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SUMMARY

Matching seismic wavefields lies at the heart of seismic pro-
cessing whether one is adaptively subtracting multiples predic-
tions or groundroll. In both cases, the predictions are matched
to the actual to-be-separated wavefield components in the ob-
served data. The success of these wavefield matching proce-
dures depends on our ability to (i) control possible overfitting,
which may lead to accidental removal of primary energy, (ii)
handle data with nonunique dips, and (iii) apply wavefield sep-
aration after matching stably. In this paper, we show that the
curvelet transform allows us to address these issues by im-
posing smoothness in phase space, by using their capability
to handle conflicting dips, and by leveraging their ability to
represent seismic data sparsely.

INTRODUCTION

Matched filtering for the purpose of matching the amplitudes
of wavefields prior to subtraction has been an integral part of
the seismic data processor’s toolbox (see e.g. Verschuur et al.,
1992, where matched-filtering is used within Surface-Related
Multiple Elimination, SRME). The recent advent of scaling
methods for the restoration of migration amplitudes through
image-to-remigrated-image matching (see e.g. Guitton, 2004;
Herrmann et al., 2008a; Symes, 2008) represents another in-
stance of matched filtering.

Even though matched-filtering procedures have been applied
successfully for cases where the data sets differ by only a sin-
gle short convolutional filter, extensions of this framework to
situations where the differences vary non stationarily has been
more problematic. In this paper, we propose a method cor-
recting for these nonstationary effects by making the follow-
ing assumptions: (i) the stationary difference is removed by a
global matching procedure, which corresponds to removal of
the source/receiver directivity during primary-multiple sepa-
ration (Herrmann et al., 2008b), and (ii) the remaining non-
stationary difference is assumed to vary smoothly in phase
space—i.e., the amplitude mismatches are assumed to vary
smoothly as a function of position and dip along the coherent
wavefronts of the predicted noise component.

THE FORWARD MODEL

With the above assumptions, the nonstationary matching can
be represented mathematically by a zero-order pseudo-differential
operator (ΨDO), whose action on an arbitrary d-dimensional
function is given by`

B f
´
(x) =

Z
x∈Rd

e jk·xb(x,k) f̂ (k)dk (1)

with k the wavenumber vector and b(x,k) a real-valued space-
and spatial-frequency dependent filter, known as the symbol.
For our application, this operator acts either on shot records
or on common-offset panels (d = 2) and applies a location,
frequency, and dip-dependent scaling. After discretization,
this operator models the mismatch by applying a matrix-vector
multiplication —i.e.,

g = BBBf, (2)

where BBB is a full positive-definite matrix, implementing the ac-
tion of the pseudo-differential operator, and f and g the two to
be matched discretized wavefields. e.g., the total data and pre-
dicted (and conventionally matched) multiples, respectively.
As shown by Herrmann et al. (2008b), this approach leads to
excellent results in primary-multiple on synthethic as well as
real data (see also below).

APPROXIMATE FORWARD MODEL

After the appropriate global compensation for the stationary
contribution of the matched filter (by e.g. a global matching
procedure), the ΨDO in Equation 2 can be considered zero or-
der and hence permits the following diagonal curvelet-domain
decomposition (Herrmann et al., 2008a,b),

g ≈CCCT diag{w}CCCf, {w}µ∈M > 0, (3)

with CCC the 2D discrete curvelet transform (see e.g. Candés
et al., 2006) and w the curvelet-domain scaling vector and M
the index set of curvelet coefficients. Since we are using the
curvelet transform based on wrapping, which is a tight frame,
we have CCCTCCC = IIId and the transpose, denoted by the symbol
T , equals the pseudo inverse.

In this approximate forward model, for which precise theo-
retical error estimates exist (Herrmann et al., 2008a), the two
wavefields are matched by a simple curvelet-domain scaling.
This curvelet-domain scaling applies a location, scale and dip
dependent amplitude correction. Since the matrix BBB is positive-
definite, the entries in the scaling vector, w, are positive. This
approximate formulation of the forward model is the basis for
our curvelet-domain matched filter.

