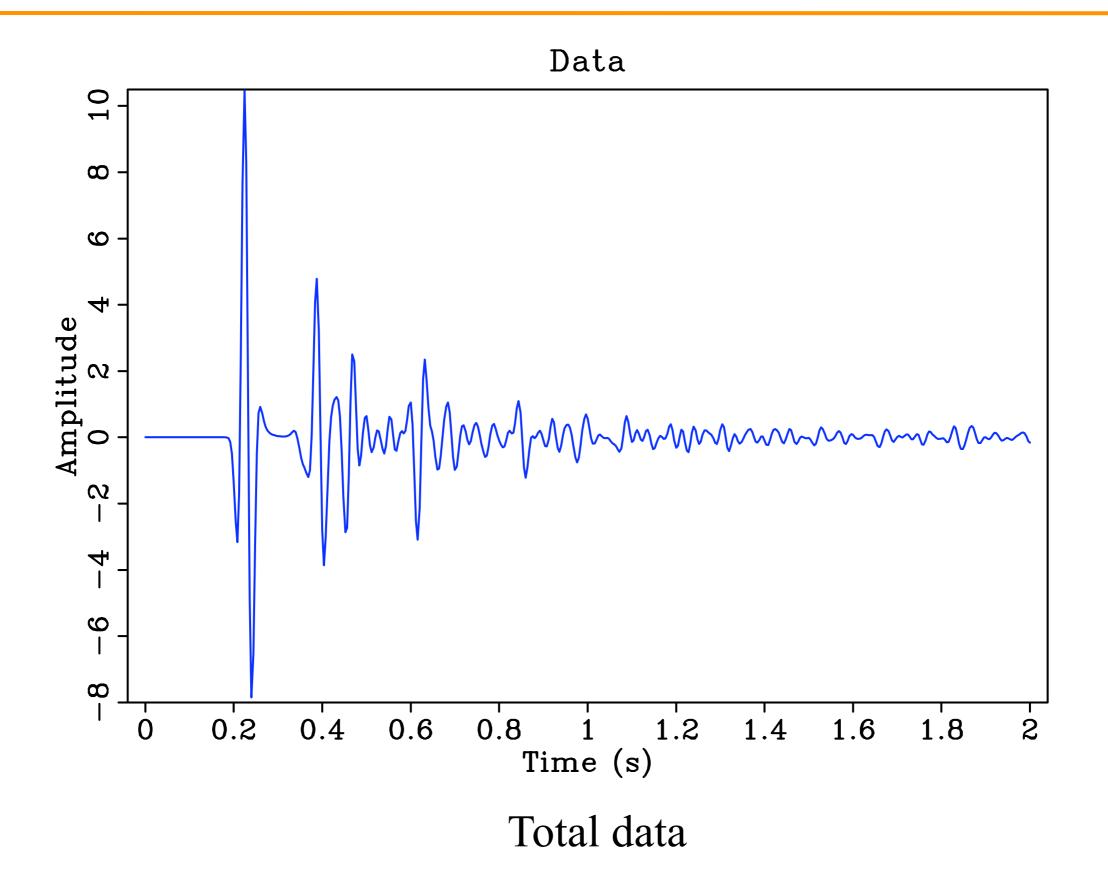


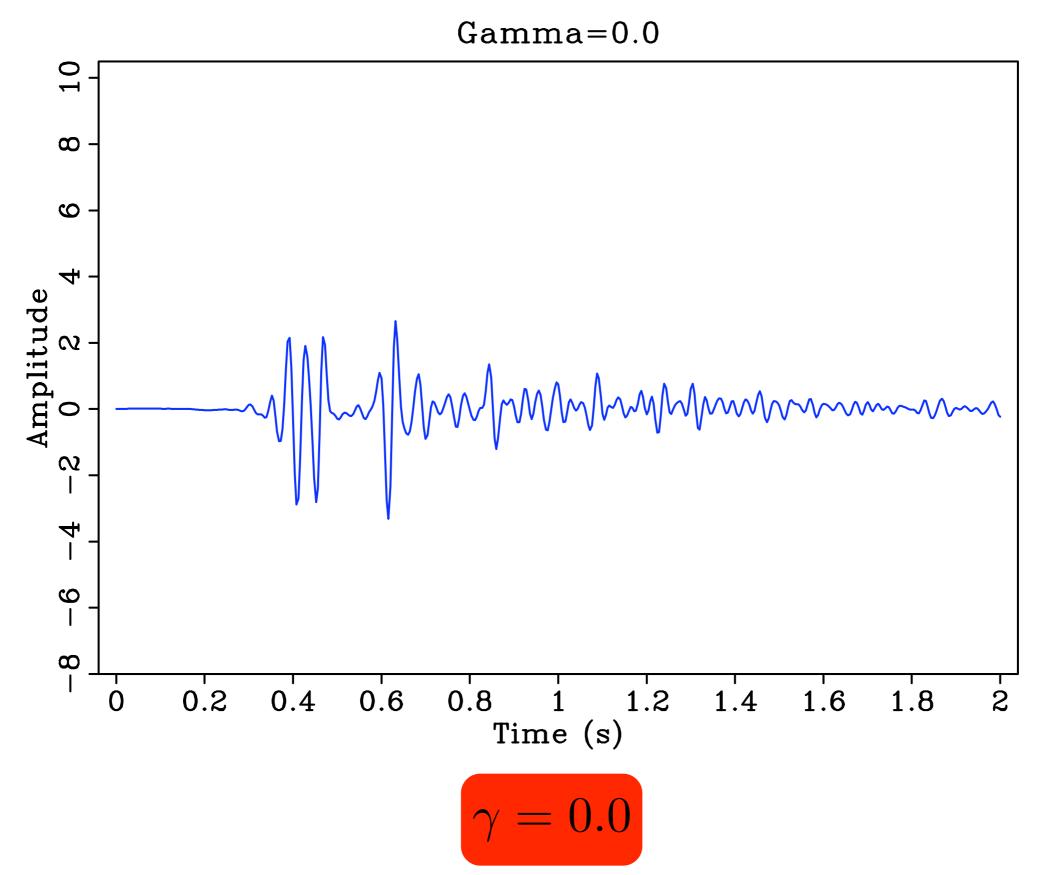


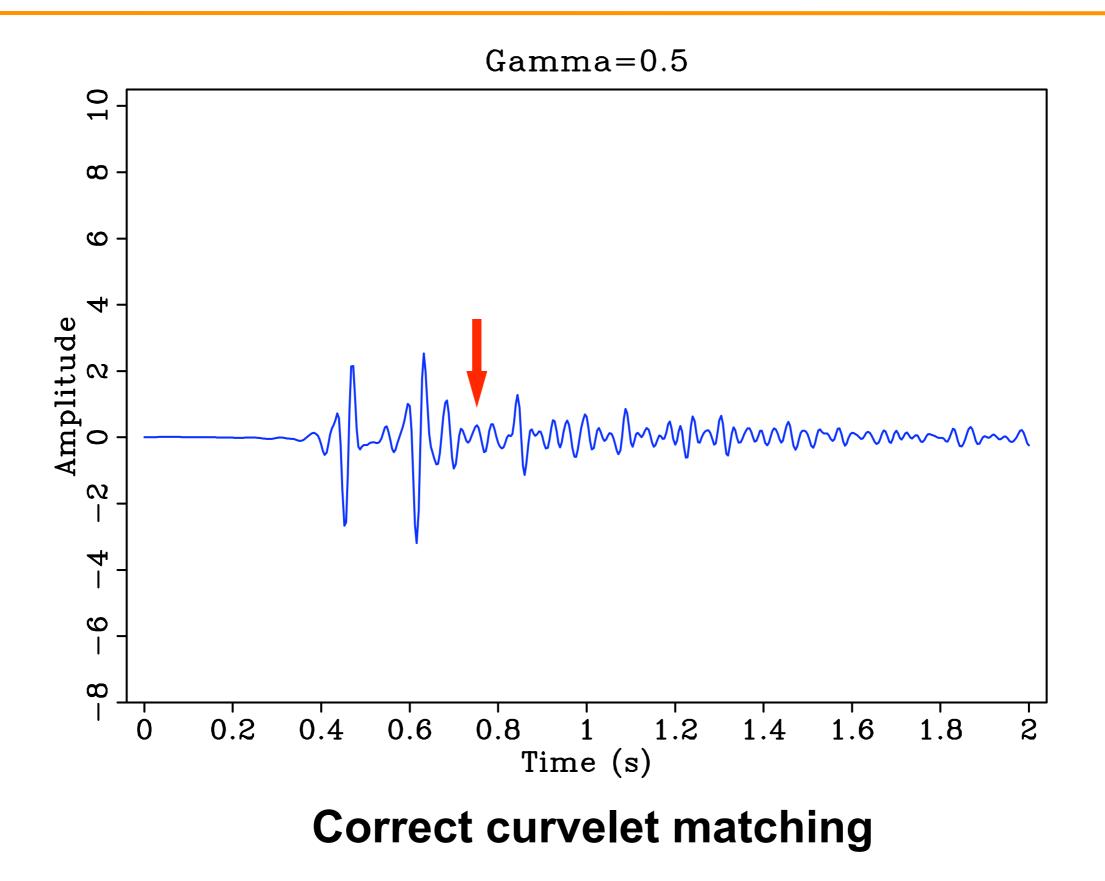


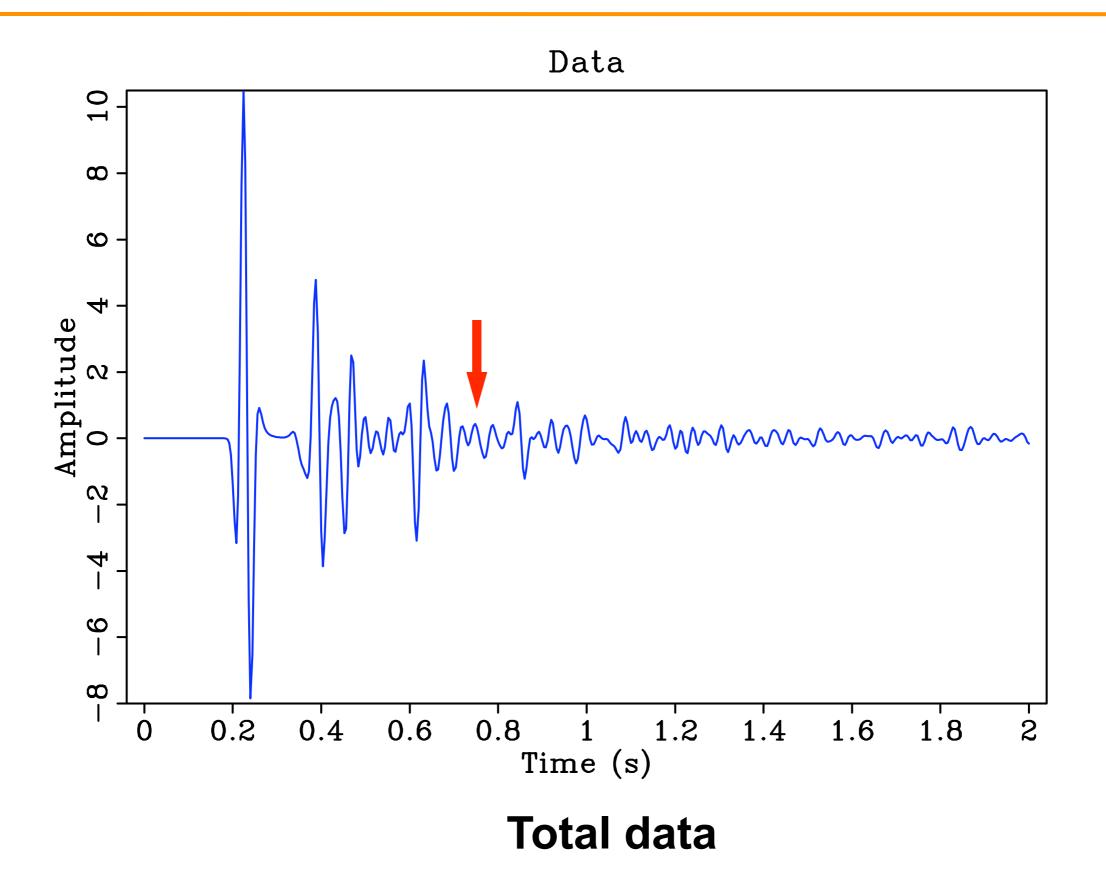
Global wavelet matched multiples





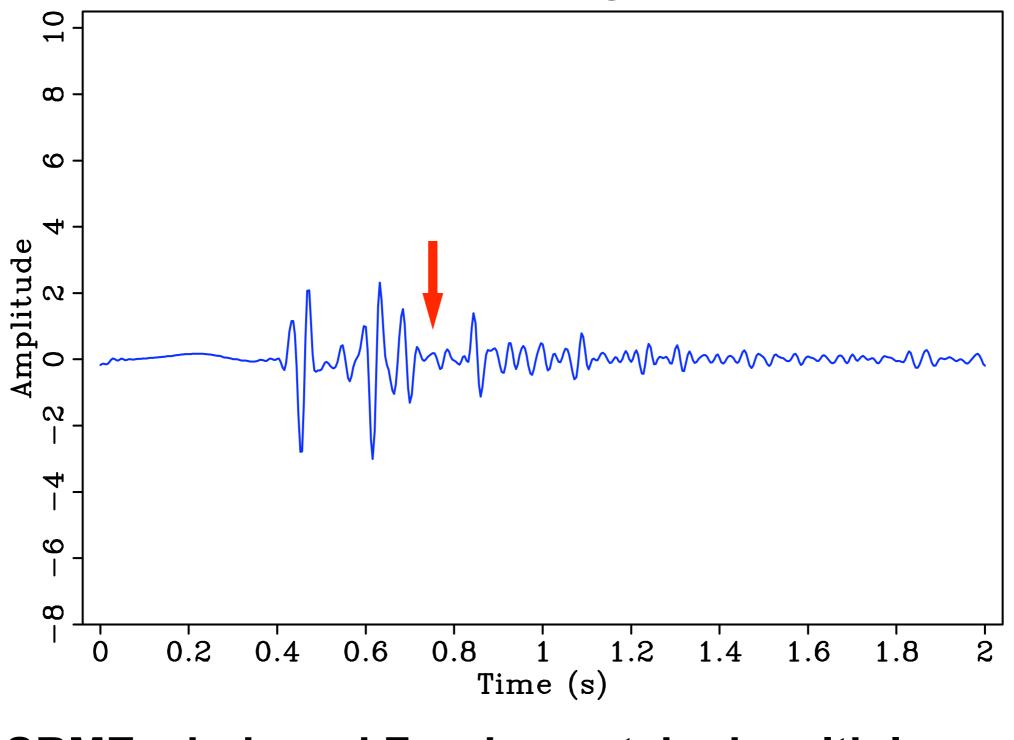






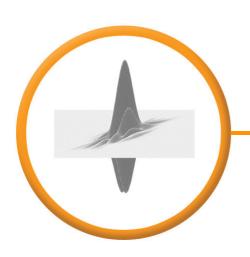
Phase-space regularization

SRME multiples



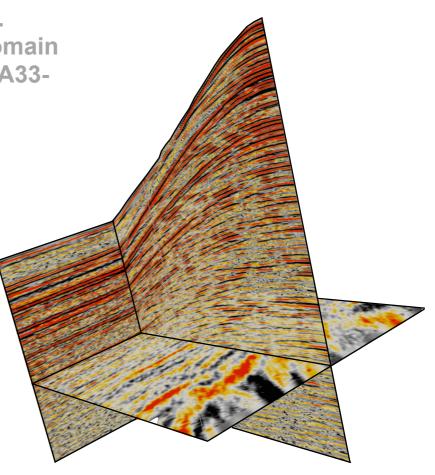
SRME-windowed Fourier-matched multiples

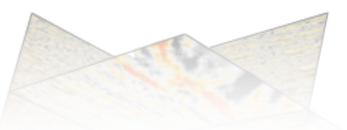
THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER



Bayesian separation

D. Wang, R. Saab, O. Yilmaz and F J. Herrmann. Bayesian wavefield separation by transform-domain sparsity promotion. Geophysics, Vol 73, No. 5, A33-A38, 2008.





SEG Las Vegas, November 9-14

Forward model: [Saab et. al '07, Wang et.al '07, '08]

$$\mathbf{b} = \mathbf{s}_1 + \mathbf{s}_2 + \mathbf{n}$$
 (total data)
 $\mathbf{b}_1 = \mathbf{A}\mathbf{x}_1 + \mathbf{n}_1$ (predicted primaries)
 $\mathbf{b}_2 = \mathbf{A}\mathbf{x}_2 + \mathbf{n}_2$ (predicted multiples)

where

- \mathbf{X}_1 curvelet coefficients of *primaries*
- \mathbf{X}_2 curvelet coefficients of *multiples*
- ${f A}$ inverse curvelet transform

Involves the solution of the following nonlinear problem:

