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SUMMARY

Iterative soft thresholding of a models wavelet coefficients can
be used to obtain models that are sparse with respect to a
known basis function. We generate sparse models for non-
linear forward operators by applying the soft thresholding op-
erator to the model obtained through a Gauss-Newton itera-
tion and apply the technique in a synthetic 2.5D DC resistivity
crosswell tomographic example.

INTRODUCTION

Given a linear (or nonlinear) mapping G between the model
space m and the data space d

Gm = d (1)

the goal of geophysical inversion is to recover a model (or suite
of models) from some set of observations d. It is often the case
that the inverse problem of equation 1 is ill-posed, and solu-
tions must be regularized. Additionally, the data image d is
usually contaminated by noise. To overcome these difficulties,
the inverse problem is formulated as an optimization problem
in which an estimate mrec of the true model m is obtained by
minimizing the penalty function

φ(m) = φd(m)+ γR(m), (2)

where γ is the Tihkonov-regularization parameter, φd measures
the discrepancy between the observed and predicted measure-
ments and R(m) is the regularization function measuring the
norm, semi-norm or some combination of the model space m.

The form of the regularization functional R(m) effects the char-
acter of the recovered model. Using an `2 measure on the
semi-norm

∫∫
∂

∂x
m ≈Wxm, for example, can result in recon-

structions that exhibit smoothly varying structure. In some
instances it may be advantageous to recover models that ex-
hibit a different type of character, namely piecewise blocky.
There exist various focusing inversion strategies such as gen-
eral measures (Farquharson and Oldenburg 1998), minimum
support (Zhdanov et al. 2006) and total variation (Vogel and
Oman 1998) to achieve this type of structure in an inversion
result.

Here we will use the a priori knowledge that our desired model
is sparse with respect to a known basis function ψ . Daubechies
et al. (2004) show that the solution to the `1 minimization prob-
lem

φ(m) = ‖Gm−d‖2
2 + γ

∑
i

|〈m,ψi〉| (3)

is obtained through soft thresholding the Landweber iteration

mi+1 = Sµ

(
mi +GT(dobs−Gm)

)
(4)

which generates models exhibiting very few, but large coeffi-
cients of the basis function ψ and thus is sparse in the basis ψ .
The nonlinear soft thresholding operator Sµ is defined as

Sµ (x) =


x+ µ

2 if x≤− µ

2
0 if |x|< µ

2
x− µ

2 if x≥− µ

2

(5)

Also note that the forward and inverse projections onto the
ψ basis are encapsulated within the soft thresholding operator
Sµ . The step in equation 4 is a Landweber descent iteration.

This methodology has been applied to the interpretation of lin-
ear geophysical measurements (Loris et al. 2007). Here we ap-
ply the idea of obtaining a sparse representation of the model to
nonlinear operators by soft thresholding on the resulting model
obtained by a Gauss-Newton step. The basis function ψ in this
instance is that of the Haar-wavelet.

NONLINEAR INVERSION

We begin by writing the forward problem as the general linear
system

A(m)u = b, (6)

where A(m) is a sparse matrix that depends on the model m.
The vector u is the resulting field due to the source b. The
observed data is a projection of the field dobs = Qu+ εi where
the matrix Q is an interpolation operator and εi is assumed to
be uncorrelated Gaussian noise.

The objective function to be minimized is written as the con-
strained optimization problem

φ(m) =
∥∥Wd(Qu−dobs)

∥∥2
2 + γR(m) (7a)

s.t. A(m)u−b = 0. (7b)

To complete the minimization using descent-based algorithms,
it is necessary to obtain or estimate the Fréchet derivative J =
∂mQu. Here we will absorb the data-weighting matrix Wd into
J, Qu and dobs.

Gauss-Newton using `2 measure
It is common to regularize using the `2 norm to measure the
models size and complexity, which results in the quadratic ob-
jective function

φ(m) =
∥∥∥Qu−dobs

∥∥∥2

2
+ γ ‖Wm(m−mref)‖2

2 , (8)

where Wm is a model weighting matrix. To minimize equa-
tion 8, we use a Gauss-Newton strategy with a cooling sched-
ule (Haber et al. 2000) in which the approximate Hessian

B = JTJ + γWT
mWm ≈ H (9)

is used to obtain model perturbations through solutions of

Bδm =−g (10)
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where g = ∇mφ(m) is the gradient of the objective function.
It is often the case in geophysical inverse problems that the
formation of JTJ (or even J for that matter) is prohibitively
large. This can be overcome by forming the augmented system(

J√
γWm

)
δm =

(
Qu−dobs

−√γWm(mk−mre f )

)
(11)

and solving the normal equations using the LSQR technique.
The model is updated via mi+1 = mi + αδm, where the pa-
rameter α is chosen using a line search.

