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SUMMARY

We describe an iterative multilevel method for solving linear
systems representing forward modeling and back propagation
of wavefields in frequency-domain seismic inversions. The
workhorse of the method is the so-called multilevel Krylov
method, applied to a multigrid-preconditioned linear system,
and is called multilevel Krylov-multigrid (MKMG) method.
Numerical experiments are presented for 2D Marmousi syn-
thetic model for a range of frequencies. The convergence of
the method is fast, and depends only mildly on frequency. The
method can be considered as the first viable alternative to LU
factorization, which is practically prohibitive for 3D seismic
inversions.

INTRODUCTION

Imaging of the earth’s subsurface can computationally be done
in the frequency domain by inverting seismic data using the
adjoint-state method; see, e.g., Plessix (2006). One advantage,
among others, of doing inversion in the frequency domain is
the possibility of inversion with only a small subset of ran-
dom frequencies, as shown, e.g., in Sirgue and Pratt (2004)
and Mulder and Plessix (2004). In relation to this, it is demon-
strated by Lin et al. (2008) (in this proceedings) that it is pos-
sible to recover the wavefield with only 30 per cent of frequen-
cies required by the classical Nyquist sampling theory, by solv-
ing a sparsity-promoting recovery problem in, e.g., the Fourier
domain. In combination with less number of grid points re-
quired to resolve the wavefield, seismic inversion in the fre-
quency domain will now require less complexity as compared
to the time domain migration.

Translated to the seismic language, the adjoint-state method
consists of forward modeling, in which a wave equation is
solved for a given velocity background and source position,
and computing a correction to the given velocity background.
The correction is determined by minimizing the misfit between
the seismic data, recorded at the receiver positions, and the for-
ward model data at the positions corresponding to the physical
receivers. The gradient of the misfit functional is closely re-
lated to the migrated image in geophysical applications, and
can be computed by multiplication of forward and back prop-
agated wavefields. These wavefields are computed via a finite-
difference approximation of the wave equation.

As mentioned, e.g., in Pratt et al. (1998), wavefield compu-
tations may be done by direct methods, by first constructing
the LU factors of the finite-difference wave equation matrix A.
Once these factors are available, for a given angular frequency
ω and velocity background c(x), both forward modeling and
back propagation problems can be solved using the same LU
factors for a set of shot-receiver positions.

Computing the LU factor of A is, however, very costly and
memory consuming. In two dimensions, for example, comput-
ing LU factors require O(n2

xnz) work and ∼ 2n2
xnz storage. In

three dimensions, work and storage needed by an LU factor-
ization becomes O(n3

xn3
yn3

z ) and 2n2
xn2

ynz, respectively. Con-
sidering these facts, it is considered prohibitively expensive to
do frequency-domain seismic inversion based on LU factoriza-
tion.

Iterative methods are usually considered as an alternative to di-
rect methods (Saad (2003)). An iterative method relies mostly
on matrix-vector multiplications with A. Hence, an iterative
method is less demanding in terms of memory and compu-
tational complexity. Iterative methods are, however, generally
less robust as compared to direct methods, and in particular for
wave simulations, all efficient, ad hoc iterative methods fail to
converge for frequency as high as 5 Hz, in the case of, e.g.,
the 2D Marmousi synthetic model. Erlangga et al. (2006) pro-
posed an iterative method based on Krylov subspace method,
preconditioned by a damped acoustic wave operator. The pre-
conditioner is inverted approximately by one multigrid itera-
tion. In this paper, we call this method the MG method. While
the method improves the convergence significantly, the con-
vergence still shows dependence on angular frequency.

In this paper, we will show that the convergence can be fur-
ther improved if the MG method is used within the context of
the multilevel Krylov method, called the MK method, recently
introduced in Erlangga and Nabben (2007). We call this com-
bination “the MKMG method”.

THEORY

For frequency-domain seismic imaging, the wavefield can be
modeled by the frequency-domain acoustic wave equation

H u(ω,xs;x) :=−
„

∇ ·∇− ω2

c(x)2

«
u(ω,xs;x) = b, (1)

equipped with radiation boundary conditions, where ω = 2π f ,
with f the frequency in Hz, and shot position xs.Application of
finite differences on Equation 1 results in the linear system

A[c]sus = bs, A ∈ Cn×n, (2)

where the vector u is a discrete approximate solution to the so-
lution function u evaluated on the finite-difference grid points.
In seismic inversions, we are concerned with the (real) veloc-
ity background associated with the wavefield data recorded
at the receiver positions. Given a reasonable initial veloc-
ity background c and the corresponding solution vector u of
the forward model 2, the real velocity background can be es-
timated by minimizing the functional F = 1