CURVELET-DOMAIN MATCHED FILTERING

Equation 3 lends itself to an inversion for the unknown scaling
vector. As both wavefields are known, our formulation min-
imizes the least-squares mismatch between the two of them.
The following issues complicate the estimation of the scaling
vector: (i) the undeterminedness of the forward model due to
the redundancy of the curvelet transform—i.e., CCCCCCT is rank
deficient; (ii) the risk of overfitting the data, which leads to
unwanted artifacts such as incorrect amplitude corrections or
inadvertent matching of primary energy, and (iii) the positiv-
ity requirement for the scaling vector. To address issues (i-ii),



the following augmented system of equations is formed that
relates the unknown scaling vector w to the augmented data
vector, d— i.e., »

g
0

–
=

»
CCCT diag{CCCf̆}

γLLL

–
w (4)

or d = FFFγ w. The scaling vector is found by minimizing the
functional

Jγ (z) =
1
2
‖d−FFFγ ez‖2

2, (5)

where the substitution of w = ez (with the exponentiation taken
elementwise) guarantees positivity (issue (iii)) of the solution
(Vogel, 2002). This formulation seeks a solution fitting the
vector, g, with a smoothness constraint imposed by the sharp-
ening operator LLL, which for each scale penalize fluctuations
amongst neighboring curvelet coefficients in the space and an-
gle directions (see Herrmann et al., 2008a, for a detailed de-
scription). The amount of smoothing is controlled by the pa-
rameter γ . For increasing γ , there is more smoothness at the
expense of overfitting the data (e.g., erroneously fitting the pri-
maries). For a specific γ , the penalty functional in Equation 5
is minimized with respect to the vector z with the limited-
memory BFGS (Nocedal and Wright, 1999) with the gradient

gradJ(z) = diag{ez}
ˆ
FFFT

γ

`
FFFγ ez−d

´˜
. (6)

Below, we discuss the application of this curvelet-domain matched
filter, each exploiting curvelet domain sparsity.

STABLE APPLICATION OF OUR MATCHED FILTER

Ideally, the scaled multiples yielded by the above nonlinear
least-squares problem, ez = argminz J(z), could be subtracted
from the total data directly. Unfortunately, the presence of
noise in seismic imaging (see e.g. Herrmann et al., 2008a) and
phase and kinematic errors in primary-multiple separation may
interfere, rendering a separation based on the residual alone (as
in SRME) ineffective. Following recent work by Saab et al.
(2007); Wang et al. (2008), we separate the primaries and mul-
tiples by solving the following sparsity-promoting program

{ex1, ex2} = argmin
x1,x2

λ1‖x1‖1,w1
+λ2‖x2‖1,w2

(7)

+ ‖AAAx2−b2‖2
2 +η‖AAA(x1 +x2)−b‖2

2,

where the vectors {ex1, ex2} represent the estimates for the pri-
maries and multiples, respectively, and where AAA is the curvelet
synthesis matrix, {w1, w2} are positive weights, and {b, b2},
the total data and the adapted multiple prediction—i.e., b2 =
AAAdiag{w}AAA∗ f̆ with the symbol ∗ denoting the conjugate trans-
pose. We set the weights in Equation 7 according to w1 =
max{|AAA∗b2|,ε} and w2 = max{|AAA∗b1|,ε} with the operations
taken elementwise and ε > 0 a small parameter. As detailed in
Saab et al. (2007); Wang et al. (2008), the λ ’s and η are con-
trol parameters determining the sparsity of the solution and fits
to the total data and the matched multiple prediction.

