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SUMMARY

Matching seismic wavefields and images lies at the heart of
many pre-/post-processing steps part of seismic imaging—
whether one is matching predicted wavefield components,
such as multiples, to the actual to-be-separated wavefield com-
ponents present in the data or whether one is aiming to re-
store migration amplitudes by scaling, using an image-to-
remigrated-image matching procedure to calculate the scaling
coefficients. The success of these wavefield matching proce-
dures depends on our ability to (i) control possible overfitting,
which may lead to accidental removal of energy or to inaccu-
rate image-amplitude corrections, (ii) handle data or images
with nonunique dips, and (iii) apply subsequent wavefield sep-
arations or migraton amplitude corrections stably. In this pa-
per, we show that the curvelet transform allows us to address
all these issues by imposing smoothness in phase space, by us-
ing their capability to handle conflicting dips, and by leverag-
ing their ability to represent seismic data and images sparsely.
This latter property renders curvelet-domain sparsity promo-
tion an effective prior.

INTRODUCTION

Matched filtering for the purpose of matching the amplitudes
of wavefields prior subtraction has been an integral part of
the seismic data processor’s toolbox (see e.g. Verschuur et al.,
1992, where matched-filtering is used within Surface-Related
Multiple Elimination, SRME). The recent advent of scaling
methods for the restoration of migration amplitudes through
image-to-remigrated-image matching (see e.g. Guitton, 2004;
Herrmann et al., 2008a; Symes, 2008) represent another in-
stance of matched filtering.

Even though matched-filtering procedures have been applied
successfully for cases where the data sets differ by only a sin-
gle short convolutional filter, extensions of this framework to
situations where the differences vary non stationarily has been
more problematic. In this paper, we propose a method cor-
recting for these nonstationary effects by making the follow-
ing assumptions: (i) the stationary difference is removed by a
global matching procedure, which corresponds to removal of
the source/receiver directivity during primary-multiple separa-
tion (Herrmann et al., 2008b) or to making the migration oper-
ator zero-order during migration (see Herrmann et al., 2008a,
and another contribution by the authors to the proceedings of
this conference), and (ii) the remaining non-stationary differ-
ence is assumed to vary smoothly in phase space—i.e., the am-
plitude mismatches are assumed to vary smoothly as a function
of position and dip along coherent wavefronts.

THE FORWARD MODEL

Under above assumptions, the nonstationary ’scaling’ can be
represented mathematically by a zero-order pseudo-differential
operator (ΨDO), whose action on an arbitrary d-dimensional

function is given by`
B f

´
(x) =

Z
x∈Rd

e jk·xb(x,k) f̂ (k)dk (1)

with k the wavenumber vector and b(x,k) a space- and spatial-
frequency dependent filter, known as the symbol. For our ap-
plication, this operator acts either on shot records or on com-
mon-offset panels (d = 2) and applies a location, frequency,
and dip-dependent scaling. After discretization, this operator
models the mismatch by applying a matrix-vector multiplica-
tion —i.e.,

g = BBBf, (2)

where BBB is a full positive-definite matrix, implementing the
action of the pseudo-differential operator, and f and g the two
to be matched discretized wavefields.

Image-to-remigrated-image matching: During seismic im-
age-amplitude recovery, the above forward model is directly
related to the fact that the demigration-migration operator can
in the high-frequency limit be modeled by a ΨDO (Herrmann
et al., 2008a). In that case, the vectors f and g, represent the
reference vector (say the migrated image) and the remigrated
image (modeled and subsequently migrated reference image).
For smooth velocity models, the symbol of this ΨDO is known
to vary smoothly as function of space and spatial frequency.

Multiple-to-multiple matching: As part of matched filter-
ing during primary-multiple separation, the above forward mo-
del is used to describe possible deviations in the amplitudes
between the predicted multiples (represented by the vector, f)
and the multiples present in the observed data (the vector g).
Even though there is less of a direct link between the actual
physics and this forward model, successful application of this
approximation, where the differences between these two wave-
field components are assumed to vary smoothly in phase space,
has shown excellent results (Herrmann et al., 2008b).

APPROXIMATE FORWARD MODEL

After the appropriate global compensation for the stationary
contribution of the matched filter (by e.g. a global matching
procedure), the ΨDO in Equation 2 can be considered zero or-
der and hence permits the following diagonal curvelet-domain
decomposition (Herrmann et al., 2008a,b),

g ≈CCCT diag{w}CCCf, {w}µ∈M > 0, (3)

with CCC the 2D discrete curvelet transform (see e.g. Candes
et al., 2006) and w the curvelet-domain scaling vector and M
the index set of curvelet coefficients. Since we are using the
curvelet transform based on wrapping, which is a tight frame,
we have CCCTCCC = IIId and the transpose, denoted by the symbol
T , equals the pseudo inverse.

