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ABSTRACT

Geophysical inverse problems typically involve a trade off between data misfit
and some prior. Pareto curves trace the optimal trade off between these two
competing aims. These curves are commonly used in problems with two-norm
priors where they are plotted on a log-log scale and are known as L-curves. For
other priors, such as the sparsity-promoting one norm, Pareto curves remain rela-
tively unexplored. First, we show how these curves provide an objective criterion
to gauge how robust one-norm solvers are when they are limited by a maximum
number of matrix-vector products that they can perform. Second, we use Pareto
curves and their properties to define and compute one-norm compressibilities. We
argue this notion is key to understand one-norm regularized inversion. Third, we
illustrate the correlation between the one-norm compressibility and the perfor-
mance of Fourier and curvelet reconstructions with sparsity promoting inversion.

INTRODUCTION

Many inverse problems in geophysics are ill posed (Parker, 1994)—their solutions
are not unique or are acutely sensitive to changes in the data. To solve this kind of
problem stably, additional information must be introduced. This technique is called
regularization (see, e.g., Phillips, 1962; Tikhonov, 1963).

Specifically, when the solution of an ill-posed problem is known to be (almost)
sparse, Oldenburg et al. (1983) and others have observed that a good approximation
to the solution can be obtained by using one-norm regularization to promote sparsity.
More recently, results in information theory have breathed new life into the idea of
promoting sparsity to regularize ill-posed inverse problems. These results establish
that, under certain conditions, the sparsest solution of a (severely) underdetermined
linear system can be exactly recovered by seeking the minimum one-norm solution
(Candès et al., 2006; Donoho, 2006; Rauhut, 2007). This has led to tremendous
activity in the newly established field of compressed sensing and a resurgence of one-
norm regularized inversion.

In this publication, we demonstrate how the Pareto curve can be used to make
quantitative assessments regarding the performance of one-norm regularized, transform-
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based recovery from incomplete data. First, we outline the general problem formula-
tion and associated convex optimization problems. Second, we give a brief overview
of the Pareto curve and its properties. Third, we discuss two possible applications
of this curve to gain further insights in one-norm regularized inverse problems and
make quantitative assessments regarding their success.

PROBLEM STATEMENT

Consider the following underdetermined system of linear equations

y = Ax0 + n, (1)

where the n-vectors y and n represent observations and additive noise, respectively.
The n-by-N matrix A is the modeling operator that links the model x0 to the noise-
free data given by y − n. We assume that N � n and that x0 has few nonzero or
significant entries. We use the terms “model” and “observations” in a broad sense, so
that many linear geophysical problems can be cast in the form shown in Equation 1.

Because x0 is assumed to be (almost) sparse, one can promote sparsity as a prior
via one-norm regularization to overcome the singular nature of A when estimating
x0 from y. The challenge is to balance at best the data misfit, defined as ‖y−Ax‖2,
with the regularization term, ‖x‖1. One of the following three convex optimization
approaches

QPλ : min
x

1
2
‖y −Ax‖2

2 + λ‖x‖1,

BPσ : min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ σ,

LSτ : min
x

1
2
‖y −Ax‖2

2 s.t. ‖x‖1 ≤ τ,

can be used to this effect.

QPλ closely relates to quadratic programming (QP) and is probably the most
commonly used in geophysics. However, it is generally not clear how to choose the
Lagrange multiplier λ ≥ 0 such that the solution of QPλ is, in some sense, optimal.
The basis pursuit (BP) denoise problem (Chen et al., 1998) is often preferred when an
estimate of the noise σ ≥ 0 in the data is available. The LASSO problem (Tibshirani,
1996) is of lesser interest because an estimate of the one norm of the solution τ ≥ 0
is typically not available for geophysical problems.

To gain insights into one-norm regularized inversion, we propose to look at the
Pareto curve. In the context of the two-norm—i.e., Tikhonov—regularization, the
Pareto curve is commonly used where it is plotted on a log-log scale and is known as
L-curve (Lawson and Hanson, 1974).
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PARETO CURVE