2 〈δd,δd〉, where
δd := u(ω,xs;xr)−d(ω,xs;xr) defines the misfit between the
forward model wavefield at the receiver positions, u(ω,xs;xr),
and the seismic data d(ω,xs;xr). This minimization amounts
to an update

c`+1 = c`−α∇cF, (3)

where ∇cF = real{JHδd}, and J = J(u,c) the Jacobian matrix
of u with respect to c. Computing the Jacobian matrix is very
costly, and in practice, only the action of the Jacobian on δd is
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needed. This is equivalent to back-propagating waves from the
receiver positions. In this case, the back-propagated wavefield
vs is computed from

(As)Hvs = δds, (4)

with (As)H the adjoint of As in Equation 2. For a set of shots
s = 1, . . . ,S, the gradient can be written as

∇cF =
ω2

c3 diag(UHV), (5)

where UH = [u1 . . .uS] and VH = [v1 . . .vS]. The term ∇cF
therefore corresponds to the migrated image in seismic imag-
ing.

By virtue of Equation 5, a frequency-domain seismic imag-
ing now amounts to computing forward and back-propagated
wavefields from Equations 2 and 4, respectively. In the next
section, we describe an iterative method used to perform these
computations.

Methods

The main driver for our method is the Krylov subspace method.
It is well known that the convergence of a Krylov method de-
pends to some extend on the eigenspectrum of the given ma-
trix. In particular, if the condition number of A, denoted by
κ(A), is small (or more specific, close to one), then the con-
vergence of a Krylov method can be expected to be fast. For
Equations 2 and 4, κ(A) is typically very large, called ill-
conditioned. In order to have a better conditioning, an equiva-
lent, right preconditioned system is solved, namely

AM−1û = b, u = M−1û, (6)

where M is a preconditioning matrix. Note that we have dropped
the superscript s to simplify the notation.

For some class of matrices, the matrix M−1 is usually formed
as a sort of approximation to A−1. But, following Erlangga
et al. (2006), M can be based on a finite-difference approxima-
tion of the damped, or shifted, wave operator

M :=−∇ ·∇− ω2

c(x)2 (1−β i), i =
√
−1, (7)

with β > 0. In this case, the matrix M is not an approximation
of A in the usual sense. But, considering the preconditioned
Equation 6, the matrix AM−1 has the following spectral prop-
erties. First, the eigenvalues of AM−1 are enclosed by a circle
with center along the real axis of the complex plane. The cen-
ter and the radius of the circle depends on the choice of β , but
this circle never touches lines real = 0 and real = 1. This is
sketched in Figure 1 (b). Hence, compared to the eigenspec-
trum of A, shown in Figure 1 (a), the eigenspectrum of AM−1

is very much clustered. Furthermore, while the real part of
eigenvalues of A changes sign (called indefinite), the real part
of eigenvalues of AM−1 all have the same sign. For a given
β , the enclosing circle is independent of the finite-difference
grid size h and angular frequency ω . Secondly, the largest
eigenvalue of AM−1 in magnitude is bounded above by one.
Thirdly, the smallest eigenvalue lies very close to zero at a

distance O(ω−1). The first two spectral properties guarantee
h-independent convergence, and by the last property we may
expect convergence mildly dependent of ω .
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Figure 1: Illustration of the spectrum of (a) A, (b) AM−1, and
(c) AM−1Q. The asterisks “ ” show the eigenvalues.

It is worth noting that in practice M−1 is never computed ex-
actly. Rather, in preconditioning steps in a Krylov subspace
method, the action of M−1 on a vector is done approximately
by one multigrid iteration. In this case, the preconditioning
steps can be carried out with only O(nxnz) work in 2D and
O(nxnynz) work in 3D. Details of this technique are discussed
in Erlangga et al. (2006) and Riyanti et al. (2006a), where Bi-
CGSTAB (van der Vorst (1992)) is used for the Krylov iter-
ation. Throughout the paper, Bi-CGSTAB preconditioned by
multigrid will be in short referred to as the MG method.

As the largest eigenvalue is always bounded above by one, it
appears that the convergence of the MG method is now solely
determined by the small eigenvalues of AM−1, which is of
order ω−1. Hence, convergence can be further improved if
these small eigenvalues are somehow shifted to some values
far from zero. This shift should however be performed such
that the upper bound of the eigenspectrum remains the same.
Such a “spectral modification” is done by the so-called mul-
tilevel Krylov (MK) method, introduced recently by Erlangga
and Nabben (2008) and Erlangga and Nabben (2007). Define
a projection Q as

