Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2007 SLIM group @ The University of British Columbia.

Robust Seismic Image Amplitude Recovery Using Curvelets

Peyman P. Moghaddam Joint work with Felix J. Herrmann and Christiaan C. Stolk

UNIVERSITY OF BRITISH COLUMBIA University of Twente

Seismic Laboratory for

References

Curvelets and its invariance,

- Curvelet and FIOs, Candes and Demanent (2002)
- Hardy space for FIOs, Smith (1998)

Migration amplitude recovery

- Optimal scaling for RTM, Symes (2007)
- Illumination based migration, Rickett and Claerbout (2000)
- Hessian Approximation based, Mulder (2003)
- True amplitude migration, Zhang (2003)
- Least square migration, Kuhl and Sacchi (2001)
- Continuity promoting and anisotropic diffusion,
 - Regularization for denoising, Scherzer (2003)
 - In seismic imaging, Fehmer (2003)

Optimization method,

- Soft-thresholding, Donoho (1995)
- Iterative thresholding, Daubechies (2005)
- Gradient based optimization, Nocedal (2001)

Overview

- Definition of problem
- Imaging as an inversion problem
- Curvelets and their properties
- Curvelets and their invariance under the normal operator
- Normal operator approximation
- Curvelets factorization of the normal operator
- Problem reformulation
- Optimization
- Results
- Conclusion

Definition of the problem

Basic imaging problem

```
\mathbf{d} = \mathbf{K}\mathbf{m} + \mathbf{n}
```

Desired seismic image characteristics:

Broad-band

Sharp, high resolution

2D curves/3D sheets

Continuity along the reflectors

Noise in seismic images

Random noise

Instruments distortion

□Ambient

Imaging operator imperfections

Imaging as an inverse problem

Following inversion problem is introduced

 $\min_{\mathbf{m}} J(\mathbf{m}) \text{ subject to } |\mathbf{d} - \mathbf{Km}|_2^2 \leq \epsilon$

- J(m) is the norm or penalty function
- This norm has to
 - explore the continuity along the reflectors
 - explore the sparsity of image in the curvelet domain
 - reduce the artifacts from the image
 - enhance the reflectors
 - remove the noise from the seismic image

Curvelets and their properties

Curvelets:

- are multiscale and multi-directional
- sparsely present seismic images
- are invariant under the action of idealize normal operator
- are constructed as tight frames
- transformation is fast
- are reliably used for denoising in image processing applications

Examples (three curvelets)

(e)

(f)

(g)

Normal operator approximation

 Approximation with curvelet eigenvalue-like decomposition:

$C^T D C r \approx K^T K r$

Diagonal matrix is smooth in the curvelet domain

Computationally cheap, requires only "one" evaluation of the normal operator

Diagonal approximation

Estimation with smoothness constraint

$\mathbf{C}^{\mathrm{T}}\mathbf{D}\mathbf{C}\mathbf{r} \approx \mathbf{K}^{\mathrm{T}}\mathbf{K}\mathbf{r}$ $\begin{pmatrix} \mathbf{C}^{\mathrm{T}}\mathrm{diag}(\mathbf{v})\\ \mathbf{L} \end{pmatrix} \mathbf{d} = \begin{pmatrix} \mathbf{K}^{\mathrm{T}}\mathbf{K}\mathbf{r}\\ \mathbf{0} \end{pmatrix}$ $\mathbf{L} = [\mathbf{D}_{\mathbf{x}}^{T} \mathbf{D}_{\mathbf{y}}^{T} \mathbf{D}_{\boldsymbol{\theta}}^{T}]^{T} \quad \mathbf{v} = \mathbf{C}\mathbf{r}$

Solve using LSQR method

Explore smoothness in curvelet's phase space

Problem reformulation

Forming the normal equation,

$$\mathbf{d} = \mathbf{K}\mathbf{m} + \mathbf{n} \Rightarrow \mathbf{K}^T \mathbf{d} = \mathbf{K}^T \mathbf{K}\mathbf{m} + \mathbf{K}^T \mathbf{n}$$
$$\Rightarrow \mathbf{y} \approx \mathbf{A}\mathbf{A}^T \mathbf{m} + \mathbf{e}$$
$$= \mathbf{A}\mathbf{x_0} + \mathbf{e}$$

with

$$\mathbf{y} = \mathbf{K}^T \mathbf{d}, \quad A = C^T \sqrt{D}$$

A is scaled inverse curvelet transform

Recovery problem formulation

$$\mathbf{P}_{\epsilon}: \qquad \begin{cases} \widetilde{\mathbf{x}} = \min_{\mathbf{x}} J(\mathbf{x}) & \text{subject to} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2 \leq \epsilon \\ \\ \widetilde{\mathbf{m}} = \left(\mathbf{A}^T\right)^{\dagger} \widetilde{\mathbf{x}}. \end{cases}$$

with

$$J(\mathbf{x}) = \overbrace{\alpha ||\mathbf{x}||_{1}}^{Sparsity} + \overbrace{\beta ||\mathbf{\Gamma}^{1/2}(\mathbf{A}^{T})^{-1}\mathbf{x}||_{2}}^{Continuity}$$

Optimization method

Step 1: update of the Jacobian of $\frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2$:

$$\mathbf{x} \leftarrow \mathbf{x} + \mathbf{A}^T \left(\mathbf{y} - \mathbf{A} \mathbf{x} \right);$$

Step 2: project onto the ℓ_1 ball $S = \{ \|\mathbf{x}\|_1 \le \|\mathbf{x}_0\|_1 \}$ by soft thresholding

$$\mathbf{x} \leftarrow T_{\lambda}(\mathbf{x});$$

Step 3: project onto the anisotropic diffusion ball $C = \{\mathbf{x} : J(\mathbf{x}) \leq J(\mathbf{x}_0)\}$ by

$$\mathbf{x} \leftarrow \mathbf{x} - \beta \nabla_{\mathbf{x}} J_c(\mathbf{x})$$

with

$$oldsymbol{
abla}_{\mathbf{x}}J_{c}(\mathbf{x})=2\mathbf{A}^{\dagger}oldsymbol{
abla}\cdot\left(oldsymbol{\Lambda}oldsymbol{
abla}\left(\left(\mathbf{A}^{T}
ight)^{\dagger}\mathbf{x}
ight)
ight).$$

Example: diagonal inversion BP model

Example: diagonal inversion reference image

Seismic Labora

Example: diagonal inversion recovered image

Recoverd Image λ = 1

Example (SEG-AA' Model) linearized Born data

Example (SEG-AA' model) linearized Born data

Example (SEG-AA' model) linearized Born data

norm-one and continuity recovered

Example (SEG-AA' model) linearized Born data

Example (SEG-AA' model) synthetic data

Migrated Image

Example (SEG-AA' model) synthetic data

Amplitude Recovered Image

Conclusion

This work

Introduces a novel approach to migration amplitude recovery

Image: Image: mage: m

Image: matrix of the second second

can be used instead of illumination map or in conjunction with it

Acknowledgment

- The authors would like to thank the authors of CurveLab for making their codes available.
- The authors would also like to thank W. W. Symes for providing the migration code.
- The authors would also like to thank BG Group, BP, Chevron, ExxonMobil and Shell for financial support of this work.
- The authors would also like to thank TOTAL EP to support part of this research