General Measures
Following Farquharson (1998), we define the general measure-
ment functional φg(m) to measure the size and complexity of
the model in the inversion, where we can then choose the form
of the measurement functional to be one that does not penalize
large jumps in the model parameters as in the `2-norm. The
general measurement functional is defined as

φg(x) =
N∑

j=1

ρ(x j). (12)

Given a vector x = Wim, where Wi is a matrix, the corre-
sponding gradient and Hessian of the general measure function
∇mφg(x) and ∇m∇mφg(x), and are given by

gg = ∇mφg(Wim) = WT
i ρ

′
(13a)

Hg = ∇m∇mφg(Wim) = WT
i ρ

′′
Wi (13b)

where ρ
′
=(∂x1 ρ(x1), . . . ,∂x j ρ

′
(x j))T and ρ

′′
= diag(∂xxρ(xi)).

Using this general measure function in equation 12, the objec-
tive function to be minimized is

φ(m) = φd(m)+ γφg(m) (14)

and is solved using a Gauss-Newton strategy, with the approx-
imate Hessian given by

B = JTJ +WT
i ρ

′′
Wi ≈ H. (15)

This approximate expression is used to obtain model pertur-
bations through Bδm = −g. The gradient g of the objective
function is

g = JT(Qu−dobs)+ γWT
i ρ

′
(16)

and the model is updated using a line-search, mi+1 = mi +
αδm. The form of the measuring function ρ(x) in equation 12

a.) b.)

Figure 1: Data structure for a simple quadtree a.) hierarchal
relationship b.) discretization

is chosen to be the Huber-norm:

ρ(x) =
{

x2 |x| ≤ c,
2c|x|− c2 |x|> c

(17)

whereby the parameter c is chosen to vary the behavior of
the norm between an `1-like behavior or an `2-like behavior.
Iterative sparse recovery
The Landweber iteration in equation 4 can be extended to non-
linear operators operators (Ramlau 1999). Soft thresholding
the nonlinear Landweber iteration

mi+1 = Sµ

(
mi + JT(dobs−Qu)

)
. (18)

However this type of iteration can exhibit slow convergence
properties. This nonlinear Landweber iteration can be acceler-
ated by incorporating the curvature information of the Newton-
step ( Egger 2005). Using this approach, we chose to perform
the soft thresholding on the wavelet coefficients

mi+1 = Sµ (mi +αδm) , (19)

where the step δm is obtained through the Gauss-Newton equa-
tion Bδm =−g corresponds to either the `2-norm solution, or
the Huber-norm solution. The basic algorithm for this method-
ology is as follows:

Algorithm 1 nonlinear soft thresholding
1: µ=µ0
2: m0 = mstart
3: γ = γ0
4: while not done do
5: δm =−B−1g
6: linesearch α → m̃i = mi +αδm
7: mi+1 = Sµ (m̃i)
8: µ = η1µ

9: γ = η2γ

10: end while

Here the parameters η1,η2 < 1 are parameters that control
the cooling schedules of the tradeoff parameter γ and the soft
thresholding parameter µ . We note that this algorithm is simi-
lar to that proposed by Ramlau and Teschke (2006). The cool-
ing of the tradeoff parameter can be done continuously each
iteration, or in stages.

2.5D DC RESISTIVITY

DC resistivity is a widely used geophysical imaging technique
to investigate the Earth’s electrical conductivity structure. DC
resistivity experiments involve injecting a controlled DC cur-
rent source at two locations and making measurements of the
resulting potential field at locations away from the injection
location.

The current distribution due to a point source is inherently 3D,
but it is common to restrict the conductivity model to being 2D.
The resulting 2.5D Helmholtz equation describing the electric
potential due to a point source at the location δ (r− r0) is de-
scribed in Dey & Morrison (1977) and is