$$\mathbf{P}_{\mathbf{w}}: \qquad \begin{cases} \tilde{\mathbf{x}} = \arg\min_{\mathbf{X}} \lambda_1 \|\mathbf{x}_1\|_{1,\mathbf{w}_1} + \lambda_2 \|\mathbf{x}_2\|_{1,\mathbf{w}_2} + \\ \|\mathbf{A}\mathbf{x}_2 - \mathbf{b}_2\|_2^2 + \eta \|\mathbf{A}(\mathbf{x}_1 + \mathbf{x}_2) - \mathbf{b}\|_2^2 \\ \tilde{\mathbf{s}}_1 = \mathbf{A}\tilde{\mathbf{x}}_1 \quad \text{and} \quad \tilde{\mathbf{s}}_2 = \mathbf{A}\tilde{\mathbf{x}}_2. \end{cases}$$

where

Can be solved by iterative soft thresholding.

Given initial estimates of \mathbf{x}_1^0 and \mathbf{x}_2^0 , the n^{th} iteration of the algorithm proceeds as follows

$$\mathbf{x}_{1}^{n+1} = \mathbf{T}_{\frac{\lambda_{1}\mathbf{W}_{1}}{2\eta}} \left[\mathbf{A}^{T}\mathbf{b}_{2} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{2}^{n} + \mathbf{A}^{T}\mathbf{b}_{1} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{1}^{n} + \mathbf{x}_{1}^{n} \right]$$
$$\mathbf{x}_{2}^{n+1} = \mathbf{T}_{\frac{\lambda_{2}\mathbf{W}_{2}}{2(1+\eta)}} \left[\mathbf{A}^{T}\mathbf{b}_{2} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{2}^{n} + \mathbf{x}_{2}^{n} + \frac{\eta}{\eta+1} \left(\mathbf{A}^{T}\mathbf{b}_{1} - \mathbf{A}^{T}\mathbf{A}\mathbf{x}_{1}^{n} \right) \right]$$

where $\mathbf{T}_{\mathbf{u}}: \mathbb{R}^{|\mathcal{M}|} \mapsto \mathbb{R}^{|\mathcal{M}|}$ is the elementwise soft-thresholding operator, i.e.,

$$T_{u_{\mu}}(v_{\mu}) := \frac{v_{\mu}}{|v_{\mu}|} \cdot \max(0, |v_{\mu}| - |u_{\mu}|)$$

Parametrization:

- η Prediction confidence parameter
- λ_1 Expected reflector sparsity
- λ_2 Expected surface wave sparsity

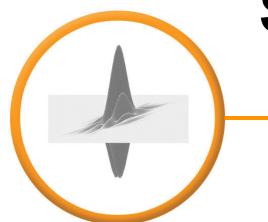
Limiting case:

 $\eta \rightarrow \infty$ Total lack of confidence => block-relaxation

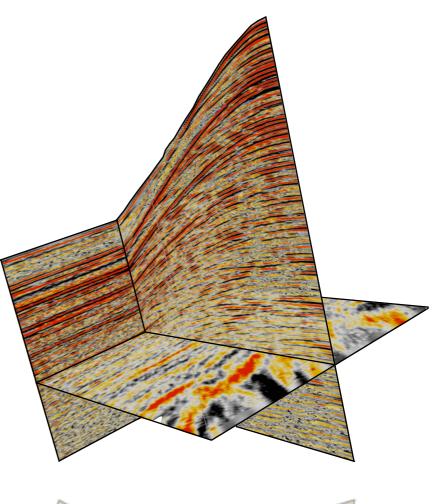
Workflow

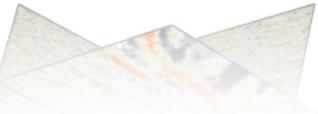
$$\begin{array}{lll} \mbox{input data} & \mathbf{m}_{predicted} = \mathbf{Pp} \mbox{ (multi-D convolution)} \\ \mbox{conservative} & \mathbf{m}_0 = \mathbf{Fm}_{predicted} \mbox{ with } \mathbf{F} = \mathcal{F}^H \mbox{diag} \left(\hat{\mathbf{f}} \right) \mathcal{F} \\ \mbox{fourier matching} & \mathbf{b}_2 & = \mbox{ Bm}_0 \\ \mbox{with } \mathbf{B} & = \mbox{ } \mathbf{C}^T \mbox{diag} \left(e^{\mathbf{Z}} \right) \mathbf{Cm}_0 \\ & \approx \mbox{ } \mathcal{F}^H b(x,k) \mathcal{Fm}_0 \\ \mbox{Bayesian} \\ \mbox{separation} & \\ \mbox{P}_{\mathbf{w}}: & \begin{cases} \tilde{\mathbf{x}} = \mbox{arg min}_{\mathbf{X}} \lambda_1 \| \mathbf{x}_1 \|_{1,\mathbf{W}_1} + \lambda_2 \| \mathbf{x}_2 \|_{1,\mathbf{W}_2} + \\ \| \mathbf{A} \mathbf{x}_2 - \mathbf{b}_2 \|_2^2 + \eta \| \mathbf{A} (\mathbf{x}_1 + \mathbf{x}_2) - \mathbf{b} \|_2^2 \\ & \tilde{\mathbf{s}}_1 = \mathbf{A} \tilde{\mathbf{x}}_1 \ \ \mbox{and} \ & \tilde{\mathbf{s}}_2 = \mathbf{A} \tilde{\mathbf{x}}_2. \\ \end{cases}$$

