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Motivation

! Transform-domain matched-filtering forms the basis of
– adaptive subtraction during surface-related multiple elimination [Verschuur ‘97]

– idem during surface-wave removal with interferometry [Vasconcelos ’08, 
Wapenaar ‘08]

– scaling during migration “preconditioning” based on migrated-remigrated image 
matching [Symes ’08,F.J.H. et. al, ‘08]

! Fourier-based matching
– accounts for amplitude-spectra mismatches & global kinematic errors

– fails for errors that vary spatially & as function of the local dip

! Spatial & windowed Fourier matching 
– run risk of over fitting (loss of primary energy)

! Curvelet-domain matching in phase space
– corrects for amplitude errors that vary smoothly as a function of position & dip
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History

! Fourier-based matched filtering was built on the premise that 

! Estimated during a global least-squares estimation procedure

–          Fourier-space sharpening operator that promotes smoothness

– for each offset separately

! Estimated primaries:

mtrue ≈ Fmpredicted with F = FHdiag
(
f̂
)
F

f̂ = arg min
ĝ

1
2
‖d̂− ĝm̂predicted‖2

2 + λ‖LF ĝ‖2
2

LF

p̃ = d− Fmpredicted
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History cont’d

! Recently proposed alternatives  [F.J.H ‘04-’08, Neelamani ‘08]

! Use global Fourier-domain matching to correct the multiples, i.e.,

! Use these matched predictions as a template for a curvelet-domain 
separation by thresholding [F.J.H ‘04], i.e.,

– element-by-element separation

– assumes correct amplitudes

– assumes no kinematic errors

m̃matched = Fmpredicted

p̃ = CHSw (Cd) with w ∝ |Cm̃matched|

Sw (x) = sign(x) max (0, |x|− w)
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History cont’d

! Soft thresholding special case of weighted one-norm optimization 
[F.J.H et.al ‘07]

! and a special case of Neelamani’s [‘08] elementwise approach

{
x̃ = arg minx ‖Ax− d‖2 + ‖x‖1,w
p̃ = SH x̃

min
aµ, φµ

|{Ccd}µ − aµ exp(jφµ){Ccm̃matched}µ|

subject to amin
µ ≤ aµ ≤ amax

µ ,

φmin
µ ≤ φµ ≤ φmax

µ ,

for µ ∈M
for φmin / max

µ = 0
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Our focus

! Adaptively correct for amplitude errors
– vary smoothly as a function of position and dip

– e.g., spherical divergence, incomplete data & other surface-related effects...

! Model driven
– assume a forward model between predicted and true multiples

– introduce a regularized inversion method based on this forward model

! Exploit curvelets
– their phase-space partitioning

– their ability to approximate zero-order Pseudodifferential operators [F.J.H et.al. ‘08]

– their sparsity [Wang et. al. ‘08] (during the non-adaptive Bayesian separation)
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The curvelet transform
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Representations for seismic data

! curvelet transform
– multiscale: tiling of the FK domain into 

dyadic coronae

– multidirectional: coronae sub-
partitioned into angular wedges, # of 
angles doubles every other scale

– anisotropic: parabolic scaling principle

– local

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

k1

k2
angular

wedge
2j

2j/2
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2D discrete curvelets
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Curvelet tiling & seismic data

Curvelet tiling superimposed on the FK domain
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Curvelet processing workflow (forward transform C)

t-x domain data

f-k domain data

f-k transform whole data

cover the f-k domain with dyadic tiling
to determine appropriate curvelet  transform

window each tile segment in the f-k domain

Inverse f-k transform each tile segment window

tiled curvelet domain data

tiled f-k domain data

(This is the domain in which curvelet operations takes 
place)
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Curvelet tiling & seismic data

Frequency bands

Angular wedges
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Curvelet processing workflow (inverse transform CT)

t-x domain data

f-k transform each curvelet tile

Inverse f-k transform whole data

tiled curvelet domain data

tiled f-k domain data
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Real data frequency bands
             example
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Decomposition in
  angular wedges

6th scale image

Single frequency band
      angular wedges

6
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3D discrete curvelets
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Figure 3. 3D frequency tilings. (a) Schematic plot for the frequency tiling of continuous 3D curvelets. (b) Discrete

frequency tiling. ω1, ω2 and ω3 are three axes of the frequency cube. Smooth frequency window eUj,! extracts the
frequency content near the shaded wedge which has center slope (1, α!, β!).

