Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2008 SLIM group @ The University of British Columbia.

An iterative multilevel method for computing wavefields in
frequency-domain seismic inversion

Yogi Erlangga
SLIM, Earth and Ocean Sciences, UBC
yerlangga@eos.ubc.ca

with Reinhard Nabben, Math—TU Berlin, Felix Herrmann, Tim T.Y. Lin, SLIM-UBC

Supported by the NSERC Discovery (22R81254) and CRD Grants DNOISE (334810-05) and carried out as part of the
SINBAD project with support, secured through ITF, from BG Group, BP, Chevron, ExxonMobil and Shell

(A \SLIM

| Seismic Laboratory for

Imaging and Modeli
SEG Meeting, November 9-14, 2008 (slide 1) o TReging AnR.adelicg



Outline of the Talk

Objective: iterative method for frequency-domain wavefield computation

e acoustic (Helmholtz) equation

e Helmholtz solver
o direct vs. iterative methods
o problems with iterative methods

e First ingredient: Preconditioning for Krylov methods
o Shifted Laplacian

e Second ingredient: Multilevel Krylov (MK) methods
o MK on preconditioned Helmholtz

e Numerical examples

e Conclusions
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Frequency-domain acoustic wave equation

!
Hlwlu = b
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lllustration

Frequency domain seismic imaging

For one shot, one frequency:

o forward modeling: Hu=b — u=H"1b
o back-propagation:  H*v = du — v = (H*) " 1éu
e imaging: om = Re(u ® v)
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lllustration

Frequency domain seismic imaging
For one shot, one frequency:
o forward modeling: Hu=b — u=H"1b

o back-propagation:  H*v = du — v = (H*) " 1éu
e imaging: om = Re(u ® v)

How to compute u and v?
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lllustration

Frequency domain seismic imaging

For one shot, one frequency:

o forward modeling: Hu=b — u=H"1b
o back-propagation:  H*v = du — v = (H*) " 1éu
e imaging: om = Re(u ® v)

How to compute u and v?

Factorization of H into upper and lower triangular matrix

Also known as direct methods or Gaussian-elimination based methods
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lllustration

Direct Methods
Cost of computing u (and v):
O(nd’), d = 2,3

Memory:
O(n?=1p9), d = 2,3

RN

1 2 n
Typical problems, n = 103.
In 2D: In 3D:
e Computational cost: ~ 102 flops e Computational cost: ~ 1027 flops
e Memory: ~ 107 (1 Giga) units e Memory: ~ 10% (1 Peta) units
In 2D, still possible, but not in 3D!
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lllustration

s it possible to replace direct methods?
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lllustration

s it possible to replace direct methods?
Yes! use iterative methods

Example:

e basic iterative methods: Jacobi, GauB-Seidel

e Krylov methods: CG, GMRES, Bi-CGSTAB, etc
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lllustration

s it possible to replace direct methods?
Yes! use iterative methods

Example:

e basic iterative methods: Jacobi, GauB-Seidel

e Krylov methods: CG, GMRES, Bi-CGSTAB, etc

Facts:

e Computational cost: (’)(nd) flops per iteration, in total, n,-terC’)(nd)
e Memory: O(n9) units

e not robust methods

(nd+2)

Worst case, njser = @(n?) —  computational cost: O flops

\deally, njzer = O(1) — computational cost: O(n9)
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Iterative Methods for Helmholtz problems

From theory:
Relation between convergence of iterative methods and eigenvalues of H

1D Helmholtz equation, k := 2nfL/c = 50.

30— e Small eigenvalues close to zero
250, e Large eigenvalues unbounded
200} o
= lll-conditioned
E 150} °
100, ©
sl e Real parts of eigenvalues:
ol ¢ change signs — Indefinite
-50L

=050 05 1 15 2 2.5
Re(N x 10 Slow convergence or divergence
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Iterative Methods for Helmholtz problems

Tackling ill-conditioning:
e use preconditioning matrix M

eigenvalues of HM~1 are more clustered
If M1 ~ H™1, eigenvalues of HM ™! are close to 1 — fast convergence

e use multilevel technique

error components associated with small eigenvalues are corrected on the
coarser grid

Indefiniteness is the most difficult part to handle!
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Intermezzo: Multilevel Method

Solve Hu = b on a hierarchy of grids of different mesh size.

Level 1, h

Level 2, h/2

Level 3, h/4

Level 4, h/8

Multigrid (MG):
e reduce nonsmooth errors by basic iterative methods: Jacobi/GauB-Seidel

e reduce smooth errors on the coarse grid (smaller system)

Efficient methods (O(n?) methods) for non-indefinite systems
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Preconditioner: tackling “indefiniteness”

First step: preconditioner which makes indefinite system definite
In this case, use shifted-Laplace (damped Helmholtz) operator:

1 1A A
Mé— xV-(—V)— 1——'w2X, = —1.
AR e (1=Z)w™(x), j=v-1
Example: 1D Helmholtz, k := 27fL/c = 50.

g0 1
250}
200}
150}
100}
50,
0!
-50 :

‘050 05 1 15 2 25 05 0 05 1 15
Re() x 10° Re()

[E., Oosterlee, Vuik, 2006]
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Preconditioner: tackling “indefiniteness”