For appropriately chosen λ1,λ2,η , and reasonably accurately
matched SRME-predicted multiples, the minimization of Equa-
tion 7 leads to a separation of the primaries and multiples. To

minimize Equation 7, we devise an iterative thresholding al-
gorithm in the spirit of the work by Daubechies et al. (2004).
Starting from arbitrary initial estimates x0

1 and x0
2 of x1 and x2,

the nth iteration of the algorithm proceeds as follows

xn+1
1 = TTT λ1w1

2η

ˆ
AAA∗b2−AAA∗AAAxn

2 +AAA∗b1−AAA∗AAAxn
1 +xn

1
˜

xn+1
2 = TTT λ2w2

2(1+η)

h
AAA∗b2−AAA∗AAAxn

2 +xn
2 + η

η+1
`
AAA∗b1−AAA∗AAAxn

1
´i

,

(8)
where TTT u : R|M | 7→R|M | is the elementwise soft-thresholding
operator—i.e., for each µ ∈M , Tuµ

(vµ ) := sgn(vµ )·max(0, |vµ |−
|uµ |). The proposed algorithm provably converges to the min-
imizer of Equation 7, provided all weights—i.e., all compo-
nents of the vectors w1 and w2, are strictly positive (Daubechies
et al., 2004).

Our Bayesian formulation leads to an optimization problem—
i.e., the minimization of Equation 7, which involves a com-
bined minimization of the weighted `1-norms of the coefficient
vectors, the `2-misfit between the matched SRME-predicted
and estimated multiples, and the `2-misfit between the sum of
the estimated primaries and multiples and the observed total
data. From this interpretation, it is clear that our Bayesian
formulation is an extension of earlier work (Herrmann et al.,
2007) since our formulation includes an additional term. This
new term acts as a safeguard by making sure that the estimated
multiples remain sufficiently close to the SRME-predicted mul-
tiples.The lower our confidence is in the matched SRME-predic-
ted multiples, the more emphasis we place on the total data
misfit. The case η →∞ is analogous to an absolute lack of con-
fidence on the matched SRME-predicted multiples, and thus
includes a misfit concerning the total data only. This limiting
unrealistic assumption underlaid our earlier formulation (Herr-
mann et al., 2007). Away from this limit, Equation 7 leads to
solutions that are not only sparse, but also produce estimated
curvelet coefficients for the multiples that are required to fit
the SRME-predicted multiples. The relative degrees of spar-
sity for the two signal components are controlled by λ1 and
λ2.

The performance of the presented separation algorithm de-
pends on: (i) the sparsity of the coherent signal components in
the transform domain: the sparser the two signal components,
the smaller the chance that the supports of the two curvelet
coefficient vectors overlap; (ii) the validity of the indepen-
dence assumption, which is empirically established in Herr-
mann et al. (2007); (iii) the accuracy of the matched SRME-
predictions. Even though it was shown that curvelet-domain
separation is relatively insensitive to errors in the SRME-predic-
tions, significant amplitude errors (significant timing errors are
assumed absent) lead to a deterioration of the separation. How-
ever, for smoothly varying amplitude errors, we address this
situation with the curvelet-domain matched filter described above
and in Herrmann et al. (2008b).

SYNTHETIC-DATA EXAMPLE

We consider a shot record from a synthetic line, generated
by an acoustic finite-difference code for a velocity model that



consists of a high-velocity layer, which represents salt, sur-
rounded by sedimentary layers and a water bottom that is not
completely flat (see Fig. 11 in Herrmann et al., 2007). In Fig-
ure 1, the results for optimized single-term SRME are com-
pared to curvelet-domain Bayesian separation with and with-
out our amplitude scaling. Figures 1(a)-1(c) include the to-
tal input data with multiples, the SRME-predicted multiples
and the “multiple-free” data, respectively. The predicted mul-
tiples are the result of conventional matching in a single win-
dow. The “multiple-free” data were modeled with an absorb-
ing boundary condition, removing the surface-related multi-
ples. Results for the estimated primaries according to opti-
mized single-term SRME with windowed matching, Bayesian
separation and scaled-Bayesian separation are included in Fig-
ures 1(d)-1(f). Comparison of these results shows a significant
improvement for the primaries computed with the curvelet-
domain amplitude scaling, calculated by solving Equation 5
for γ = 0.5. For this choice of γ , the multiples are not over
fitted and the amplitude correction leads to a removal of rem-
nant multiple energy, in particular for the events annotated by
the arrows. The value for γ was found experimentally. Finally,
notice that the improvement in the estimate for the primaries is
due to the combination of curvelet-domain separation and scal-
ing, yielding results that are comparable to the ones expected
from multi-term SRME. Even though multi-term SRME, in
combination with standard `2-subtraction, is known to near
perfectly remove surface-related multiples for synthetic data,
SRME in practice is often only viable for one iteration because
field data sets often do not obey assumptions of the model.
Therefore, the single-term SRME result in Figure 1(d) can be
considered as state of the art.

