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Outline of the Talk

Objective: iterative method for frequency-domain wavefield computation

• acoustic (Helmholtz) equation

•Helmholtz solver

◦ direct vs. iterative methods

◦ problems with iterative methods

• First ingredient: Preconditioning for Krylov methods

◦ Shifted Laplacian

• Second ingredient: Multilevel Krylov (MK) methods

◦ MK on preconditioned Helmholtz

•Numerical examples

• Conclusions
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Frequency-domain acoustic wave equation

Hu = −ρ(x)∇ ·
(

1

ρ(x)
∇u(x)

)
− ω2(x)u(x) = b

↓

H [ω]u = b
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Illustration

Frequency domain seismic imaging

For one shot, one frequency:

• forward modeling: Hu = b → u = H−1b

• back-propagation: H∗v = δu → v = (H∗)−1δu

• imaging: δm = Re(u ⊙ v)

How to compute u and v?

Factorization of H into upper and lower triangular matrix

Also known as direct methods or Gaussian-elimination based methods
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Illustration

Direct Methods
Cost of computing u (and v):

O(ndd
), d = 2, 3

Memory:
O(nd−1nd), d = 2, 3

...
21 n...

1
2

n

Typical problems, n = 103.

In 2D:

• Computational cost: ∼ 1012 flops

•Memory: ∼ 109 (1 Giga) units

In 3D:

• Computational cost: ∼ 1027 flops

•Memory: ∼ 1015 (1 Peta) units

In 2D, still possible, but not in 3D!
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Illustration

Is it possible to replace direct methods?

Yes! use iterative methods

Example:

• basic iterative methods: Jacobi, Gauß-Seidel

• Krylov methods: CG, GMRES, Bi-CGSTAB etc

Facts:

• Computational cost: O(nd) flops per iteration, in total, niterO(nd)

•Memory: O(nd) units

not robust methods

Worst case, niter = O(nd) → computational cost: O(nd+2) flops.

Ideally, niter = O(1) → computational cost: O(nd)
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Iterative Methods for Helmholtz problems

From theory:
Relation between convergence of iterative methods and eigenvalues of H

1D Helmholtz equation, k := 2πfL/c = 50.
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• Small eigenvalues close to zero

• Large eigenvalues unbounded

Ill-conditioned

• Real parts of eigenvalues:

change signs → Indefinite

Slow convergence or divergence
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Iterative Methods for Helmholtz problems

Tackling ill-conditioning:

• use preconditioning matrix M

eigenvalues of HM−1 are more clustered

If M−1 ≈ H−1, eigenvalues of HM−1 are close to 1 → fast convergence

• use multilevel technique

error components associated with small eigenvalues are corrected on the
coarser grid

Indefiniteness is the most difficult part to handle!
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Intermezzo: Multilevel Method

Solve Hu = b on a hierarchy of grids of different mesh size.
Level 1,  h

Level 2,  h/2

Level 3,  h/4

Level 4,  h/8

Multigrid (MG):

• reduce nonsmooth errors by basic iterative methods: Jacobi/Gauß-Seidel

• reduce smooth errors on the coarse grid (smaller system)

Efficient methods (O(nd) methods) for non-indefinite systems
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Preconditioner: tackling “indefiniteness”

First step: preconditioner which makes indefinite system definite

In this case, use shifted-Laplace (damped Helmholtz) operator:

M
∧
= −ρ(x)∇ ·

(
1

ρ(x)
∇

)
− (1 − 1

2
ĵ)ω2(x), ĵ =

√
−1.