Q := I−ZE−1YT AM−1 +λnZE−1YT , (8)

with E := YT AM−1Z ∈ Cm×m, λn the largest eigenvalue of
AM−1 in magnitude, and Z,Y ∈ Rn×m , m � n, any rank m
projection matrices. In this case, n = nxnz in 2D, or n = nxnynz
in 3D. A convergence acceleration of a Krylov method is ob-
tained if it is applied to the system

AM−1Qũ = b, u = M−1Qũ. (9)

The effect of the inclusion of Q can be briefly explained as
follows. Denote the eigenspectrum of AM−1 by

σ(AM−1) = {λ1, . . . ,λn} ∈ C, (10)

where λ ’s are ordered such that |λ1| ≤ |λ2| · · · ≤ |λn|. In this
case, |λn| → 1, and |λ1|= O(ω−1). For any full rank Z,Y, the
eigenspectrum of AM−1Q becomes

σ(AM−1Q) = {µ1, . . . ,µn} ∈ C. (11)

Because |λn| → 1, in this case |µn| → 1 and |µi| = O(λn) =
O(1). This is illustrated in Figure 1 (c), which shows that the
eigenvalues of AM−1 are now moved towards 1, due to the
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inclusion Q. Since µi now is O(1), the condition number of
AM−1Q can be expected to be O(1). In terms of number of
iterations, this will lead to a much faster convergence. The
application of a Krylov method on Equation 9 results in the
multilevel Krylov-multigrid method, or MKMG.

A brief discussion on the implementation aspects of the MKMG
method is given in Appendix A. For more details, see Erlangga
and Nabben (2008) and Erlangga and Nabben (2007).

EXAMPLE AND DISCUSSION

Numerical experiments are performed based on a part of 2D
Marmousi synthetic model as shown in Figure 2. We con-
sider two situations encountered in frequency-domain inver-
sions: forward and back-propagation model, governed by Equa-
tions 2 and 4, respectively. To mimic forward modeling, a
point source is located at the position (3000,50) m. For back
propagation, we consider point sources distributed along the
receiver line at z = 50 m. In both cases, f = [5,30] Hz is used.
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Figure 2: Part of 2D Marmousi data. cmin = 1500 m/s, cmax =
4450 m/s.

As aforementioned, in the MG method, Bi-CGSTAB is ap-
plied on Equation 6. For MKMG, we apply GMRES (Saad
and Schultz (1986)) on Equation 9. In this case, both meth-
ods require two matrix-vector multiplications with A and two
preconditioner solves by one multigrid iteration per iteration;
thus, they amount to approximately the same complexity. We
set Y = Z, with Z associated with the bilinear interpolation of
the coarse grid into the fine grid. The iteration is terminated
if the initial residual has been reduced by six orders of magni-
tude. A snapshot of forward modeling at f = 20 Hz is shown in
Figure 3. We note that it is theoretically difficult to determine
the optimal β in Equation 7 for MKMG. In this case, we have
to rely on numerical experiments. We found that β = 1 is the
best value we could obtain so far. This value of β is different
from the MG method, where β = 0.5.

Convergence results of MKMG for forward and back-propagation
problems are shown in Figure 4 and Table 1, respectively, with
the grid size h ≈ 1

18 cmin/ f . The results indicate that there is
practically no significant difference in convergence for forward
and back-propagation problems. With β = 1, the convergence
of MKMG is practically independent of frequency.

x−axis (m)

de
pt

h 
(m

)

0 1000 2000 3000 4000 5000 6000

0

200

400

600

800

1000

1200

1400

1600

Figure 3: Wavefield from forward modeling. f = 20 Hz.
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Figure 4: Forward modeling using 2D Marmousi velocity
model. Black lines indicate the number of iterations; the gray
lines are the number of multiplications with A.

In Figure 4, we also compare the convergence results of MKMG
with the MG method. In terms of the number of iterations,
MKMG converges about five times faster than the MG method.
It is worth mentioning that without any preconditioner, Bi-
CGSTAB applied to Equation 2 with f = 1 Hz requires 17446
iterations to converge.

Table 2 compares the convergence results of MKMG in Fig-
ure 4 with the case where the grid size is fixed. In this case,
for f = [5,30] Hz we set h = 1

18 (cmin/30). Hence, for low
frequencies the grid used is extremely fine. The table clearly
shows that the convergence is independent of h.

Frequency (Hz) 5 10 15 20 25 30

Iteration count 8 10 11 15 15 23

Table 1: Number of MKMG iterations for back propagation
using 2D Marmousi velocity model.