FIELD DATA EXAMPLE

We test the above-described adaptive separation algorithm by
examining real North Sea field dataset. The main purpose
of this test is to study the improvement by curvelet-domain
matching compared to results obtained with and estimate for
the multiples yielded by optimized one-term SRME computed
with a windowed-matched filter. This case is relevant for situ-
ations where the data quality does not permit iterative SRME
or where the cost of multiple iterations of SRME is a concern.
In either situation, the predicted multiples will contain ampli-
tude errors, which may give rise to residual multiple energy
and dimmed primaries. We show that the proposed scaling
by curvelet-domain matched filtering improves the estimation
for the primaries as long the curvelet-to-curvelet variations for
this scaling are sufficiently controlled by the smoothness con-
straint. Relaxation of this constraint may leads to overfitting
and hence to inadvertent removal of primary energy.

Figure 2(a) contains the common-offset section (at offset 200m)
that we selected from a North Sea field dataset. Estimated pri-
maries according to conventional SRME are plotted in Fig-
ure 2(b). Results where `2-matched filtering in the shot do-
main (Verschuur and Berkhout, 1997) is replaced by Bayesian
thresholding (Saab et al., 2007) in the offset domain, are pre-
sented for a single offset in Figure 2(c), without scaling, and
in Figure 2(d) with scaling. The scaled result is calculated

for γ = 0.3. Juxtaposing the standard SRME and the curvelet-
based results shows a removal of high-frequency clutter, which
is in agreement with earlier findings reported in the literature.
Moreover, primaries in the deeper part of the section (e.g. near
the lower-two arrows in each plot) are much better preserved,
compared to the standard-SRME result. Removal of the strong
residual multiples in the shallow part, e.g. the first- and second-
order water bottom multiples indicated by the arrows around
0.75 and 1.20s, is particularly exciting. Due to the unbalanced
amplitudes of the predicted multiples, both standard SRME
and non-adaptive Bayesian thresholding are unable to elimi-
nate these events. Our adaptive method, however, successfully
removes these events by virtue of the curvelet-domain scaling.
Compared to non-adaptive thresholding, residual multiples are
better suppressed, while our adaptive scheme also leads to at
least similar, but often even better, overall continuity and am-
plitude preservation of the estimated primaries. For example,
improvements are visible in the lower-left corner of the sec-
tions (between offsets [0− 2000]m and times [3.0− 3.6]s),
where low-frequency multiple residuals are better suppressed
after curvelet-domain matched filtering (cf. Figure 2(c) and
2(d)), without deterioration of the primary energy. Finally, ob-
serve the improved recovery of primary energy at the lower
arrow in Figure2(d), compared to the primary in Figure 2(c).

RELATION TO RECENT WORK AND EXTENSIONS

In a recent conference proceeding, Neelamani et al. (2008)
propose a elementwise curvelet-domain adaptive subtraction
method that is based on the complex-valued curvelet trans-
form. Their method involves the solution of the following
constrained optimization problem for each individual curvelet
coefficient—i.e,

min
aµ ,φµ

|{CCCcg}µ −aµ exp( jφµ ){CCCc f̆}µ |

subject to amin
µ ≤ aµ ≤ amax

µ , (9)

φ
min
µ ≤ φµ ≤ φ

max
µ ,

for µ ∈M .