∇ · {σ(x,z)∇ũ(x,ky,z)}− k2
y σ(x,z)ũ(x,ky,z) =

I
2

δ (r− r0),
(20)
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where ũ is the transformed-potential in the Fourier-cosine do-
main, ky is the wave-number and σ(x,z) is the 2D conductivity
model. The potential u in the spatial domain is obtained by an
application of the inverse-Fourier transformation

u(x,y,z) = F−1[ũ(x,ky,z)] =
2
π

∫
∞

0
ũ(x,ky,z)cos(kyy)dky

(21)
We solve equation 20 using a finite-volume technique using a
quadtree discretization, similar to the finite volume octree for-
mulation described in Haber & Heldmann (2007). The quadtree
is a tree-based data structure and allows for very efficient spa-
tial discretization by allowing cells to have multiple-neighbors.
Figure 1 shows a simple quadtree displayed as a hierarchial
data structure in figure 1a and the corresponding discretization
in figure 1b. Using this discretization we derive finite-volume

x (m)

z 
(m

)
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Figure 2: Synthetic geometry for DC resistivity crosswell to-
mography. Red crosses indicate the location of electrodes used
in the survey acquisition.

approximations to the differential operators ∇· , and ∇. Our
formulation places the discrete electrical potential u at cell cen-
ters, and current densities J at the center of cell edges. Addi-
tionally, the electrical conductivity is harmonically averaged
and located at cell-edges. The resulting sparse-linear system is
written as

A(ky,m)ũ = b (22)

where ũ is the discrete potential in the Fourier-cosine domain.

Electrical conductivity is known to range over several orders
of magnitude in Earth materials thus we chose to invert for
the model m = log(σ) in the inversion. The Fréchet derivative
∂σi u j is calculated using the adjoint-Green’s function method
described in McGillivray and Oldenburg (1990) and Zhou and
Greenlaugh (1999). We efficiently calculate the Fréchet deriva-
tive by evaluating

∂u
∂m

=− Iσ

2
F−1

[∫
Ωi

(
∇G̃ ·∇G̃

′
+ k2

y G̃G̃
′
)

dxdz
]
, (23)

where G̃ and G̃′
are the Green’s functions of the partial differ-

ential equation 20. Note that in the 2.5D case the potentials
are not the Green’s function of the equation 20, but are related
to the transformed potential ũ G̃ = 2ũ. Computing the Fréchet
derivative using the adjoint Green’s function method typically
requires on the order of N solutions to the forward problem,

where N is the number of electrodes deployed in DC resistiv-
ity survey. This is a substantial computational savings from
the M + 1 solutions to the forward problem required to com-
pute the Fréchet derivative through finite-difference techniques
where M is the number of model parameters.

Numerical Implementation
DC resistivity measurements are typically collected using quad-
rapole configurations in which 4 electrode locations are used
for each measurement, with two electrode locations being the
transmitter (i.e. current sources) and two electrodes being used
for the receivers (i.e. a voltmeter). The linear nature of equa-
tion 20 with respect to the potential allows any quadrapole
measurement to be made through the super position of the
pole-pole measurements. Typical DC resistivity surveys will
deploy a small number of fixed electrode locations and then
will make many quadrapole measurements. Often the number
of quadrapole measurements is much greater than the number
of electrodes making numerical solutions via pole-pole substi-
tution an efficient numerical strategy.

The sparse linear system in 22 is solved directly using an LU
decomposition. The LU decomposition is stored for each wave-
number ky and used to compute the transformed potential ũ.

SYNTHETIC CROSSWELL TOMOGRAPHY

A synthetic crosswell DC resistivity tomography is used to
demonstrate the DC resistivity experiment. The experimen-
tal setup is shown in Figure 2. Electrodes are deployed in two
boreholes separated by 20 m with each borehole extending to
a depth of 20 m. There are 5 electrode locations distributed
equally in each borehole and an additional 6 electrodes dis-
tributed equally along the surface, resulting in a total of 16
electrode locations. These 16 electrode locations have the ca-
pability of generating 5460 unique non-reciprocal quadrapole
measurements (Noel and Xu, 1991). The survey configuration
used in this example contains transmitter dipoles made up of
a combination of common-hole, cross-hole and borehole-to-
surface transmitter configurations. The resulting dataset con-
tains 4186 measurements. The synthetic model consists of a
10S/m conductive body with dimensions of 5 m× 4m in a
background halfspace of 0.01S/m.

Results
The inversion result using an `2 model norm and the Gauss-
Newton methodology is shown in Figure 3. Although the block
is clearly detected, the resulting model shows a smoothly vary-
ing structure typical of `2 inversion results.

The result of an inversion using the Huber-norm measure of
model structure and the Gauss-Newton inversion is shown in
Figure 4. This model exhibits more structure and steeper-
gradients between the conductive body and the background.