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

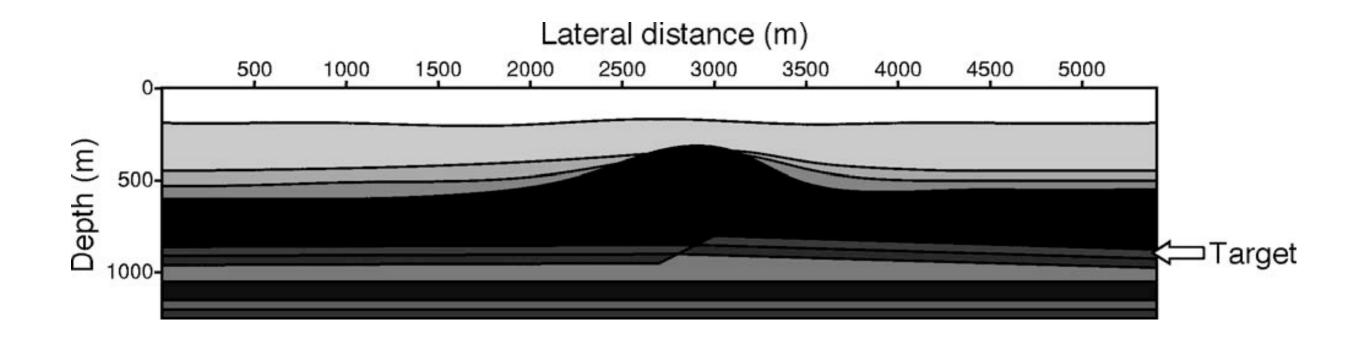


Synthetic-data example

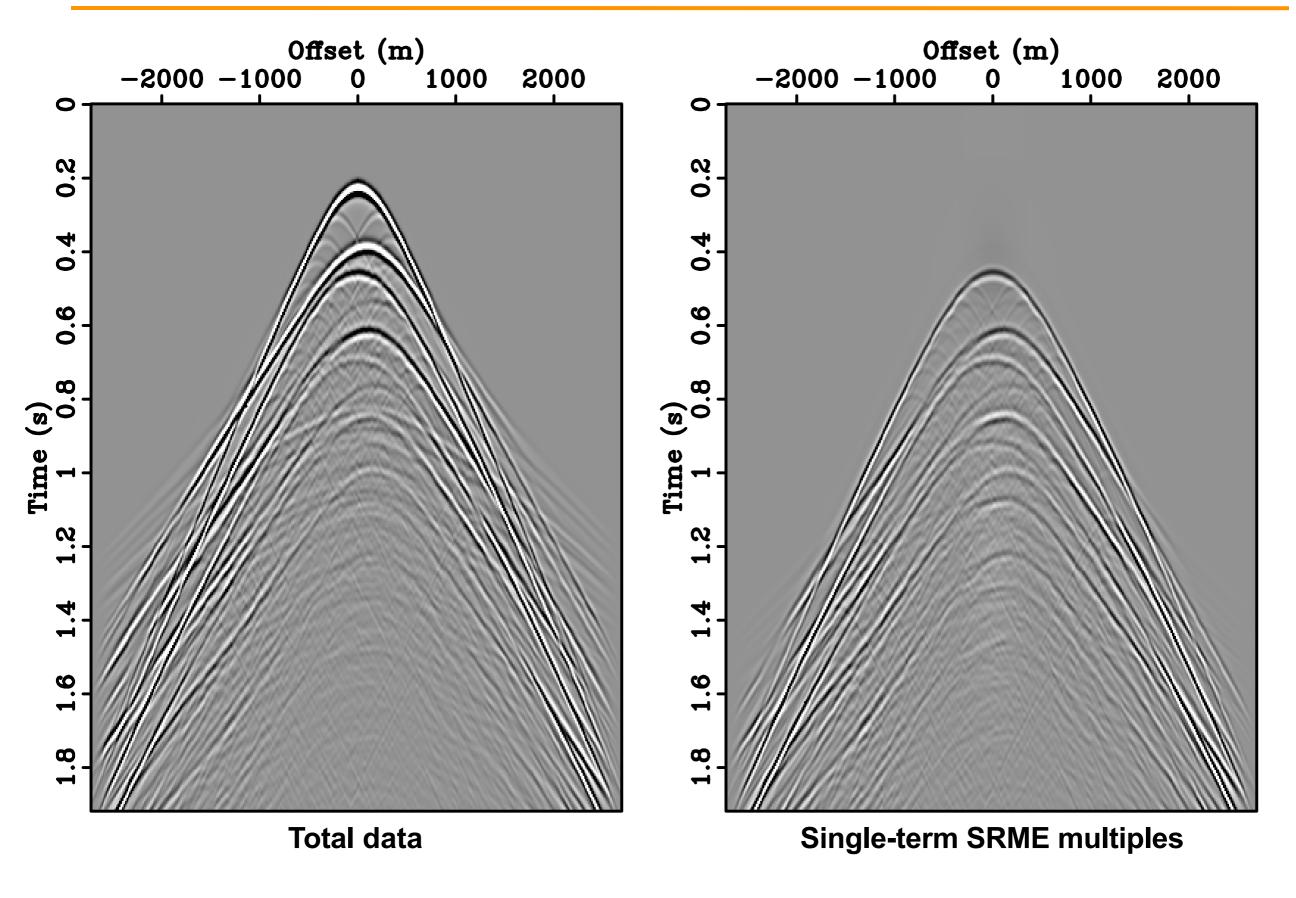


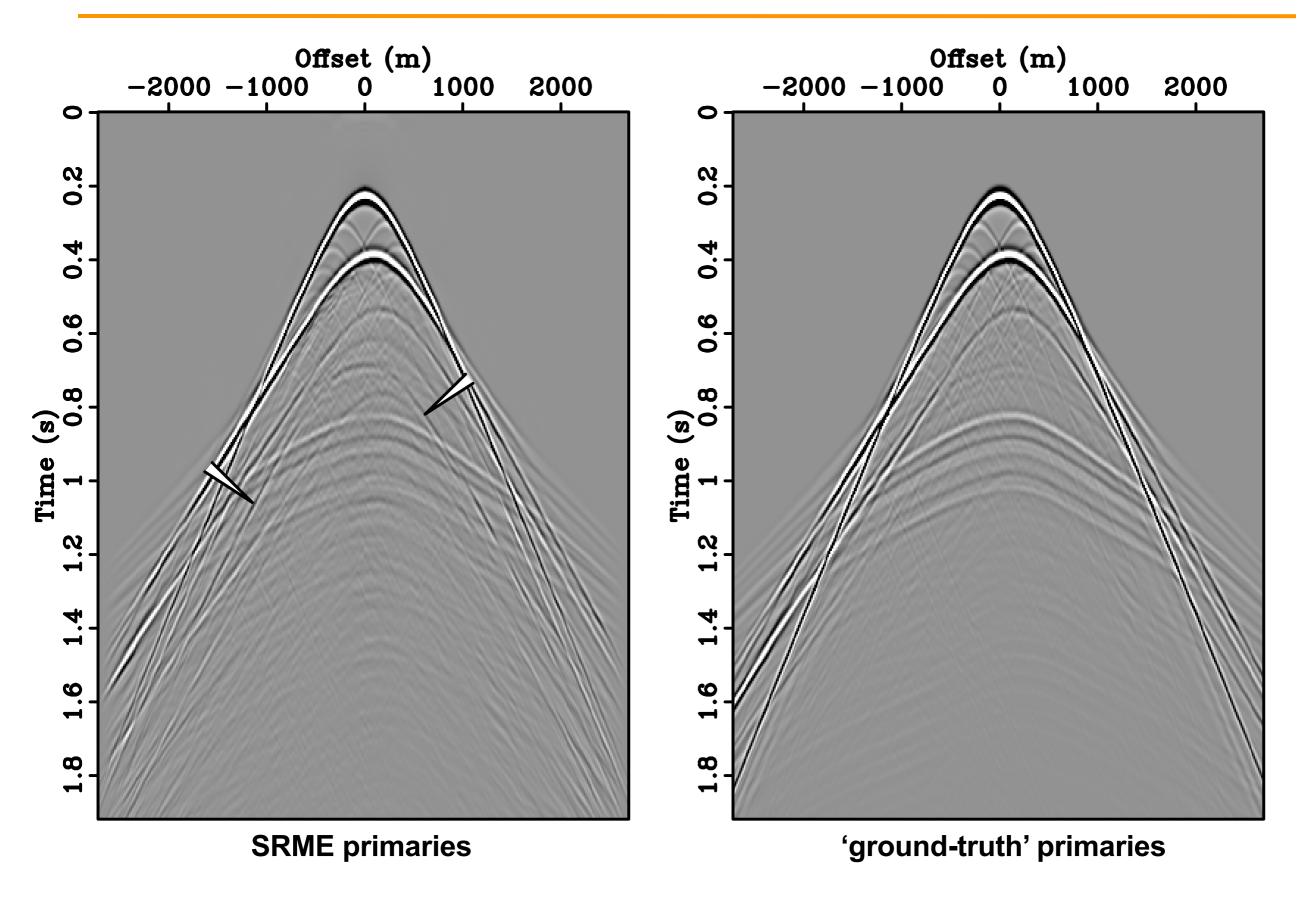


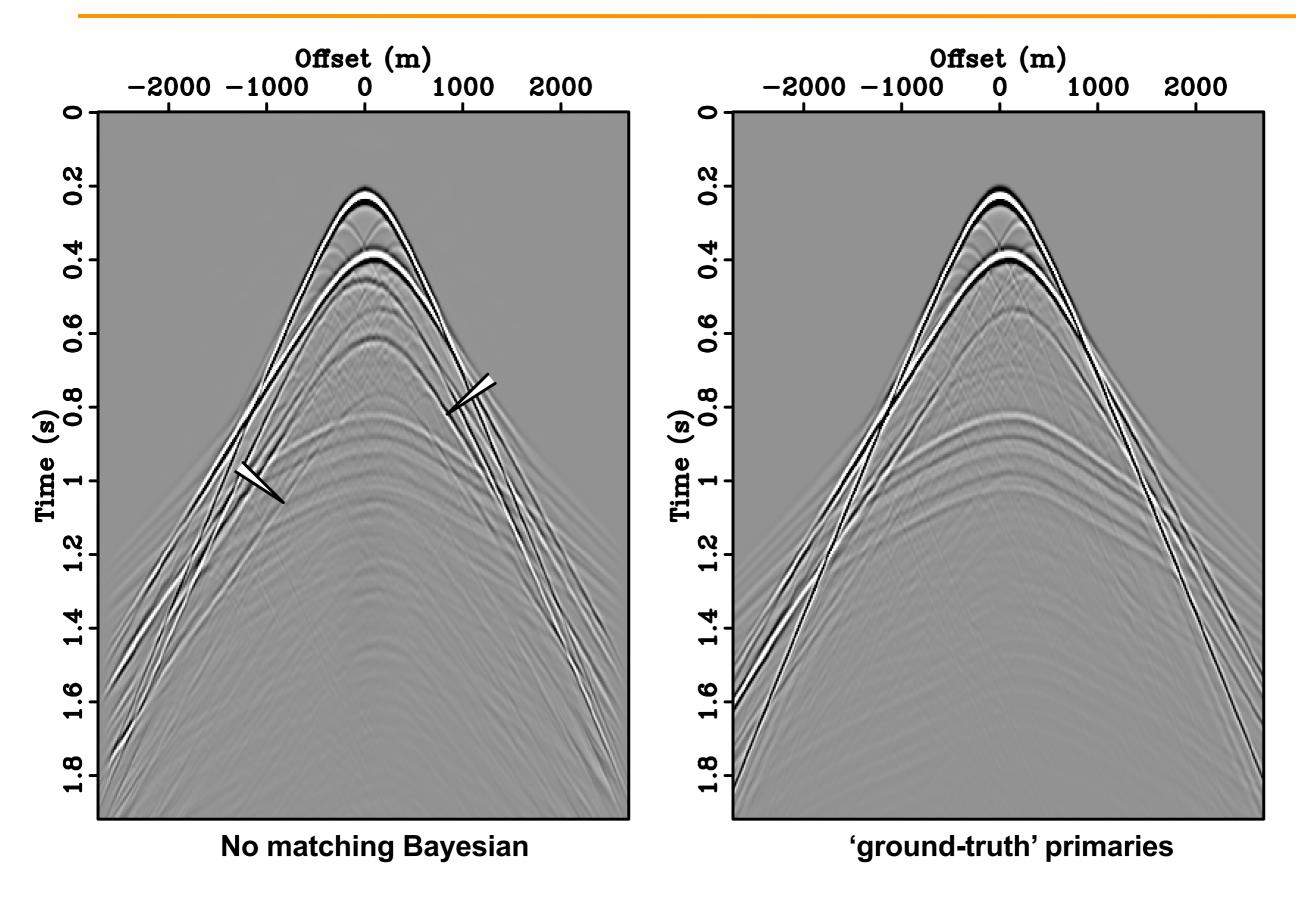
SEG Las Vegas, November 9-14