In this expression, CCCc is the complex curvelet transform, and
aµ , φµ are the elementwise amplitude and phase factors that
minimize the difference between the complex curvelet coef-
ficients of the total data and of the predicted multiples. To
prevent overfitting, these factors are bound between elemen-
twise minimal and maximal values—i.e., the amin

µ , amax
µ and

φ min
µ , φ max

µ .

Even though this is an elegant and computationally efficient
formalism that yields good results, the method only matches
locally—i.e., for each element of the curvelet vector separately
without curvelet-to-curvelet control—while our method matches
the complete curvelet coefficient vector by solving a global
nonlinear optimization problem where curvelet-to-curvelet vari-
ations in the corrections are controlled by a smoothness con-
straint (cf. Equation 5). This smoothness constraint is con-
trolled by a single Lagrange multiplier γ (cf. Equation 5) that
is related to our insistence on modeling the mismatch between



the actual and predicted multiples by a ΨDO with a smooth
and positive symbol.

However, in practice the above assumption may be violated
since multiple predictions and actual multiples generally differ
by kinematic shifts. Allowing for shifts as part of a matching
procedure would solve this problem but extreme care should be
taken because SRME-based multiple predications are solidly
grounded by the wave equation, and applying significant shifts
entails a departure that may not be justifiable. However, as
rightfully pointed out by Neelamani et al. (2008), complex
curvelet transforms (see also Herrmann, 2005, for a discus-
sion on phase rotated wavelets) allow for small phase rota-
tions remedying the lack of shift invariance of the real-valued
curvelet transform. So far, we used this property after am-
plitude matching during our Bayesian separation (Saab et al.,
2007; Wang et al., 2008). This Bayes separation is also based
on the complex curvelet transform and involves another global
optimization problem now constrained by the matched multi-
ple predictions and the total data mismatch (cf. Equation 7).

So far, the adaptive part of our formulation was aimed at adapt-
ing the amplitudes, leaving the kinematic errors to the sec-
ond Bayes stage of the separation. During the workshop we
plan to report whether incorporation of an extension towards a
complex-valued matching procedure will further improve our
results.

DISCUSSION AND CONCLUSIONS

In this paper, we presented a comprehensive method to com-
pute the coefficients of a curvelet-domain matched filter and to
apply the estimated filter through a Bayes separation method
where sparsity on the to-be-separated signal components is
promoted. The stylized example with the conflicting dips un-
derlined the importance of imposing phase-space smoothness
while the field data example showed the merit of our method
in the context of adaptive primary-multiple separation.
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Figure 1: Primary-multiple separation on a synthetic shot record. (a) The total data, p, including primaries and multiples. (b)
Single-term SRME-predicted multiples wavelet-matched within a global window (s̆2). (c) Reference surface-related multiple-
free data modeled with an absorbing boundary condition. (d) Estimate for the primaries, yielded by optimized one-term SRME
computed with a windowed-matched filter. (e) Estimate for the primaries, computed by Bayesian iterative thresholding with a
threshold defined by t = |CCCs̆2|. (f) The same as (e) but now for the scaled threshold, i.e., t = |diag{ew}CCCs̆2| (with γ = 0.5). Notice
the improvement for the scaled estimate for the primaries, compared to the primaries yielded by SRME in (d) and by the Bayesian
separation without scaling in (e).



(a) (b) (c)
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Figure 2: Adaptive curvelet-domain primary-multiple separation on real data. (a) Near-offset (200m) section for the total data plot-
ted with automatic-gain control. (b) Estimate for the primaries, yielded by optimized one-term SRME computed with a windowed-
matched filter. (c) Estimate for the primaries, computed by Bayesian iterative thresholding with a threshold defined by t = |CCCb̆2|
with b2 the predicted multiples. (d) The same as (c) but now for the scaled (for γ = 0.3) threshold, i.e., t = |diag{ew}CCCb2| withew = exp(ez). (e) The difference between SRME and matched filter. (f) Difference between the total data and the matched predicted
primaries. Notice the improvement for the scaled estimate for the primaries, compared to the primaries yielded by SRME in (b)
and by the Bayesian separation without scaling in (c).
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