An iterative multilevel method for computing wavefields in frequency-domain seismic inversion

Yogi Erlangga

SLIM, Earth and Ocean Sciences, UBC

yerlangga@eos.ubc.ca

with Reinhard Nabben, Math-TU Berlin, Felix Herrmann, Tim T.Y. Lin, SLIM-UBC

Supported by the NSERC Discovery (22R81254) and CRD Grants DNOISE (334810-05) and carried out as part of the SINBAD project with support, secured through ITF, from BG Group, BP, Chevron, ExxonMobil and Shell

Objective: iterative method for frequency-domain wavefield computation

- acoustic (Helmholtz) equation
- Helmholtz solver
 - \circ direct vs. iterative methods
 - \circ problems with iterative methods
- First ingredient: Preconditioning for Krylov methods • Shifted Laplacian
- Second ingredient: Multilevel Krylov (MK) methods
 OMK on preconditioned Helmholtz
- Numerical examples
- Conclusions

$$\mathcal{H}u = -\rho(x)\nabla \cdot \left(\frac{1}{\rho(x)}\nabla u(x)\right) - \omega^2(x)u(x) = b$$

$$H[\omega]u = b$$

 \downarrow

SEG Meeting, November 9–14, 2008 (slide 3)

Frequency domain seismic imaging

For one shot, one frequency:

- forward modeling:
- back-propagation:
- imaging:

$$Hu = b \rightarrow u = H^{-1}b$$

$$H^*v = \delta u \rightarrow v = (H^*)^{-1}\delta u$$

$$\delta m = \operatorname{Re}(u \odot v)$$

Frequency domain seismic imaging

For one shot, one frequency:

- forward modeling:
- back-propagation:
- imaging:

$$Hu = b \rightarrow u = H^{-1}b$$
$$H^*v = \delta u \rightarrow v = (H^*)^{-1}\delta u$$
$$\delta m = \operatorname{Re}(u \odot v)$$

1

11

11 - 11

How to compute u and v?

Frequency domain seismic imaging

For one shot, one frequency:

- forward modeling: $Hu = b \rightarrow u = H^{-1}b$
- back-propagation: $H^*v = \delta u \rightarrow v = (H^*)^{-1}\delta u$
- imaging: $\delta m = \operatorname{Re}(u \odot v)$

How to compute u and v?

Factorization of H into upper and lower triangular matrix

Also known as direct methods or Gaussian-elimination based methods

Direct Methods

Cost of computing u (and v): $\mathcal{O}(n^{d^d}), d = 2, 3$ Memory:

$$\mathcal{O}(n^{d-1}n^d), d = 2, 3$$

Typical problems,
$$n = 10^3$$
.

In 2D:

- \bullet Computational cost: $\sim 10^{12}$ flops
- \bullet Memory: $\sim 10^9$ (1 Giga) units

In 2D, still possible, but not in 3D!

In 3D:

- ullet Computational cost: $\sim 10^{27}$ flops
- \bullet Memory: $\sim 10^{15}~(1$ Peta) units

Is it possible to replace direct methods?

Is it possible to replace direct methods?

Yes! use iterative methods

Example:

- basic iterative methods: Jacobi, Gauß-Seidel
- Krylov methods: CG, GMRES, Bi-CGSTAB, etc

Is it possible to replace direct methods?

Yes! use iterative methods

Example:

- basic iterative methods: Jacobi, Gauß-Seidel
- Krylov methods: CG, GMRES, Bi-CGSTAB, etc

Facts:

- Computational cost: $\mathcal{O}(n^d)$ flops per iteration, in total, $n_{iter}\mathcal{O}(n^d)$
- Memory: $\mathcal{O}(n^d)$ units
- not robust methods

Worst case, $n_{iter} = \mathcal{O}(n^d) \rightarrow \text{computational cost: } \mathcal{O}(n^{d+2}) \text{ flops}$ Ideally, $n_{iter} = \mathcal{O}(1) \rightarrow \text{computational cost: } \mathcal{O}(n^d)$

From theory: Relation between convergence of iterative methods and eigenvalues of H

1D Helmholtz equation, $k := 2\pi f L/c = 50$.

- Small eigenvalues close to zero
- Large eigenvalues unbounded Ill-conditioned
- Real parts of eigenvalues: change signs \rightarrow Indefinite

Slow convergence or divergence

Tackling ill-conditioning:

• use preconditioning matrix Meigenvalues of HM^{-1} are more clustered

If $M^{-1} \approx H^{-1}$, eigenvalues of HM^{-1} are close to $1 \rightarrow fast$ convergence

• use multilevel technique

error components associated with small eigenvalues are corrected on the coarser grid

Indefiniteness is the most difficult part to handle!

Solve Hu = b on a hierarchy of grids of different mesh size.

Multigrid (MG):

- reduce nonsmooth errors by basic iterative methods: Jacobi/Gauß-Seidel
- reduce smooth errors on the coarse grid (smaller system)

Efficient methods ($\mathcal{O}(n^d)$ methods) for <u>non</u>-indefinite systems

First step: preconditioner which makes indefinite system definite In this case, use shifted-Laplace (damped Helmholtz) operator:

$$M \stackrel{\wedge}{=} -\rho(x) \nabla \cdot \left(\frac{1}{\rho(x)} \nabla\right) - (1 - \frac{1}{2}\hat{j})\omega^2(x), \quad \hat{j} = \sqrt{-1}.$$

Example: 1D Helmholtz, $k := 2\pi f L/c = 50$.