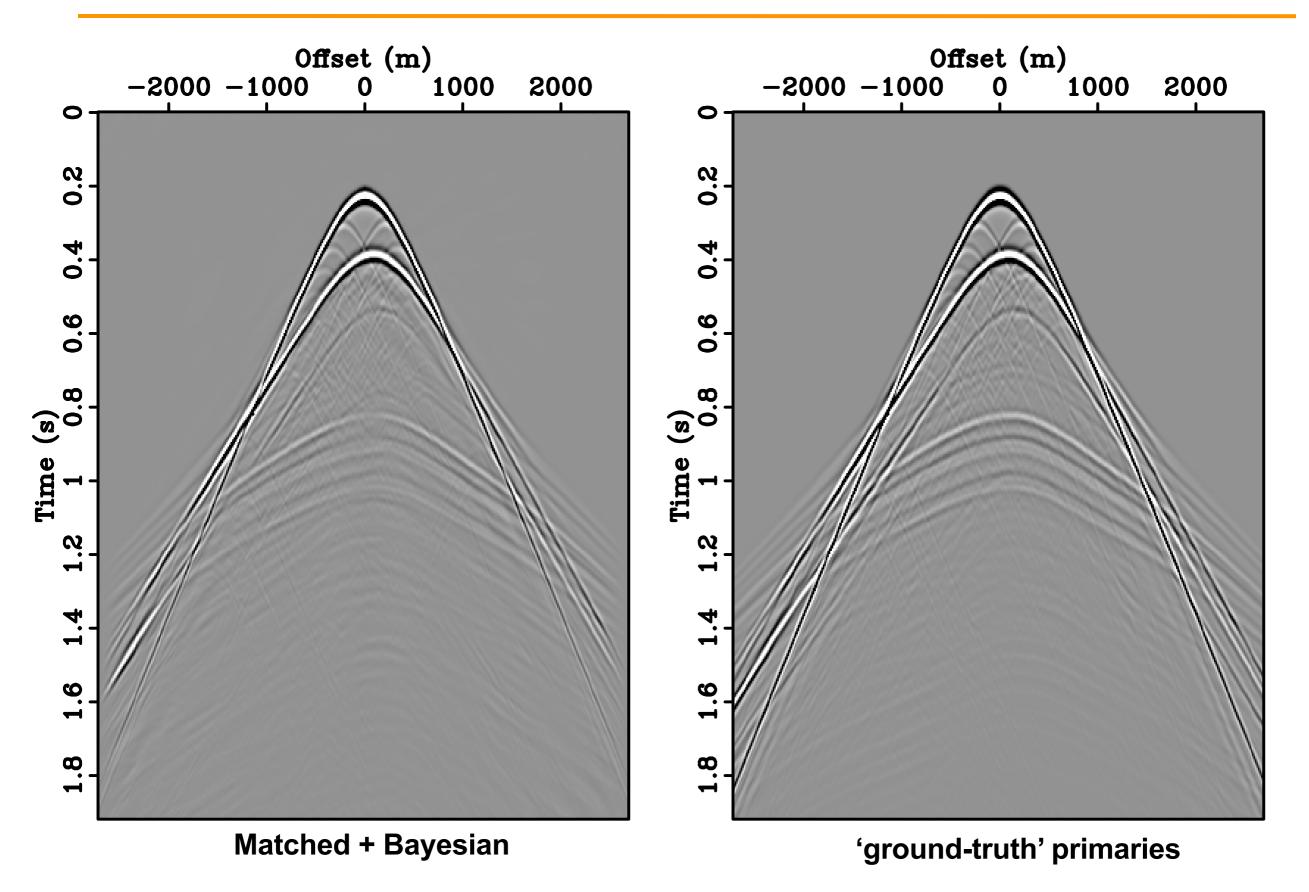


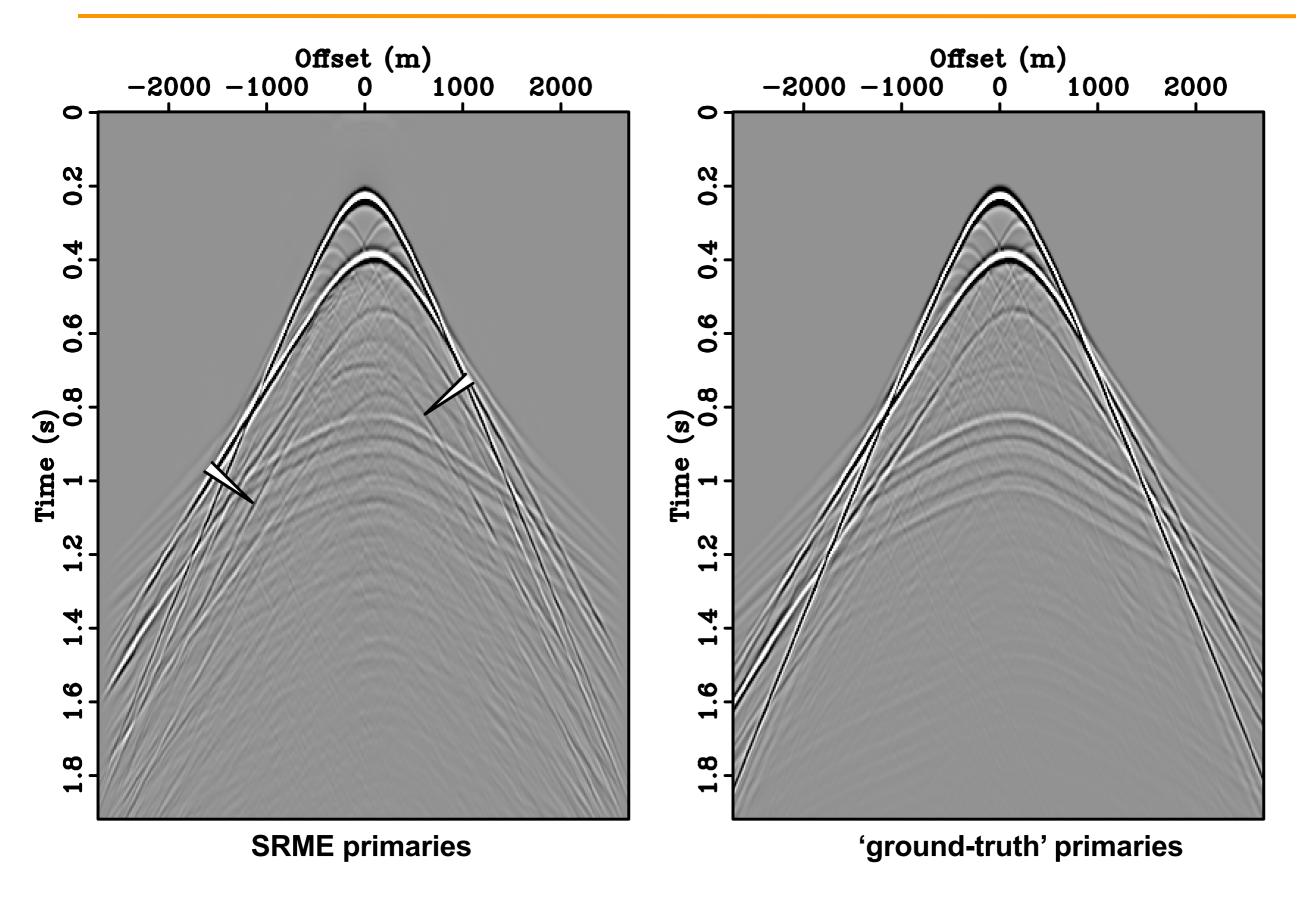
Velocity model used in the synthetic data examples

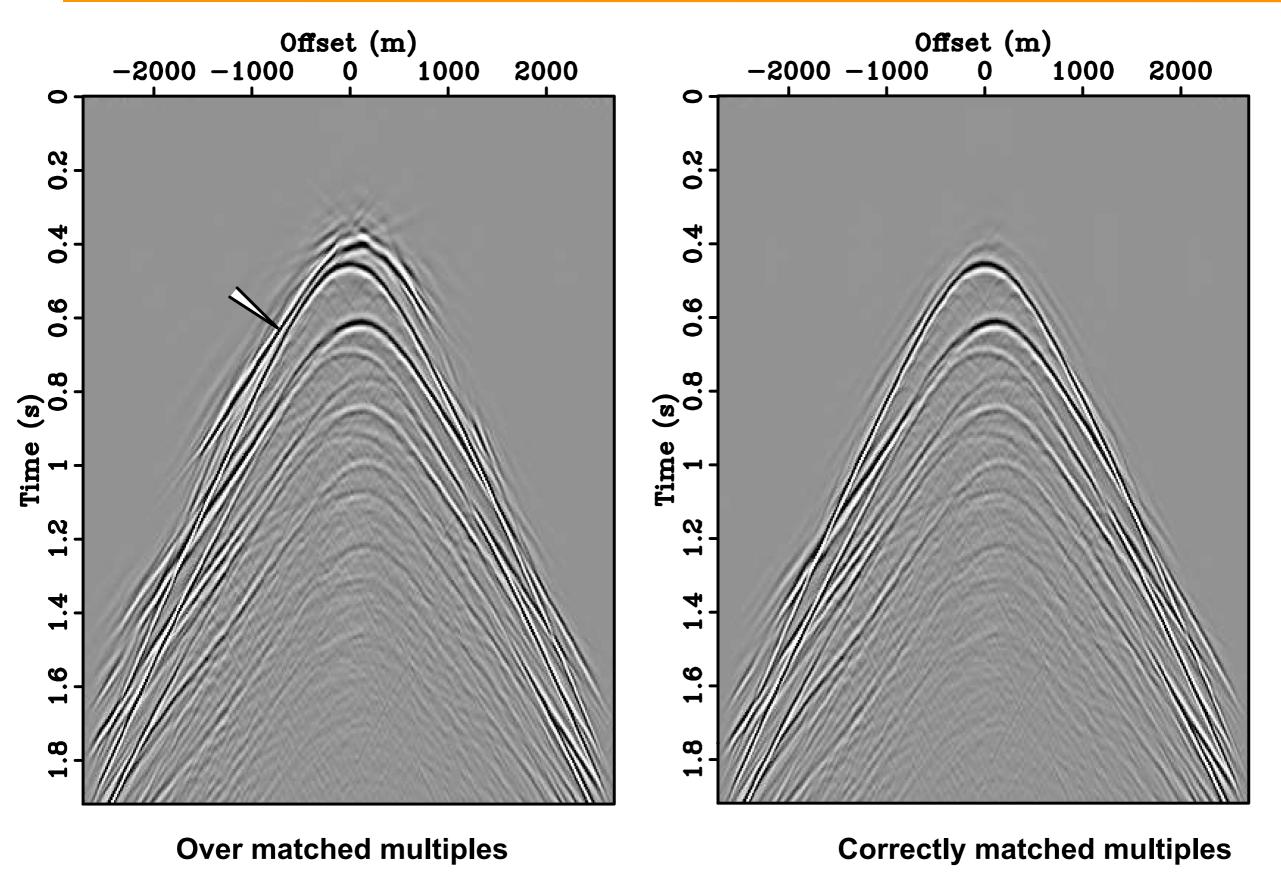


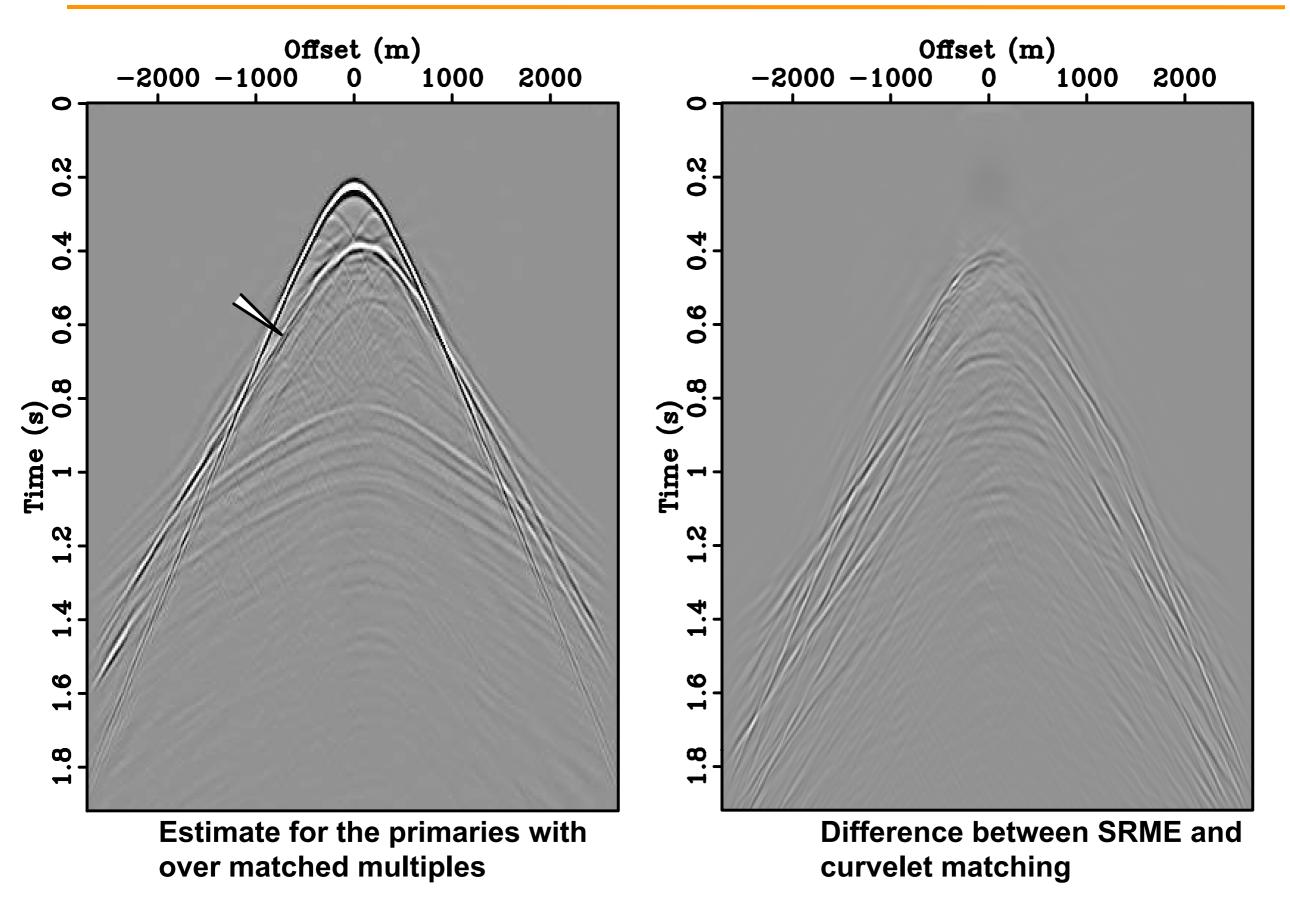












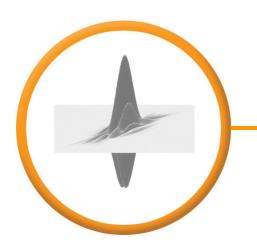
SNRs

• Comparison with "ground truth"