Finally, the model obtained using iterative soft thresholding
on the Gauss-Newton model with the `2-norm is shown in fig-
ure 5, while the model obtained by iteratively soft thresholding
the Huber-norm Gauss-Newton model is shown in Figure 6.
The Huber-norm in this case is applied only to the model norm
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in the objective function. The data-misfit term is calculated us-
ing an `2-norm. Both of the models obtained through iterative
soft thresholding are very similar.

x (m)

z 
(m

)
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Figure 3: `2 Gauss-Newton inversion result
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Figure 4: Huber-norm Gauss-Newton inversion result
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Figure 5: Iterative soft thresholding using the `2 Gauss-
Newton step

The models are all plotted on different color scales correspond-
ing to the log of the resistivity (i.e. log(σ−1)). All the in-
version models recover approximately the correct background
halfspace of 0.01S/m. The `2 inversion result generates a
model exhibiting a lower conductivity of the anomalous body
than the true result. The behavior of all the recovered models
show the trend that the more compact the body recovered in
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Figure 6: Iterative soft thresholding using the Huber-norm
Gauss-Newton step
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Figure 7: Convergence

the inversion, a higher conductivity is required to reproduce
the data.

The convergence of the 4 different imaging techniques is shown
in Figure 7. The Gauss-Newton inversion using either the `2 or
Huber-norms converges to the desired misfit rapidly, while the
iterative soft thresholding techniques converge more slowly.
The iterative soft thresholding performed on the `2 Gauss-Newton
step did not converge within the maximum number of itera-
tions at 55, but likely would have converged if allowed to go
continue running.

CONCLUSION

We have applied iterative nonlinear soft thresholding to in-
vert nonlinear geophysical operators. As expected, the re-
sulting images exhibit blocky structure and are considerably
more focused on the anomalous block than the `2 or Huber-
norm inversion techniques. Soft thresholding on the Gauss-
Newton model obtained through the Huber-norm converges
quicker than soft thresholding on the Gauss-Newton model ob-
tained using the `2 norm. We will continue to test and expand
the iterative soft thresholding algorithms applied to nonlinear
operators to improve the inversion images, and investigate the
use of different numerical solvers such as SPg`1. The eventual
goal of interpreting DC resistivity measurements collected in
the field with these imaging techniques.



Sparse iterative reconstruction

REFERENCES

Daubechies, I., M. Defrise, and C. De Mol, 2004, An iterative thresholding algorithm for linear inverse problems with Pure Appl.
Math, 57, 1413–1541.

Dey, A. and H. Morrison, 1977, Resistivity modelling for arbitrarily shaped two-dimensional structures: Geophysical Prospecting,
27, 106–136.

Egger, H., 2005, Accelerated newton-landweber iterations for regularizing nonlinear inverse problems: SFB-Report, 3.
Farquharson, C. G. and D. W. Oldenburg, 1998, Non-linear inversion using general measures of data misfit and model structure:

Geophys. J. Int, 134, 213–227.
Haber, E., U. Ashcer, and D. Oldenburg, 2000, On optimization techniques for solving nonlinear inverse problems: Inverse Prob-

lems, 16, 1263–1280.
Haber, E. and S. Heldmann, 2007, An octree multigrid method for quasi-static maxwell’s equations with highly discontinuous

coefficients: Journal of Computational Physics, 223, 783–796.
Loris, I., G. Nolet, I. Daubechies, and F. Dahlen, 2007, Tomographic inversion using l1-norm regularization of wavelet coefficients:

Geophys. J. Int., 170, 359–379.
McGillivray, P. and D. Oldenburg, 1990, Methods for calculating frechet derivatives and sensitivities for the non-linear inverse

problem: a comparative study: Geophysical Prospecting, 38, 499–524.
Noel, M. and B. Xu, 1991, Archaeological investigation by electrical resistivity tomography: a preliminary study: Geophysical

Journal International, 107, 95–102.
Ramlau, R., 1999, A modified landweber-method for inverse problems: Journal for Numerical Functional Analysis and Optimiza-

tion, 20, 79–98.
Ramlau, R. and G. Teschke, 2006, A tikhonov-based projection iteration for nonlinear ill-posed problems with sparsity constraints:

Numerische Mathematik, 104, 177–203.
Vogel, C. and M. Oman, 1998, Fast total variation based reconstruction of noisy, blurred images: IEEE Trans. Image Processing, 7,

813–824.
Zhdanov, M., G. Vignoli, and T. Ueda, 2006, Sharp boundary inversion in crosswell travel-time tomography: J. Geophys. Eng, 3,

122–134.
Zhou, B. and Greenlaugh, 1999, Explicit expressions and numerical calculations for the frechet and second derivatives in 2.5d

helmholtz equation inversion: Geophysical Prospecting, 47, 443–468.