This frame of discrete curvelets has all the required properties of the continuous curvelet transform in Section
2. Figure 2(b) shows one typical curvelet in the spatial domain. To summarize, the algorithm of the 2D discrete
curvelet transform is as follows:

1. Apply the 2D FFT and obtain Fourier samples f̂(ω1,ω2), −n/2 ≤ ω1,ω2 < n/2.

2. For each scale j and angle ", form the product Ũj,!(ω1,ω2)f̂(ω1,ω2).

3. Wrap this product around the origin and obtain W(Ũj,!f̂)(ω1,ω2), where the range for ω1 and ω2 is now
−L1,j,!/2 ≤ ω1 < L1,j,!/2 and −L2,j,!/2 ≤ ω2 < L2,j,!/2. For j = j0 and je, no wrapping is required.

4. Apply a L1,j,!×L2,j,! inverse 2D FFT to each W(Ũj,!f̂), hence collecting the discrete coefficients cD(j, ", k).

4. 3D DISCRETE CURVELET TRANSFORM
The 3D curvelet transform is expected to preserve the properties of the 2D transform. Most importantly, the
frequency support of a 3D curvelet shall be localized near a wedge which follows the parabolic scaling property.
One can prove that this implies that the 3D curvelet frame is a sparse basis for representing functions with surface-
like singularities (which is of codimension one in 3D) but otherwise smooth. For the continuous transform, we
window the frequency content as follows. The radial window smoothly extracts the frequency near the dyadic
corona {2j−1 ≤ r ≤ 2j+1}, this is the same as the radial windowing used in 2D. For each scale j, the unit sphere
S2 which represents all the directions in R3 is partitioned into O(2j/2 · 2j/2) = O(2j) smooth angular windows,
each of which has a disk-like support with radius O(2−j/2), and the squares of which form a partition of unity
on S2 (see Figure 3(a)).

Like the 2D discrete transform, the 3D discrete curvelet transform takes as input a 3D Cartesian grid of the
form f(n1, n2, n3), 0 ≤ n1, n2, n3 < n, and outputs a collection of coefficients cD(j, l, k) defined by

cD(j, ", k) :=
∑

n1,n2,n3

f(n1, n2, n3) ϕD
j,!,k(n1, n2, n3)

where j, " ∈ Z and k = (k1, k2, k3).
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Curvelet-domain matched filter
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The forward model

! Our curvelet-domain matched filtering is built on the premise that

! We assume that
– there are NO kinematic and phase errors

– global conservative Fourier-domain matching removed the “wavelet” => zero-order

– corrections by the symbol b vary smoothly as a function of space and angle

! Approximate the action of B by curvelet-domain scaling
– fast evaluation

– possibility to estimate from data by nonlinear least-squares matching

mtrue ≈ Bm0 with B = FHb(x, k)F

m0 = m̃matched, and B a zero-order ΨDO.
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Diagonalization [F.J.H et. al ‘08]

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15
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Estimation matched filter

! Action of B can be approximated

! Diagonal can be estimated during a global nonlinear least-squares 
estimation procedure [Symes ’08, F.J.H et. al. ‘08]

–          curvelet-domain sharpening operator that promotes smoothness

– guarantees the solution to be positive

mtrue ≈ Bm0 with B ≈ CHdiag (b)C, {b}µ∈M > 0

LC

z̃ = arg minz
1
2
‖d−CT diag

(
Cm0

)
ez‖2

2 + γ‖LCe
z‖2

2

m̃matched = Bm0 with b = ez̃
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Estimation matched filter