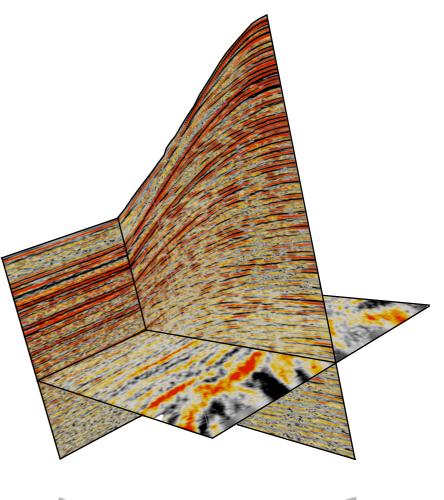
SRME	9.82		
Bayesian separation	7.25		

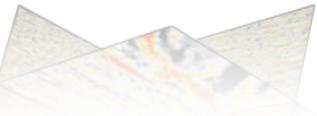
Curvele- 11.22 domain matching & Bayesuan

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

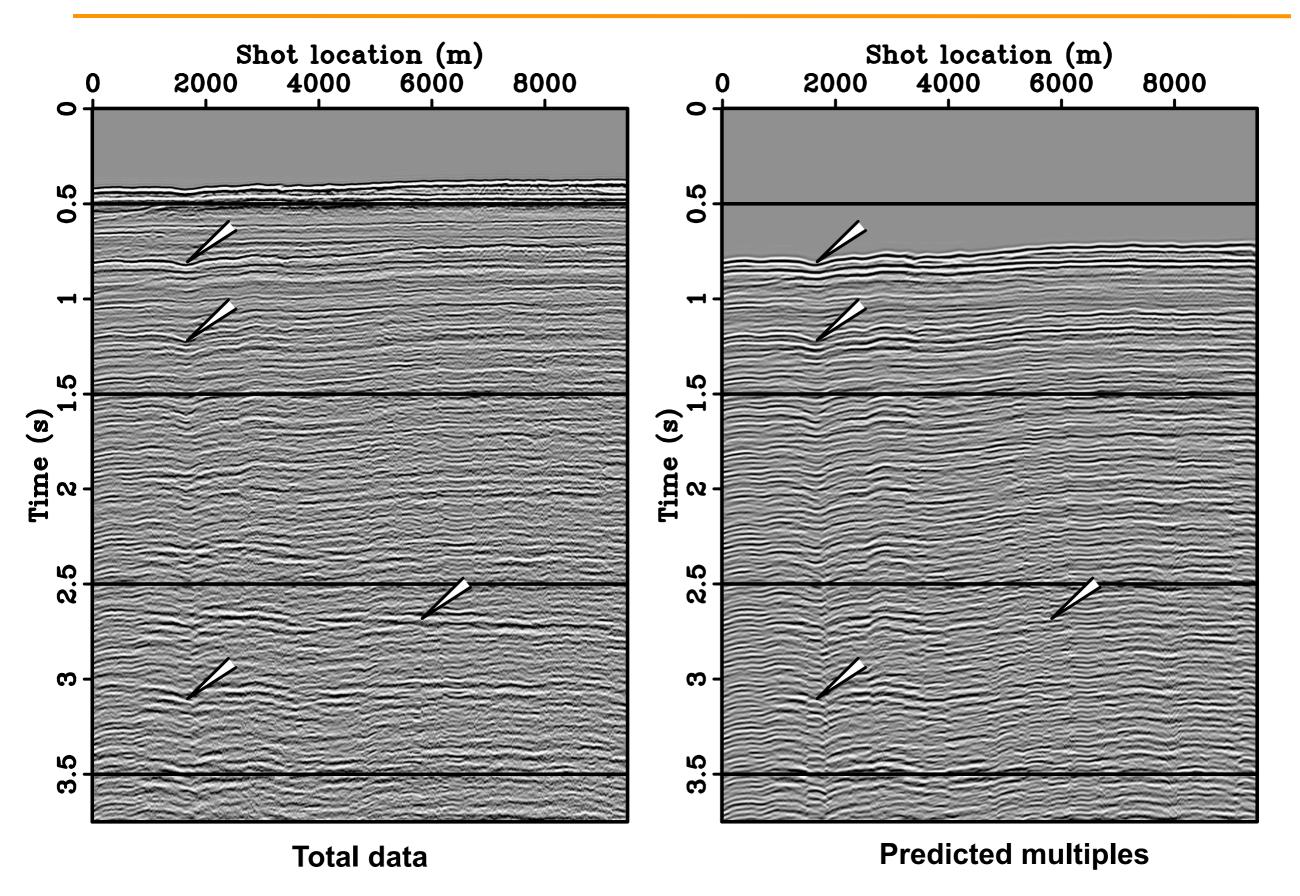


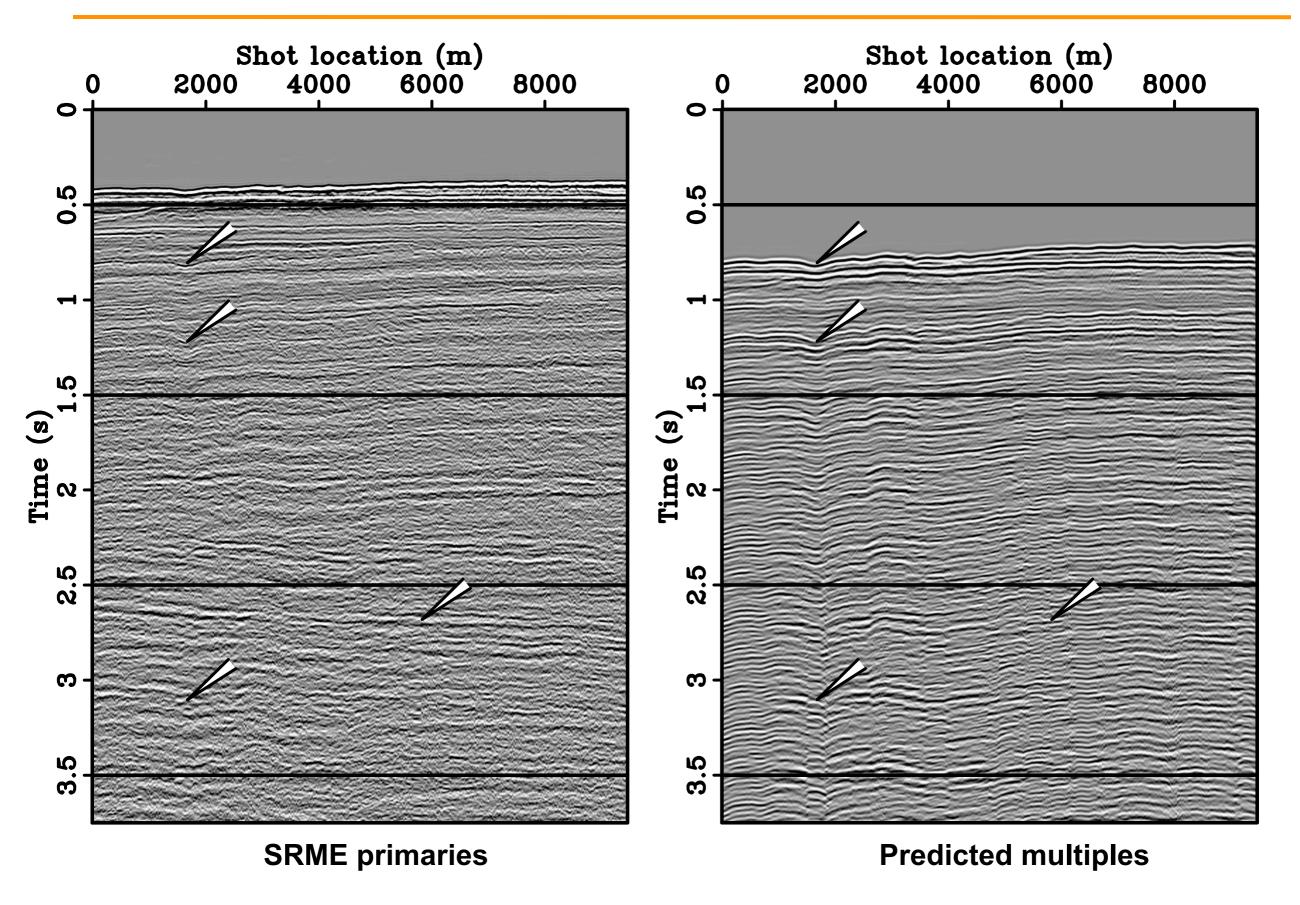
Real-data example

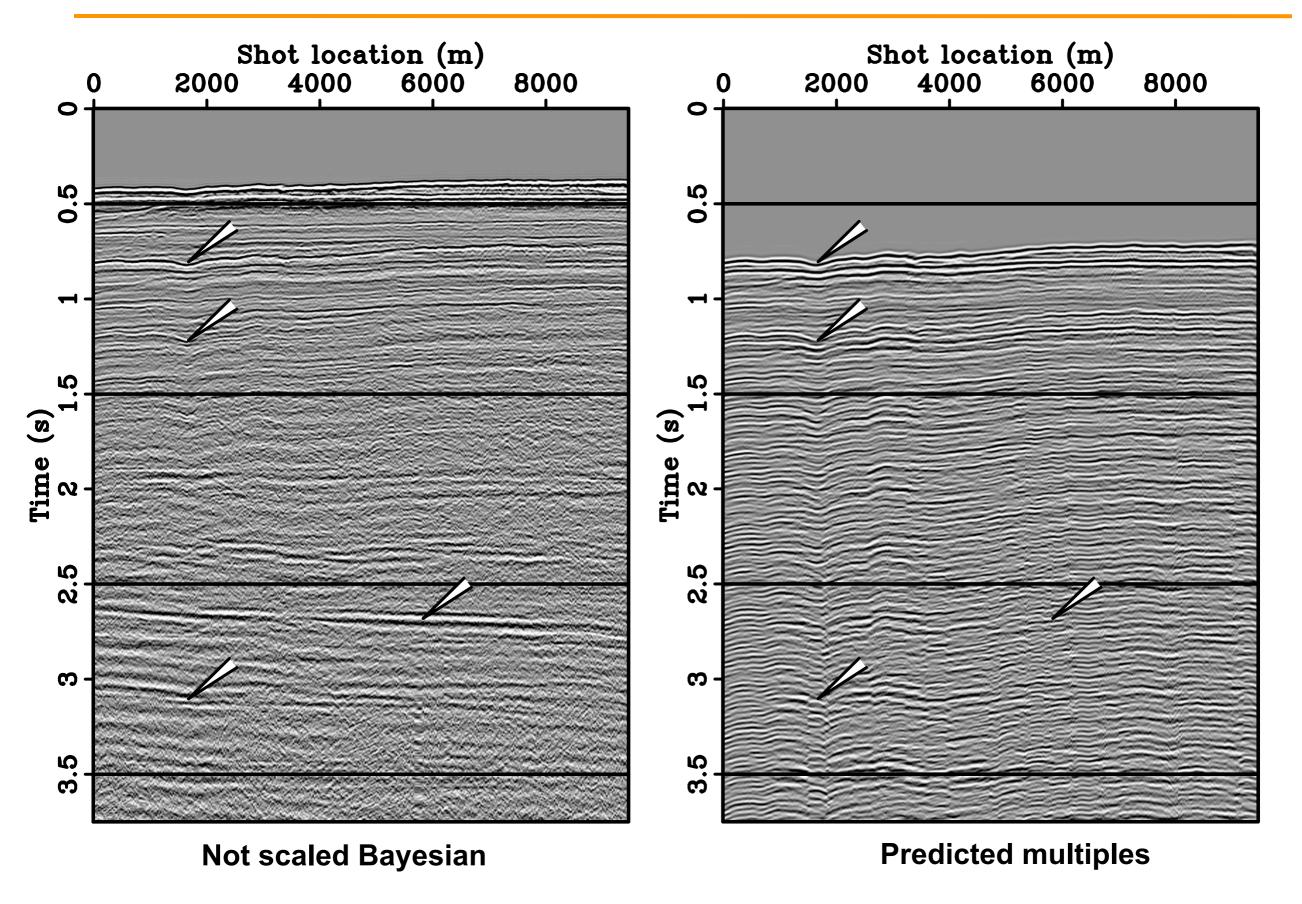


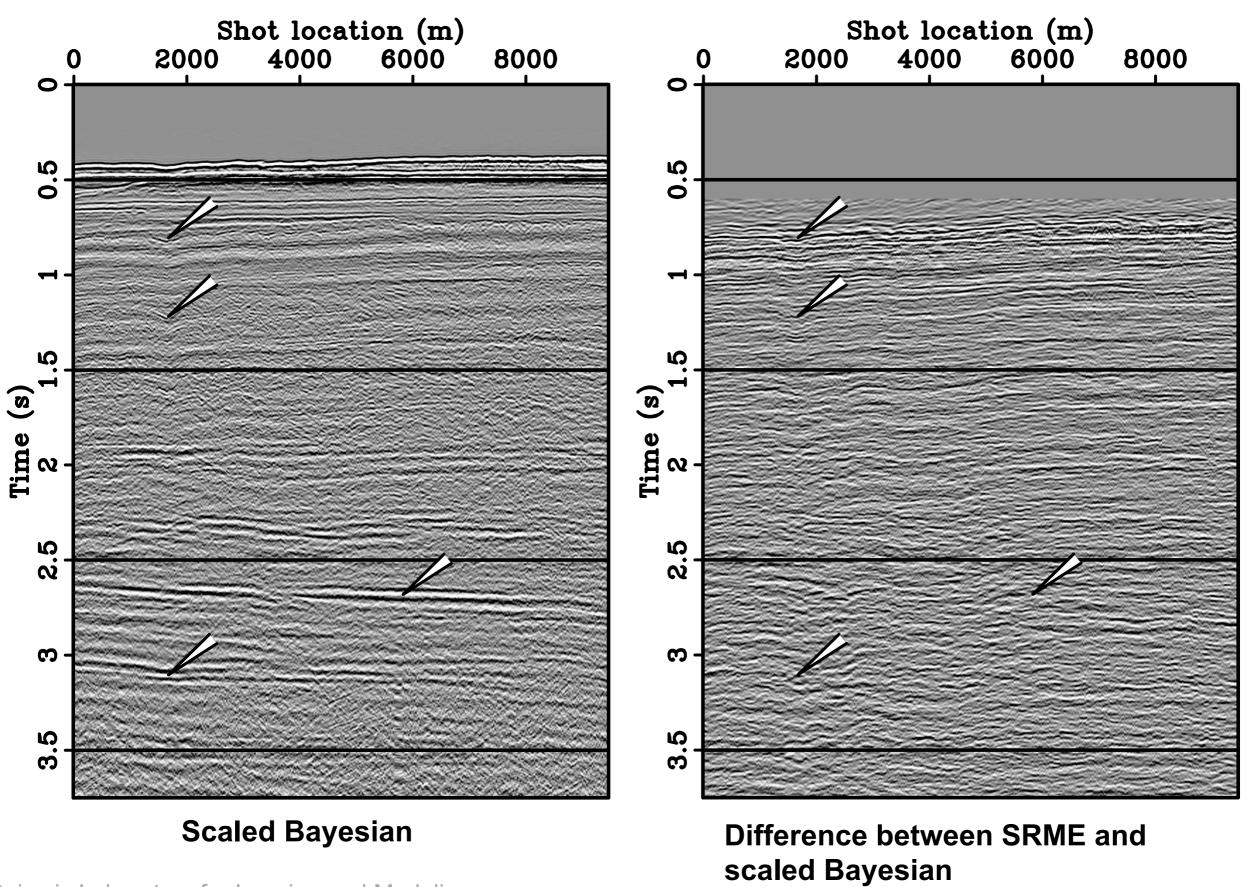


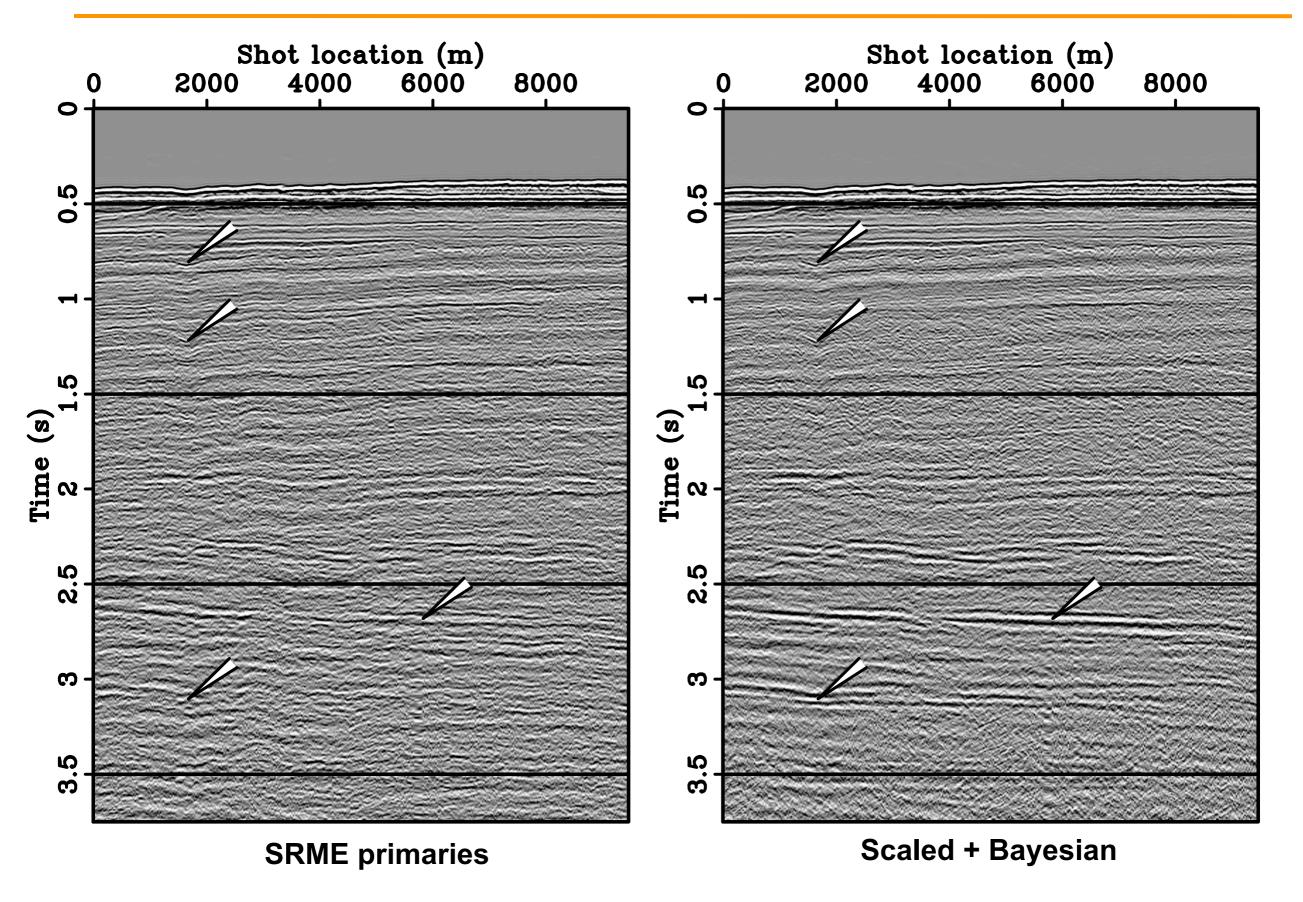
SEG Las Vegas, November 9-14

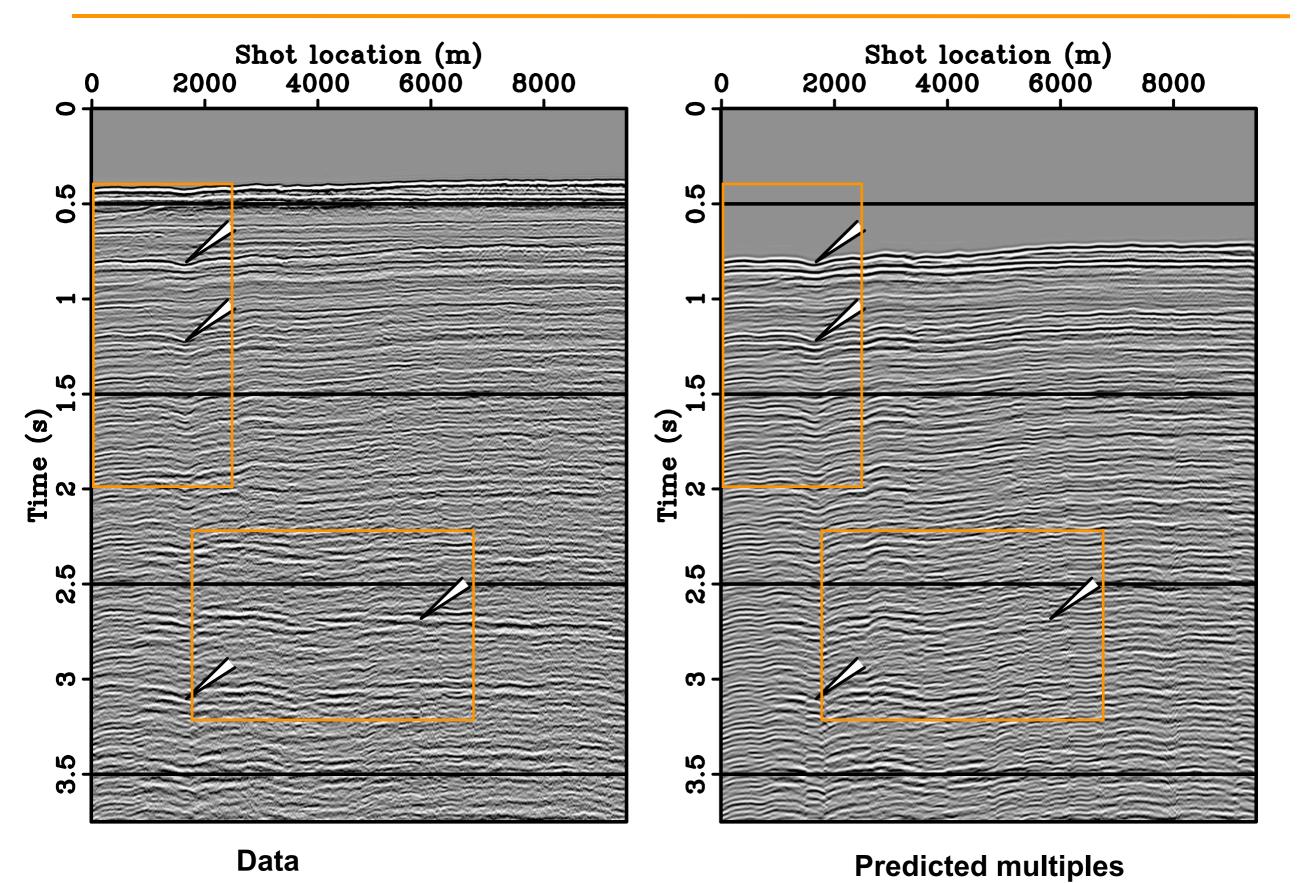


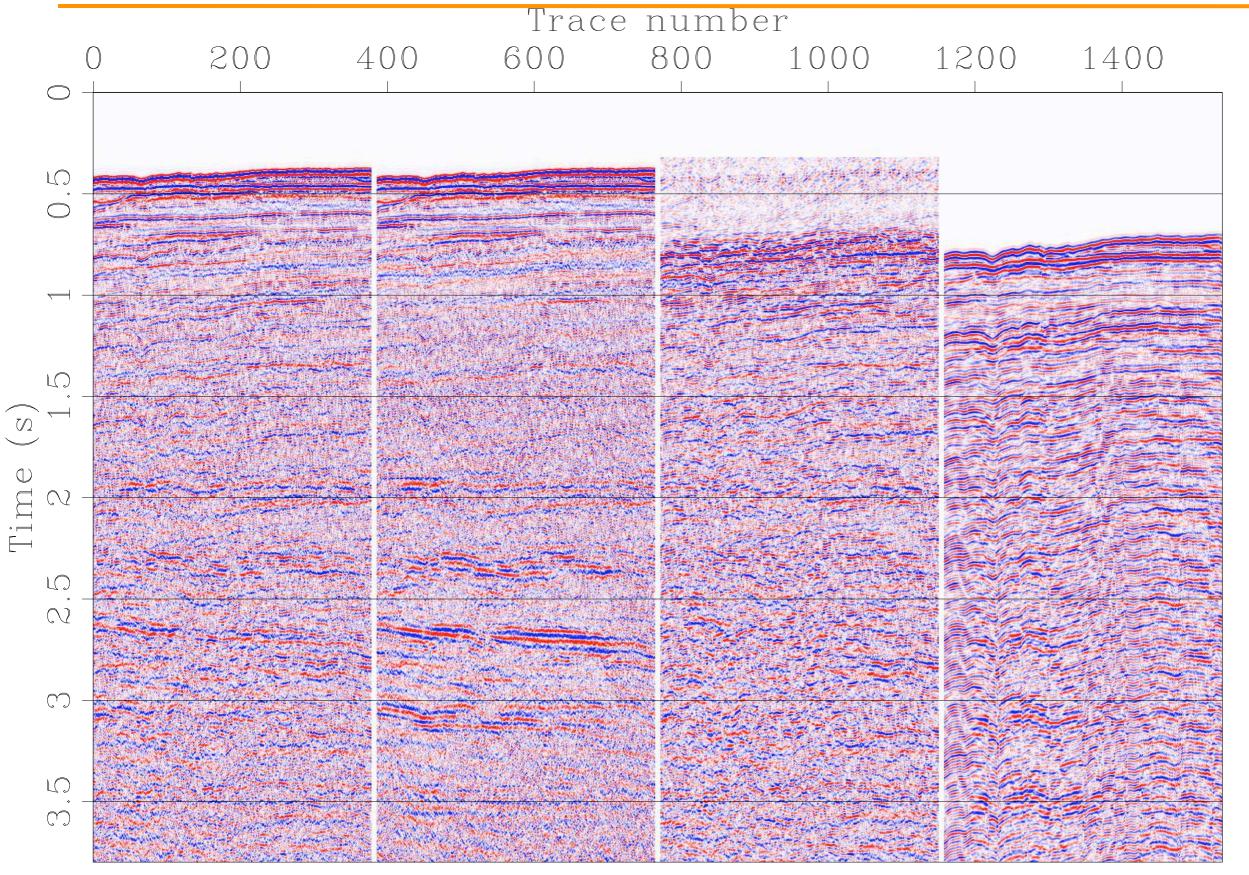












SRME Scaled+Bayesian Seismic Laboratory for Imaging and Modeling

Difference

Predicted multiples

Overview approaches

Prediction errors	Kinematic	Amplitude	Phase rotations	Overfitting
Soft thresholding	Minor (curvelet support)	Minor	Minor	Major