Important aspects:

• the system HM^{-1} becomes definite

Krylov methods should converge easier, meaning $n_{iter} < n^d$

- *M* is favorable for multigrid (due to damping term) M^{-1} is computed by one multigrid iteration $\rightarrow O(n^d)$ for preconditioning
- Computational cost: $n_{iter} \mathcal{O}(n^d)$
- \bullet Largest eigenvalues are bounded above by 1
- Still ill-conditioned (see small eigenvalues)

Frequency (Hz)	1	10	20	30
w/o M	17445	6623	14687	_
with M	39	54	98	144

Applications:

- 2D: [Riyanti, E., Plessix, Mulder, Vuik, Oosterlee, 2006] [Duff, Gratton, Pinel, Vasseur]
- 3D: [Riyanti, Kononov, Erlangga, Plessix, Mulder, Vuik, Oosterlee, 2006]

Problem remained with HM^{-1} : ill conditioning

Second step: make this system well-conditioned

Solution:

use operator which shifts small eigenvalues to the largest eigenvalue but keeps the upper bound the same

This is possible with the multilevel operator

shift small eigenvalues to 0 shift zero eigenvalues to 1

$$Q = \overbrace{I - Z\widehat{H}^{-1}Z^{T}HM^{-1}}^{\text{shift zero eigenvalues to 1}} , \quad \widehat{H} = Z^{T}HM^{-1}Z,$$

with Z linear mapping from coarse grid to fine grid. \widehat{H} implicitly contains information of small eigenvalues to be shifted. [E., Nabben, 2007]

Notice shift of small eigenvalues towards one.

This is very favorable for fast convergence of Krylov methods

Numerical experiments: constant wavenumber

Improvement in #iterations and CPU time High wavenumbers $k := 2\pi fL/c$ Grid resolution: 15 points per wavelength

(-): No. of iterations. (-): No. of matrix-vector multiplies.

MKMG : GMRES on $HM^{-1}Q\tilde{u} = b$. MG : Bi-CGSTAB on $HM^{-1}\hat{u} = b$ [E., Oosterlee, Vuik, 2006] Convergence can be made less independent of frequencies

Influence of gridsize to the convergence

Frequency (Hz)		10	15	20	25	30
Grid adapted to <i>f</i>		10	11	15	15	23
Grid fixed at $f = 30$ Hz	8	8	11	12	15	23

Convergence can be made independent of grid size

Frequency-domain:

- \circ For one frequency, one shot: $n_{iter} = \mathcal{O}(1) \longrightarrow \mathcal{O}(n^d)$ flops.
- For multiple frequencies and shots: $n_{freq}n_{shot}\mathcal{O}(n^d)$ flops.
- Assuming $\mathcal{O}(n_{freq}) = \mathcal{O}(n)$ and $\mathcal{O}(n_{shot}) = \mathcal{O}(n^{d-1}) \rightarrow \mathcal{O}(n^{2d})$ Time-domain:
- Simulation with n_t time levels: $n_t n_{shot} \mathcal{O}(n^d) = \mathcal{O}(n^{2d})$ $(n_t = \mathcal{O}(n)).$

Frequency- and time-domain wavefield computations are at the same order of computational complexity!

Frequency-domain wavefield simulation:

- conducive to frequency subsampling [Lin, Lebed, E., Herrmann, this conference]
 - \circ use of $n_{freq} \ll n$ (or $n_{freq} = \mathcal{O}(1)$)
 - \circ full wavefield recovered by (ℓ_1 minimization) sparsity-promoting program

Frequency-domain imaging:

- no "time history" less memory requirement in time-domain, check-pointing [Symes, 2008]
- conducive to frequency subsampling
 - \circ [Plessix, Mulder, 2004], ...
 - \circ (ℓ_1 minimization) sparsity-promoting program

Conducive to simultaneous shots simulation [Herrmann, E., Lin, 2008] Refer to talk by Lin.

- key aspect of successful iterative methods for Helmholtz equation: tackling indefiniteness and ill-conditioning
- indefiniteness: use shifted-Laplacian (damped Helmholtz)
- ill-conditioning: use multilevel Krylov method
- combined, convergence less independent of frequencies and grid size
- paving the way to
 - compressive full wavefield computation (use of subsets of frequencies)
 more rigorous compressive seismic imaging

Bibliography

On Shifted Laplace Preconditioner for the Helmhholtz eq.:

- Y.A. Erlangga, C. Vuik, C.W. Oosterlee, On a class of preconditioners for the Helmholtz equation, Appl. Numer. Math., 50 (2004), pp. 409–425
- Y.A. Erlangga, C.W. Oosterlee, C. Vuik, A novel multigrid-based preconditioner for the heterogeneous Helmholtz equation, SIAM J. Sci. Comput., **27** (2006), pp. 1471-1492
- M.B. van Gijzen, Y.A. Erlangga, C. Vuik, Spectral analysis of the discrete Helmholtz operator preconditioned with a shifted Laplacian, SIAM J. Sci. Comput., **29**(5)(2006), pp. 1942–1958

On Multilevel Krylov Methods:

- Y.A. Erlangga, R. Nabben, Multilevel projection-based nested Krylov iteration for boundary value problems, SIAM J. Sci. Comput. **30**(3)(2008), pp. 1572–1595
- Y.A. Erlangga, R. Nabben, On the projection method for the preconditioned Helmholtz linear system, (2007) submitted
- Y.A. Erlangga, R. Nabben, Algebraic Multilevel Krylov Methods, (2008) submitted.

On Compressive Wavefield Simulations:

• Felix J. Herrmann, Y.A. Erlangga, Tim T.Y. Lin, Compressive simultaneous full-waveform simulation, submitted

http://slim.eos.ubc.ca/Publications/Public/TechReports/herrmann08csf-r.pdf