Finally, we estimate the total memory used in MKMG and
compare it with direct methods in the case of in-core imple-
mentation. (MKMG can however be implemented without any
matrices stored in memory.) For MKMG, we need to store
the matrices A’s, M’s, and Z’s (see Appendix A). In addition,
since we base the MKMG method on GMRES, we also need
to store vectors of length nxnz used in GMRES. As seen in
Figure 5, MKMG requires less memory than LU factorization.
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Frequency (Hz) 5 10 15 20 25 30

Grid adapted to f 8 10 11 15 15 23

Grid fixed at f = 30 Hz 8 8 11 12 15 23

Table 2: Number of MKMG iterations for forward modeling
using the 2D Marmousi data.

This advantage will become more significant in three dimen-
sions.
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Figure 5: Memory used in LU factorizations and MKMG.

CONCLUDING REMARKS

Parallel implementations of the MG method have been pre-
sented for 2D and 3D forward modeling in Kononov et al.
(2006) and Riyanti et al. (2006b), respectively. Since Krylov
methods are well parallelizable, this implies that the MKMG
method is also well parallelizable.

Riyanti et al. (2006b) note that the 2D frequency-domain mi-
gration based on direct methods can be about one order of
magnitude faster than the 2D time-domain migration. For di-
rect methods with nested dissection, computing LU factors
and linear system solves amount to n f O(n3) = n f nO(n2) and
n f nsO(n2 logn) work, respectively, with n f the number of fre-
quencies, ns the number of shots, and n = nx = nz. Thus, if
ns = n, the complexity is WD = n f ns(O(n2)+O(n2 logn)). In
direct methods, however, the equality constant for the first term
is usually large. For MKMG, the complexity is WMKMG =
n f nsnitO(n2), with nit the number of MKMG iterations. Since
for n > e, n2 logn > n2, we see that WMKMG < Cn f nsn2 logn
if the corresponding equality constant times nit is smaller than
C logn. Considering its fast convergence, it is very likely that
for 2D problems, MKMG is more efficient than the most effi-
cient direct methods. This efficiency of MKMG will be more
pronounced in 3D. Combining MKMG with sparsity-promoting
recovery, which allows the use of a very limited number of fre-
quencies, will further widen the margin between the frequency-
domain and time-domain migration.
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APPENDIX A

THE MKMG METHOD

To describe the MKMG method, we rewrite Equation 9 as

A1M−1
1 Q1ũ = b, u = M−1

1 Q1ũ, (A-1)

with Q1 := I1−Z12E−1
2 YT

12A1M−1
1 +λnZ12E−1

2 YT
12, and E2 :=

YT
12A1M−1

1 Z12. Note that the matrix Q1 must not be con-
structed explicitly because Q1 is dense. The reason of choos-
ing of subscripts in this manner will be clear during the discus-
sion. Suppose that we have Y12 and Z12.

In a Krylov method, the solution subspace is expanded by
computing the new basis wi+1 using the previous basis wi, i.e.,

wi+1 = A1M−1
1 Q1wi = A1M−1

1

“
wi−Z12E−1

2 YT
12ŵi

”
,(A-2)

where ŵi = (A1M−1
1 −λnI1)wi. Define ŷ := YT

12ŵi, with ŷ ∈
Cm. We then need to compute ẑ = E−1

2 ŷ. We avoid an explicit
computation of E−1 because we need to form M−1

1 , which, in
our case, is not available because we only know the action of
it on a vector via one multigrid iteration. Rather, we will only
consider the action of E−1 on ŷ via the implicit equation

E2ẑ = ŷ. (A-3)

To do this, we introduce an approximation to E2 of the form

E2 ≈ YT
12A1Z12(YT

12M1Z12)−1YT
12Z12. (A-4)

The products YT
12A1Z12 =: A2, YT

12M1Z12 =: M2 and YT
12Z12 =:

B2 are the Galerkin approximation associated with the indi-
vidual matrices A1, M1, and B1 = I1, respectively, and have
a very similar form with the coarse-grid matrix in multigrid.
Hence, the matrices Y12 and Z12 can be built in the same
way the multigrid interpolation and restriction matrix. Since
m = dimA2 = dimM2 = dimB2 � dimA1 = n, we say that the
vectors ŵ, and respectively ẑ, belong to a higher and lower di-
mension subspace. All matrices which map a vector into the
largest subspace are denoted by the subscript “1”, etc. To get
an accurate ẑ as fast as possible, we can introduce an operator
Q2, which is similar to Q1. By virtue of approximation A-4, ẑ
is solved from Equation A-3 by solving the system

A2M−1
2 B2Q2z̃ = ŷ, ẑ = Q2z̃. (A-5)

By an application of a Krylov method on Equation A-5, a re-
cursive MKMG method results. An MKMG method with four
levels is illustrated in Figure A-1.

Level 1 : A

Level 2 : E

Level 3 : E

Level 4 : E

3

4

Figure A-1: One MKMG iteration. Black circles indicate the
MK step, the white circles indicate the MG loop.
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