Elementwise matched filtering	Moderate	Moderate	Moderate	Minor
Global matching	Minor (curvelet support)	Large (smooth)	Minor	Minor
Bayes	Minor (curvelet support)	Moderate	Minor	Minor
Global matching + Bayes	Minor (curvelet support)	Large (smooth)	Minor	Small

Conclusions

- Adaptive curvelet-domain matched filter significantly improves results
 - reflected in SNR
 - "eye-ball" norm
- Results nearly as good as iterative SRME
- Appropriate for real data for which iterative SRME is often not an option.
- Future plans:
 - more case studies
 - extension to 3-D
 - extension to off-diagonal contributions to "scaling"

Acknowledgments

The authors of CurveLab (Demanet, Ying, Candes, Donoho)

Dr. Verschuur for his synthetic data and the estimates for the primaries.

The SLIM team Sean Ross Ross, Cody Brown and Henryk Modzeleweski for developing SLIMPy: operator overloading in python

These results were created with Madagascar and SPARCO.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of F.J.H. This research was carried out as part of the SINBAD project with support, secured through ITF (the Industry Technology Facilitator), from the following organizations: BG Group, BP, Chevron, ExxonMobil and Shell.

Further reading

Herrmann, F. J., Moghaddam, P. and Stolk, C. Sparsity- and continuity-promoting seismic image recovery with curvelet frames.
App. & Comp. Harm. Analys., Vol. 24, No. 2, pp. 150-173, 2008.
Herrmann, F. J., Wang, D and Verschuur, D. J. Adaptive curvelet-domain primary-multiple separation. Geophysics, Vol 73, No. 3, pp. A17-A21, 2008.