Solve the system

Use grandient of                                                

to solve with  this system with limited-memory BFGS [Nocedal ‘89]

[
d
0

]
≈

[
CT diag{Cm0}

γLC

]
ez

y ≈ Gγez

J(z) = 1
2‖y −Gγez‖2

2

gradJ(z) = diag{ez}
[
GT

γ

(
Gγez − y

)]
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Phase-space regularization

Curvelet-domain sharpening operator

– First-order differences in space and angle directions for each scale

– Regularization parameter controls phase-space smoothness

– Limit overfitting

– Assure positivity with nonlinear least-squares ...

! Matched result is used as input of our Bayesian separation method 
[Wang et. al. ‘08]

– based on sparsity promotion & decorrelation of the signal components

– offers control on fidelity multiple prediction

LC =
[
DT

1 DT
2 DT

θ

]T
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Phase-space regularization

East 
quadrants

West 
quadrants

North 
quadrants

South 
quadrants

16 angles/quad

8 angles/quad

x1

x2

θ

Fine 
scales

coarser
scales

D1

D2

Dθ



Seismic Laboratory for Imaging and Modeling

Phase-space regularization

! reduces overfitting

! scaling is positive and reasonable

increasing smoothness
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Phase-space regularization
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Only global wavelet matching no curvelet matching 

Phase-space regularization
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Total data 

Phase-space regularization
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γ = 0.0

Phase-space regularization
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Correct curvelet matching

Phase-space regularization
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Total data 

Phase-space regularization
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SRME-windowed Fourier-matched multiples

Phase-space regularization



D. Wang, R. Saab, O. Yilmaz and F J. Herrmann. 
Bayesian wavefield separation by transform-domain 
sparsity promotion. Geophysics, Vol 73, No. 5, A33-
A38, 2008.
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Bayesian separation



Curvelet-based Bayesian separation

Forward model: [Saab et. al ‘07, Wang et.al ‘07, ‘08]

curvelet coefficients of multiples

curvelet coefficients of primaries

where

inverse  curvelet transform

(total data)

(predicted multiples)

(predicted primaries)

x1

x2

b = s1 + s2 + n

b2 = Ax2 + n2

b1 = Ax1 + n1

A



λ1,2 and are control parametersη

Curvelet-based Bayesian separation

Can be solved by iterative soft thresholding.

where

predicted multiples 

inverse discrete curvelet transforms

Involves the solution of the following nonlinear problem:

b2

A

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

s̃1,2 estimated primaries(1)and multiples(2) 



where                                       is the elementwise soft-
thresholding operator, i.e.,

Tuµ(vµ) := vµ

|vµ| · max(0, |vµ|−| uµ|)

Curvelet-based Bayesian separation

Given initial estimates of       and      , the        iteration of the 
algorithm proceeds as follows 

x0
1 x0

2 nth

xn+1
1 = Tλ1w1

2η

[
AT b2 −AT Axn

2 + AT b1 −AT Axn
1 + xn

1

]

xn+1
2 = T λ2w2

2(1+η)

[
AT b2 −AT Axn

2 + xn
2 +

η

η + 1
(
AT b1 −AT Axn

1

)]

Tu : R|M| !→ R|M|



Curvelet-based Bayesian separation

Parametrization:

Limiting case:

Prediction confidence parameter

Expected surface wave sparsity

Expected reflector sparsity

η →∞ Total lack of confidence => block-relaxation 
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Workflow

input data

conservative 
Fourier matching

curvelet-domain 
matching

Bayesian 
separation

mpredicted = Pp (multi-D convolution)

m0 = Fmpredicted with F = FHdiag
(
f̂
)
F

with B = CT diag
(
ez

)
Cm0

≈ FHb(x, k)Fm0

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

b2 = Bm0
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Synthetic-data example