Important aspects:

e the system HM ™1 becomes definite
Krylov methods should converge easier, meaning nj;or < n?
e M is favorable for multigrid (due to damping term)

M~1 is computed by one multigrid iteration — O(nd) for preconditioning
e Computational cost: n,-ter(’)(nd)

1

0.5}

000y
e Largest eigenvalues are bounded above by 1 £, )
e Still ill-conditioned (see small eigenvalues) 05,
-1 ‘ ‘ ‘
-05 O 0.5 1 1.5
Re()
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Example with Marmousi velocity model

Frequency (Hz)| 1 10 | 20 |30

w/o M |17445|6623|14687| —
with M 30 | 54 | 098 144

Applications:

@ 2D: [Riyanti, E., Plessix, Mulder, Vuik, Qosterlee, 2006]
[Duff, Gratton, Pinel, Vasseur|
@ 3D: [Riyanti, Kononov, Erlangga, Plessix, Mulder, Vuik, OQosterlee, 2006]

A\SLIM

Seismic Laboratory for

I
. ________ _________________________________________________________________| Imaging and Modeling

SEG Meeting, November 9-14, 2008 (slide 16)



Multilevel Krylov: tackling “ill-condition”

Problem remained with HM~1: il conditioning
Second step: make this system well-conditioned

Solution:
use operator which shifts small eigenvalues to the largest eigenvalue but keeps

the upper bound the same

This is possible with the multilevel operator

shift small eigenvalues to 0  shift zero elgenvalues to 1

Q- T_ZRZTAM 2 +  ZHizT . R-ZTHu 'z
with Z linear mapping from coarse grid to fine grid.

H implicitly contains information of small eigenvalues to be shifted.

[E., Nabben, 2007]
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Multilevel Krylov (MK) for the Helmholtz equation

Example: 1D Helmholtz, k := 27fL/c = 50.

HM 1 HM~1Q
1 1
0.5 . 05!
= =<
05 " 000 05
- ‘ ‘ -1
05 0 05 1 15 05 0 05 1 15
Re(N Re(N

Notice shift of small eigenvalues towards one.

This is very favorable for fast convergence of Krylov methods
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Numerical experiments: constant wavenumber

Improvement in #iterations and CPU time
High wavenumbers k := 27flL/c
Grid resolution: 15 points per wavelength

250 ‘ ‘ ‘ ‘ ‘ ‘ 10
-+ MKMG(4,2,1) -
—MG Iteration Time
200f ] 10° |
150 o 10°
S 2
g )
2 £ Multigrid/Multilevel
* 100¢ F 10" Setup Time
50r / b 100 £
0 L L L L L L 10_1 L L L L L L
0 50 100 150 200 250 300 350 0 50 100 150 200 250 300 350

Wavenumber, k Wavenumber, k

k = 300: equivalent to f = 60 Hz for typical 1000 m depth. 750% grid
points.
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Numerical experiments: Marmousi

SEG Meeting, November 9-14, 2008 (slide 20)

300

(—): No. of iterations. (—): No. of matrix-vector multiplies.

!
——MKMG Rt
200 250f  |-m-MG
400 el
200} o
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50f  _Laem== - ”
1600 I . \ | 0 o— 1 ﬂ\f 4.\ !
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Xx—axis (m) Frequency, Hz
MKMG : GMRES on HM~1Qu = b.
MG : Bi-CGSTAB on HM 1% = b [E., Oosterlee, Vuik, 2006]
Convergence can be made less independent of frequencies
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Numerical experiments: Marmousi

Computed wavefield, f = 20 Hz
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Numerical experiments: Marmousi

Influence of gridsize to the convergence

Frequency (Hz) 10115202530
Grid adapted to f 10/11/15(15/23
Grid fixed at f =30 Hz|8| 8 [11]12|15|23

Convergence can be made independent of grid size
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Impact on the computational complexity

Frequency-domain:

o For one frequency, one shot:  njey = O(1)  — O(n?) flops.

o For multiple frequencies and shots: nf,eqnshotO(nd) flops.

o Assuming O(nfeq) = O(n) and O(ngpee) = O(n? 1) — O(n*)
Time-domain:

o Simulation with n; time levels: n¢ngp,;O(n?) = O(n?9) (nt = O(n)).

Frequency- and time-domain wavefield computations are at the same order
of computational complexity!
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Impact on the computational complexity

Frequency-domain wavefield simulation:

e conducive to frequency subsampling [Lin, Lebed, E., Herrmann, this conference]
o use of Ngey K N (O Npey = O(1))
o full wavefield recovered by (£1 minimization) sparsity-promoting program

Frequency-domain imaging:
e no time history” — less memory requirement
in time-domain, check-pointing [Symes, 2008]
e conducive to frequency subsampling
O [Plessix, Mulder, 2004], ...
o (£1 minimization) sparsity-promoting program

Conducive to simultaneous shots simulation  [Herrmann, E., Lin, 2008]
Refer to talk by Lin.
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Conclusion

e key aspect of successful iterative methods for Helmholtz equation: tackling
indefiniteness and ill-conditioning

e indefiniteness: use shifted-Laplacian (damped Helmholtz)
e ill-conditioning: use multilevel Krylov method

e combined, convergence less independent of frequencies and grid size

e paving the way to
o compressive full wavefield computation (use of subsets of frequencies)

O more rigorous compressive seismic imaging
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