Example: 1D Helmholtz, k := 2πfL/c = 50.
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[E., Oosterlee, Vuik, 2006]

SEG Meeting, November 9–14, 2008 (slide 14)



Preconditioner: tackling “indefiniteness”

Important aspects:

• the system HM−1 becomes definite

Krylov methods should converge easier, meaning niter < nd

•M is favorable for multigrid (due to damping term)

M−1 is computed by one multigrid iteration → O(nd) for preconditioning

• Computational cost: niterO(nd)

• Largest eigenvalues are bounded above by 1

• Still ill-conditioned (see small eigenvalues)
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Example with Marmousi velocity model

Frequency (Hz) 1 10 20 30

w/o M 17445 6623 14687 –
with M 39 54 98 144

Applications:

• 2D: [Riyanti, E., Plessix, Mulder, Vuik, Oosterlee, 2006]

[Duff, Gratton, Pinel, Vasseur]

• 3D: [Riyanti, Kononov, Erlangga, Plessix, Mulder, Vuik, Oosterlee, 2006]
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Multilevel Krylov: tackling “ill-condition”

Problem remained with HM−1: ill conditioning

Second step: make this system well-conditioned

Solution:
use operator which shifts small eigenvalues to the largest eigenvalue but keeps
the upper bound the same

This is possible with the multilevel operator

Q =

shift small eigenvalues to 0︷ ︸︸ ︷
I − ZĤ−1ZTHM−1 +

shift zero eigenvalues to 1︷ ︸︸ ︷
ZĤ−1ZT , Ĥ = ZTHM−1Z ,

with Z linear mapping from coarse grid to fine grid.

Ĥ implicitly contains information of small eigenvalues to be shifted.

[E., Nabben, 2007]
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Multilevel Krylov (MK) for the Helmholtz equation

Example: 1D Helmholtz, k := 2πfL/c = 50.

HM−1 HM−1Q
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Notice shift of small eigenvalues towards one.

This is very favorable for fast convergence of Krylov methods
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Numerical experiments: constant wavenumber

Improvement in #iterations and CPU time
High wavenumbers k := 2πfL/c

Grid resolution: 15 points per wavelength
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k = 300: equivalent to f = 60 Hz for typical 1000 m depth. 7502 grid
points.
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Numerical experiments: Marmousi

(—): No. of iterations. (—): No. of matrix-vector multiplies.
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MKMG : GMRES on HM−1Qũ = b.
MG : Bi-CGSTAB on HM−1û = b [E., Oosterlee, Vuik, 2006]

Convergence can be made less independent of frequencies
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Numerical experiments: Marmousi

Computed wavefield, f = 20 Hz
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Numerical experiments: Marmousi

Influence of gridsize to the convergence

Frequency (Hz) 5 10 15 20 25 30

Grid adapted to f 8 10 11 15 15 23

Grid fixed at f = 30 Hz 8 8 11 12 15 23

Convergence can be made independent of grid size
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Impact on the computational complexity

Frequency-domain:

◦ For one frequency, one shot: niter = O(1) → O(nd) flops.

◦ For multiple frequencies and shots: nfreqnshotO(nd) flops.

◦ Assuming O(nfreq) = O(n) and O(nshot) = O(nd−1) → O(n2d)

Time-domain:

◦ Simulation with nt time levels: ntnshotO(nd) = O(n2d) (nt = O(n)).

Frequency- and time-domain wavefield computations are at the same order
of computational complexity!
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Impact on the computational complexity

Frequency-domain wavefield simulation:

• conducive to frequency subsampling [Lin, Lebed, E., Herrmann, this conference]

◦ use of nfreq ≪ n (or nfreq = O(1))

◦ full wavefield recovered by (ℓ1 minimization) sparsity-promoting program

Frequency-domain imaging:

• no “time history” – less memory requirement

in time-domain, check-pointing [Symes, 2008]

• conducive to frequency subsampling

◦ [Plessix, Mulder, 2004], . . .

◦ (ℓ1 minimization) sparsity-promoting program

Conducive to simultaneous shots simulation [Herrmann, E., Lin, 2008]

Refer to talk by Lin.
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Conclusion

• key aspect of successful iterative methods for Helmholtz equation: tackling
indefiniteness and ill-conditioning

• indefiniteness: use shifted-Laplacian (damped Helmholtz)

• ill-conditioning: use multilevel Krylov method

• combined, convergence less independent of frequencies and grid size

• paving the way to

◦ compressive full wavefield computation (use of subsets of frequencies)

◦ more rigorous compressive seismic imaging
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