Seismic Laboratory for Imaging and Modeling

Data are modeled in a fixed-spread configuration, with sources and
receivers positioned between x = 0 and x = 5400 m, with a step size
of 15 m. This results in a prestack data set of 361 ! 361 traces. For
this example, the data matrix P is far from Toeplitz !see Figure
A-2b"; hence, the least-squares inverse of "P was computed with the
aid of equations 8b and 8c. Note that each column of matrix "P rep-

resents one frequency component of a shot record with 361 traces.
To make the example more realistic, the band-limited version of a
measured air-gun signature with a visible bubble was used for the
source wavelet !see Figure 9". This information is contained in the
source matrix S. Figure 10 displays three shot records. The source
locations are at x = 750 m, x = 1500 m, and x = 2250 m, respec-
tively, the 2250-m value being located close to the top of the salt

Figure 6. Multiple removal for the data in Figure 4a. !a" Input data
with multiples. !b" Focal transform of input data, using the primary
estimate of SRME1. !c" SRME2 output in the focal domain by adap-
tive subtraction in x–t. !d" Input data in #− p. !e" Focal transform of
input data in the #− p domain. !e" SRME2 output in the focal domain
by adaptive subtraction in #− p.

Figure 7. Multiple removal for the data in Figure 4a. !a" Modeled pri-
maries. !b" Primaries obtained using three iterations of SRME1
+ SRME2. !c" Difference between !a" and !b". Note the very small
subtraction leakage compared to Figure 5f.

Figure 8. Subsurface model that contains a high-velocity salt layer
that overlies the target area with a fault structure.

Figure 9. Band-limited version of a measured air-gun signature that
was used in the data simulation. !a" Time-domain representation. !b"
Amplitude spectrum.

Figure 10. Three shot records — including all types of multiples —
that were modeled in the subsurface model of Figure 8 and using the
air-gun wavelet of Figure 9. Note the artificial reflection that comes
from the bubble !see the arrows".

SI214 Berkhout and Verschuur

Velocity model used in the synthetic data examples

Synthetic-data example
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Total data Single-term SRME multiples

Synthetic-data example
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SRME primaries ‘ground-truth’ primaries

Synthetic-data example
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No matching Bayesian

Synthetic-data example

‘ground-truth’ primaries
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Matched + Bayesian

Synthetic-data example

‘ground-truth’ primaries
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SRME primaries

Synthetic-data example

‘ground-truth’ primaries
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Over matched multiples Correctly matched multiples

Synthetic-data example
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Difference between SRME and 
curvelet matching 

Estimate for the primaries with 
over matched multiples

Synthetic-data example
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SNRs

! Comparison with “ground truth”

SRME 9.82

Bayesian
separation

7.25

Curvele-
domain 
matching & 
Bayesuan

11.22
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Real-data example
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Total data Predicted multiples

Real-data example
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SRME primaries Predicted multiples

Real-data example
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Not scaled Bayesian Predicted multiples

Real-data example
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Difference between SRME and 
scaled Bayesian 

Scaled Bayesian

Real-data example
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SRME primaries Scaled + Bayesian

Real-data example
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Predicted multiplesData

Real-data example
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SRME Scaled+Bayesian Difference Predicted multiples

Real-data example
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Overview approaches

Prediction 
errors

Kinematic Amplitude Phase 
rotations

Overfitting

Soft 
thresholding

Minor 
(curvelet support)

Minor Minor Major

Elementwise 
matched 
filtering

Moderate Moderate Moderate Minor

Global 
matching

Minor 
(curvelet support)

Large
(smooth)

Minor Minor

Bayes Minor 
(curvelet support)

Moderate Minor Minor

Global 
matching + 
Bayes

Minor 
(curvelet support)

Large
(smooth)

Minor Small
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Conclusions

! Adaptive curvelet-domain matched filter significantly improves 
results

– reflected in SNR

– “eye-ball” norm

! Results nearly as good as iterative SRME

! Appropriate for real data for which iterative SRME is often not an 
option.

! Future plans:
– more case studies

– extension to 3-D

– extension to off-diagonal contributions to “scaling”
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