The Pareto curve traces, for a specific pair of A and y, the optimal tradeoff in
the space spanned by the data misfit and the one-norm regularization term. Figure
1 gives a schematic illustration. Point 1© clarifies the connection between the three
parameters of QPλ, BPσ, and LSτ (see van den Berg and Friedlander, 2008; Hennen-
fent et al., 2008, for more details). The coordinates of a point on the Pareto curve
are (τ, σ) and the slope of the tangent at this point is −λ. The end points of the
curve—points 2© and 3©—are two special cases. When τ = 0, the solution of LSτ is
x = 0 (point 2©). It coincides with the solution of BPσ with σ = ‖y‖2. When σ = 0,
the solution of BPσ (point 3©) coincides with the solutions of LSτ , where τ = τ

BP0
,

and QPλ, where λ = 0+—i.e., λ infinitely close to zero from above. These relations
are formalized as follows in van den Berg and Friedlander (2008):

Result 1. The Pareto curve i) is convex and decreasing, ii) is continuously differen-
tiable, and iii) has a negative slope λ.

‖y
−

A
x
‖ 2

‖x‖1

τ

σ

Pareto curve
2

1

3

(τ, σ)

(τ
BP0

, 0)

(0, ‖y‖2)

unreachable

area

slope: − λ

Figure 1: Schematic illustration of a Pareto curve. Point 1© exposes the connection
between the three parameters of QPλ, BPσ, and LSτ . Point 2© corresponds to the
trivial solution, i.e., x = 0, and point 3© to a solution of BPσ with σ = 0.

For large-scale geophysical applications, it is not practical (or even feasible) to
sample the entire Pareto curve. However, its regularity, as implied by Result 1,
means that it is possible to obtain a good approximation to the curve with very
few interpolating points, as illustrated by Hennenfent et al. (2008) on a wavefield
reconstruction problem using curvelets (Herrmann and Hennenfent, 2008).
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APPLICATIONS

Comparison of one-norm solvers

To understand the robustness of different one-norm solvers that are limited by a
maximum number of matrix-vector products that they can perform, Hennenfent et al.
(2008) propose to track on a graph the data misfit versus the one norm of successive
iterates for each solver. The Pareto curve serves as a reference and gives a rigorous
yardstick for measuring the quality of the solution path generated by each algorithm.

Figure 2 shows the Pareto curve and the BP0 solution paths of four one-norm
solvers: iterative soft thresholding (IST) introduced by Daubechies et al. (2004), IST
extension to include cooling (ISTc - Figueiredo and Nowak, 2003; Herrmann and
Hennenfent, 2008), the spectral projected-gradient (SPG`1) algorithm introduced by
van den Berg and Friedlander (2008), and iterative re-weighted least-squares (IRLS
- Gersztenkorn et al., 1986), which uses a quadratic approximation to the one-norm
regularization function. The maximum number of iterations is small compared to the
size of the problem and fixed. This roughly equates to using the same number of
matrix-vector products for each solver. The starting vector provided to each solver
is the zero vector, and hence the paths start at (0, ‖y‖2)—point 2© in Figure 1. The
problem considered is a benchmark problem that is typically used in the compressed
sensing literature (Donoho et al., 2006). The matrix A is taken to have Gaussian
independent and identically-distributed entries; a sparse solution x0 is randomly gen-
erated, and the “observations” y are computed according to Equation 1.

Whereas SPG`1 provides a fairly accurate approximation to the BP0 solution,
those computed by IST, ISTc, and IRLS suffer from larger errors. IST solves QP0+ .
Because there is hardly any regularization, IST first works towards minimizing the
data misfit. When the data misfit is sufficiently small, the effect of the one-norm
penalization starts, yielding a change of direction towards the BP0 solution. The
limited number of matrix-vector products terminates the procedure early. The data
misfit at the candidate solution is small but the one norm is completely incorrect.
ISTc solves QPλ for a decreasing sequence λi → 0. The starting vector for QPλi

is the
solution of QPλi−1

, which is by definition on the Pareto curve when each subproblem
is accurately solved. This explains why ISTc so closely follows the curve, at least at
the beginning of the path. Towards the end, ISTc accumulates small errors because
there are not enough iterations to solve each subproblem to sufficient accuracy. IRLS
suffers from similar difficulties.

Compression of seismic energy

Another insightful application of the Pareto curve is when the matrix A is defined
as the synthesis operator of a (redundant) transform, e.g., Fourier or curvelet (Candès
et al., 2005, and references therein) transform. In this case, the Pareto curve measures
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Figure 2: Pareto curve and optimization paths (same, limited number of iterations)
of four solvers for a BP0 problem. The symbols + represent a sampling of the Pareto
curve. The solid (—) line is the solution path of ISTc, the chain (– · –) line the path
of SPGL`1, the dashed (– –) line the path of IST, and the dotted (· · · ) line the path
of IRLS.
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the compressibility, in the one-norm sense, of the data y in a given transform domain.
This can be used to compare different transforms.