In this approximate forward model, for which precise theo-
retical error estimates exist (Herrmann et al., 2008a), the two
wavefields (or imaged wavefields) are matched by a simple



curvelet-domain scaling. This curvelet-domain scaling applies
a location, scale and dip dependent amplitude correction. Since
the matrix BBB is positive-definite, the entries in the scaling vec-
tor, w, are positive. This approximate formulation of the for-
ward model is the basis for our curvelet-domain matched filter.

CURVELET-DOMAIN MATCHED FILTERING

Equation 3 lends itself to an inversion for the unknown scaling
vector. As both wavefields are known, our formulation min-
imizes the least-squares mismatch between the two of them.
The following issues complicate the estimation of the scaling
vector: (i) the undeterminedness of the forward model due to
the redundancy of the curvelet transform—i.e., CCCCCCT is rank
deficient; (ii) the risk of overfitting the data, which leads to
unwanted artifacts such as incorrect amplitude corrections or
inadvertent matching of primary energy, and (iii) the positiv-
ity requirement for the scaling vector. To address issues (i-ii),
the following augmented system of equations is formed that
relates the unknown scaling vector w to the augmented data
vector, d— i.e., »

g
0

–
=

»
CCCT diag{CCCf̆}

γLLL

–
w (4)

or d = FFFγ w. The scaling vector is found by minimizing the
functional

Jγ (z) =
1
2
‖d−FFFγ ez‖2

2, (5)

where the substitution of w = ez (with the exponentiation taken
elementwise) guarantees positivity (issue (iii)) of the solution
(Vogel, 2002). This formulation seeks a solution fitting the
vector, g, with a smoothness constraint imposed by the sharp-
ening operator LLL, which for each scale penalize fluctuations
amongst neighboring curvelet coefficients in the space and an-
gle directions (see Herrmann et al., 2008a, for a detailed de-
scription). The amount of smoothing is controlled by the pa-
rameter γ . For increasing γ , there is more smoothness at the
expense of overfitting the data (e.g., erroneously fitting the pri-
maries). For a specific γ , the penalty functional in Equation 5
is minimized with respect to the vector z with the limited-
memory BFGS (Nocedal and Wright, 1999) with the gradient

gradJ(z) = diag{ez}
ˆ
FFFT

γ

`
FFFγ ez −d

´˜
. (6)

Below, we discuss two applications of this curvelet-domain
matched filter, each exploiting curvelet domain sparsity.

STABLE APPLICATION OF OUR MATCHED FILTER

We now show how to apply scaling stably. In the first exam-
ple, we apply curvelet-domain scaling to correct for the normal
operator of migration on a reflectivity model with conflicting
dips. In the second example, we demonstrate how the matched
filter improves Bayesian primary-multiple separation.

Seismic amplitude recovery: After migration, seismic im-
ages can be represented as y = ΨΨΨm with y the migrated data,
m the unknown reflectivity, and ΨΨΨ the demigration-migration
operator. As long as this operator is zero order, the action of
the normal operator can be replace by a curvelet-domain scal-
ing. This suggests the following decomposition

y = ΨΨΨm ≈ AAAAAAT m (7)

with AAA = CCCT diag{w1/2}. The scaling coefficients are esti-
mated with Equation 4 for f = r, g = ΨΨΨr and r, a reference
vector close enough to the true image m.

The decomposition in Equation 7 suggests the following for-
ward model, y ≈ AAAx0 with x0 a sparse set of curvelet coeffi-
cients. Following Herrmann et al. (2008a), we can now recover
the seimic image by solving

Pε :

(ex = minx ‖x‖1 subject to ‖y−AAAx‖2 ≤ εem =
`
AAAT ´† ex

to within some user-defined tolerance level. To illustrate, the
performance of our matched-filtering and subsequent ampli-
tude recovery procedure, we consider a reflectivity consisting
of a single cross. In this stylized example, we are particularly
interested in showing the importance of imposing smoothness
on the curvelet-scaling vector. As shown in Figure 1, the es-
timated scaling vector without regularization overfits the ref-
erence vector resulting in the emergence of a ’conflicting dip’
(cf. Figure 1 (a) and (b) top row). In the case of no smoothing,
an erroneous contribution emerges in the scales which can be
attributed to overfitting. When smoothing is applied, this ar-
tifact is removed successfully, yielding good recovery for the
amplitudes in Figure 2.

Bayesian primary-multiple separation: Ideally, the scaled
multiples yielded by the above nonlinear least-squares prob-
lem, ez = argminz J(z), could be subtracted from the total data
directly. Unfortunately, the presence of noise in seismic imag-
ing (see e.g. Herrmann et al., 2008a) and phase and kinematic
errors in primary-multiple separation may interfere, rendering
a separation based on the residual alone (as in SRME) ineffec-
tive. Following recent work by R. Saab and Herrmann (2007);
Wang et al. (2008), we separate the primaries and multiples by
solving the following sparsity-promoting program

{ex1, ex2} = argmin
x1,x2

λ1‖x1‖1,w1
+λ2‖x2‖1,w2

(8)

+ ‖AAAx2 −b2‖2
2 +η‖AAA(x1 +x2)−b‖2

2, (9)

where the vectors {ex1, ex2} represent the estimates for the pri-
maries and multiples, respectively, and where AAA is the curvelet
synthesis matrix, {w1, w2} positive weights, and {b, b2}, the
total data and the multiple prediction. Finally, the λ ’s and
η are control parameters determining the sparsity of the so-
lution and fits to the total data and multiple prediction. In
this Bayesian formulation, both the multiple prediction and the
weights depend on the curvelet-domain matching procedure.

FIELD DATA EXAMPLE

We test the above-described adaptive separation algorithm by
examining real North Sea field dataset. The main purpose
of this test is to study the improvement by curvelet-domain
matching compared to results obtained with and estimate for
the multiples yielded by optimized one-term SRME computed
with a windowed-matched filter. This case is relevant for situ-
ations where the data quality does not permit iterative SRME
or where the cost of multiple iterations of SRME is a concern.
In either situation, the predicted multiples will contain ampli-
tude errors, which may give rise to residual multiple energy



and dimmed primaries. We show that the proposed scaling
by curvelet-domain matched filtering improves the estimation
for the primaries as long the curvelet-to-curvelet variations for
this scaling are sufficiently controlled by the smoothness con-
straint. Relaxation of this constraint may leads to overfitting
and hence to inadvertent removal of primary energy.

Figure 3(a) contains the common-offset section (at offset 200m)
that we selected from a North Sea field dataset. Estimated pri-
maries according to conventional SRME are plotted in Fig-
ure 3(b). Results where `2-matched filtering in the shot do-
main (Verschuur and Berkhout, 1997) is replaced by Bayesian
thresholding (R. Saab and Herrmann, 2007) in the offset do-
main, are presented for a single offset in Figure 3(c), without
scaling, and in Figure 3(d) with scaling. The scaled result is
calculated for γ = 0.3. Juxtaposing the standard SRME and the
curvelet-based results shows a removal of high-frequency clut-
ter, which is in agreement with earlier findings reported in the
literature. Moreover, primaries in the deeper part of the section
(e.g. near the lower-two arrows in each plot) are much better
preserved, compared to the standard-SRME result. Removal
of the strong residual multiples in the shallow part, e.g. the
first- and second-order water bottom multiples indicated by the
arrows around 0.75 and 1.20s, is particularly exciting. Due
to the unbalanced amplitudes of the predicted multiples, both
standard SRME and non-adaptive Bayesian thresholding are
unable to eliminate these events. Our adaptive method, how-
ever, successfully removes these events by virtue of the curvelet-
domain scaling. Compared to non-adaptive thresholding, resid-
ual multiples are better suppressed, while our adaptive scheme
also leads to at least similar, but often even better, overall con-
tinuity and amplitude preservation of the estimated primaries.
For example, improvements are visible in the lower-left cor-
ner of the sections (between offsets [0− 2000]m and times
[3.0−3.6]s), where low-frequency multiple residuals are bet-
ter suppressed after curvelet-domain matched filtering (cf. Fig-
ure 3(c) and 3(d)), without deterioration of the primary energy.
Finally, observe the improved recovery of primary energy at
the lower arrow in Figure3(d), compared to the primary in Fig-
ure 3(c).

DISCUSSION AND CONCLUSIONS

In this paper, we presented a comprehensive method to com-
pute the coefficients of a curvelet-domain matched filter and
to apply the estimated filter through sparsity promotion. The
stylized example with the conflicting dips underlined the im-
portance of imposing phase-space smoothness while the field
data example showed the merit of our method in the context of
adaptive primary-multiple separation.
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Figure 1: Curvelet-domain representation of the scaling vec-
tor obtained without (a), and with a smoothing constraint, (b).
The different subimages represent the curvelet coefficients at
different scales (coarsest in the center) and different angles.
The location of the wedges roughly corresponds to the angle.
Notice, the overfitting in (a), leading to scaling at erroneous
dips.
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Figure 2: Curvelet-domain amplitude recovery according to
Pε . (a) Original image with conflicting dips. (b) Migrated
image. (c) Restored image.
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Figure 3: Adaptive curvelet-domain primary-multiple separation on real data. (a) Near-offset (200m) section for the total data plot-
ted with automatic-gain control. (b) Estimate for the primaries, yielded by optimized one-term SRME computed with a windowed-
matched filter. (c) Estimate for the primaries, computed by Bayesian iterative thresholding with a threshold defined by t = |CCCb̆2|
with b2 the predicted multiples. (d) The same as (c) but now for the scaled (for γ = 0.3) threshold, i.e., t = |diag{ew}CCCb2| withew = exp(ez). (e) The difference between SRME and matched filter. (f) Difference between the total data and the matched predicted
primaries. Notice the improvement for the scaled estimate for the primaries, compared to the primaries yielded by SRME in (b)
and by the Bayesian separation without scaling in (c).
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