In Figure 3, we compare the Fourier transform with the curvelet transform. The
synthesis operators have unit-norm columns. In the first experiment, y is defined as
the real migrated image depicted in Figure 3(a). Figure 3(b) shows the corresponding
Pareto curves approximated with seven interpolating points. In the second experi-
ment, y is defined as the synthetic shot gather depicted in Figure 3(c) and Figure 3(d)
displays the corresponding Pareto curves also approximated with seven interpolating
points.

In both experiments, the curvelet transform compresses better the seismic energy.
The improvement on the Fourier transform is particularly sizable in the case of the
shot gather. Although these observations do not, by themselves, explain the success
of sparsity-promoting formulations using the curvelet transform, they provide a better
justification than the arguments proposed by Candès et al. (2005) and Hennenfent
and Herrmann (2006). These arguments, rooted in the empirical decay rate for the
magnitude-sorted transform coefficients, link a higher rate to a better performance of
one-norm recovery. Whereas this reasoning is viable for non-redundant transforms, it
looses some of its strength for redundant signal expansions, where more coefficients
are needed to approximate the signal. This confronts us with a dilemma because
results using the overcomplete curvelet transform generally show an improvement
over Fourier-based techniques, an observation that would be consistent with increased
sparsity. In this case, an argumentation can be made either by considering decay rates
as a function of the percentage of the total coefficients (Hennenfent and Herrmann,
2006) or by working with a reduced transform-domain coefficient vector to compensate
for the redundancy of the transform.(Candès et al., 2005)

Unfortunately, these explanation artifices are rather unsatisfactory. Therefore we
empirically study whether there exists a link between the one-norm compressibility
and the performance of sparsity-promoting algorithms. The test problem is the re-
construction of an incomplete, noise-free wavefield. The methods considered are the
Fourier reconstruction with sparsity-promoting inversion (FRSI - Zwartjes, 2005) and
its curvelet counterpart (CRSI - Herrmann and Hennenfent, 2008). Both methods are
implemented using SPG`1. The simulated input data (Figure 3(c)) is the shot gather
in Figure 3(c) with randomly-missing traces. Figures 4(b) and 4(c) show the FRSI and
CRSI results, respectively. The corresponding signal-to-noise ratios (SNR) are 9.25
dB and 13.55 dB. Figure 4(d) displays the SPG`1 paths to the BP0 solutions. Note
how these paths behave similarly to the Pareto curves in Figure 3(d). Furthermore,
the offset between the BP0 solutions remains remarkably constant. The restriction
operator used in FRSI and CRSI did not fundamentally change the structure of the
problems.
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(a) (b)

(c) (d)

Figure 3: One-norm compressibility in the Fourier and curvelet domains. (a) Real mi-
grated image and (b) corresponding Pareto curves for both transforms. (c) Synthetic
shot gather and (d) corresponding Pareto curves for both transforms. The symbols
“F” trace Fourier curves, and “C” curvelet curves.
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(a) (b)

(c) (d)

Figure 4: Noise-free wavefield reconstruction using the Fourier or curvelet transform.
(a) Simulated acquired data, (b) FRSI result (SNR = 9.25 dB), (c) CRSI result (SNR
= 13.55 dB), and (d) SPG`1 paths to the BP0 solutions of FRSI (dash line) and CRSI
(solid line).
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CONCLUSIONS

The current resurgence of successful one-norm regularized inverse problems mo-
tivates the need of a better understanding of the inner workings of these problems.
The sheer size of geophysical applications makes this task difficult though. We show
that the Pareto curve, thanks to its properties, is a practical and insightful tool. This
curve serves, for example, as a reference in order to make an informed decision on
how to best truncate the solution process of one-norm solvers and reduce the amount
of computation. The Pareto curve and its properties are also useful in defining and
computing the one-norm compressibility of a signal in a transform domain, as we
illustrate using Fourier and curvelets. Furthermore, we observe that our extended
notion of compressibility can be used to make quantitative assessments regarding
the performance of one-norm regularized, transform-based recovery from incomplete
data. This prospect is particularly exciting and can possibly be leveraged to other
one-norm regularized inversions.
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