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SUMMARY

In this paper, we recover the amplitude of a seis-
mic image by approximating the normal (demigration-
migration) operator. In this approximation, we make
use of the property that curvelets remain invariant under
the action of the normal operator. We propose a seis-
mic amplitude recovery method that employs an eigen-
value like decomposition for the normal operator using
curvelets as eigen-vectors. Subsequently, we propose
an approximate non-linear singularity-preserving solu-
tion to the least-squares seismic imaging problem with
sparseness in the curvelet domain and spatial continu-
ity constraints. Our method is tested with a reverse-time
’wave-equation’ migration code simulating the acoustic
wave equation on the SEG-AA salt model.

INTRODUCTION

In the mid-90s, Hart Smith (Smith, 1997, 1998) intro-
duced waveforms that are invariant under the action of
certain Fourier and pseudo-differential operators. Based
on his theory, E. Candes (2000) designed and imple-
mented curvelets which behave following similar ideas.
Since then it has been used in different area of signal and
image processing. Candes and Demanet (2002) showed
how curvelets behave under the action of Fourier inte-
gral operators. They stated that under certain conditions
a curvelet maps to another curvelet under the action of
Fourier Integral Operator (FIO).

Recently efforts have been made to exploit this theoret-
ical invariance property towards a diagonalization of mi-
gration operators (see e.g. Chauris, 2006). Since curvelets
are discrete and hence move around on grids, this makes
it a challenge to define fast migration operators. Curvelets,
however, prove to be very useful for solving the seismic
amplitude recovery problem, during which curvelets are
being imaged. This seismic amplitude recovery problem
involves the inversion of the normal (migration-demigration)
operator whose behavior corresponds to that of a non-
stationary convolution (i.e., pseudodifferential operator).
Since curvelets in this case no longer move, their rela-
tive invariance can be used to diagonally approximate
and subsequently approximately invert the normal oper-
ator, an approach followed in this abstract. During the
inversion curvelet sparsity and continuity along imaged
reflectors are jointly promoted leading to a stable recov-

ery of the seismic amplitudes in particular along steeply
dipping events and under the salt.

THE PROBLEM FORMULATION

After linearization and by ignoring the source and re-
ceiver signatures, the discretized forward model that gen-
erates seismic data can be written as

d = KKKm+n, (1)

with d the first-order Born approximation data, KKK the
scattering operator (or commonly called de-migration or
modeling operator), n is the noise and m represents the
(singular) fluctuations in the earth’s acoustic properties
with respect to an appropriately chosen smoothly vary-
ing background velocity model (the density of mass is
assumed constant). These fluctuations are referred to as
the model and seismic imaging aims to recover both the
locations and the relative amplitudes of the velocity fluc-
tuations from seismic data. Applying the adjoint of the
linearized scattering operator KKK to the data vector ( d in
equation 1) leads to the migrated image.

KKKT d = KKKT KKKm+KKKT n (2)
y =

(
ΨΨΨm

)
+ e,

with ΨΨΨ = KKKT KKK defined as normal operator and e = KKKT n
is the colored noise.

An extensive literature has emerged on restoring the mi-
gration amplitude by inverting the normal matrix (ΨΨΨ =
KKKT KKK) (Nemeth. et al., 1999; Kuhl and Sacchi, 2003;
Herrmann et al., 2006), and involves the computation of
the pseudo inverse of the scattering or demigration ma-
trix. Unfortunately, the normal operator it too big to be
constructed explicitly and is too expensive to be eval-
uated as part of an iterative Krylov-subspace solver to
invert the Hessian (see e.g. Nemeth. et al., 1999).

THEORY: DIAGONAL APPROXIMATION OF NOR-
MAL OPERATOR

A curvelet φµ is defined by its index µ which is a triple
( j,k, l) with j = 0,1,2, ... a scale index; l = 0,1, ...,2b j/2c−
1 an orientation index (bxc is the integer part of x ); and
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k = (k1,k2) is the location index. One of the impor-
tant features of curvelet is that the action of a pseudo-
differential operator (i.e., ΨΨΨ ) on a curvelet φµ is ap-
proximately mapped into the same curvelet . To be more
specific, a pseudo-differential operator induces a map-
ping µ 7→ µ ′ with property that significant curvelet co-
efficients of ΨΨΨ(φµ) are located very close to µ , itself.

We propose following decomposition of the normal op-
erator

ΨΨΨ ≈CCCT
ΛΛΛCCC, (3)

where ΛΛΛ is a diagonal matrix, CCC and CCCT are the curvelet
and the transpose of curvelet transform. This decom-
position states that we can decompose the normal oper-
ator in a form of eigenvalue-like decomposition where
curvelets play the role of eigenfunctions and the diago-
nal ΛΛΛ the role of the eigenvalues.

Since the eigenvalues are not known, we propose a method
that estimates this diagonal from the action of the normal
operator on a reference vector (r) that is close enough to
the original model.

ΨΨΨr = CCCT
ΛΛΛCCCr 7→CCCT diag(u)λ = ΨΨΨr, (4)

with u = CCCr and λ is the diagonal elements of ΛΛΛ.

During this diagonal estimation method, we aim to find
a curvelet-domain diagonal weighting vector (i.e., λ )
that approximates the action of the normal operator on
the reference vector. We choose the spherical-spreading
corrected migrated image as the reference vector. Be-
cause the curvelet transform is redundant, the estima-
tion of this diagonal in equation refeqn:refvec is an un-
derdetermined inverse problem. To find an unique solu-
tion to this diagonal approximation problem we impose
additional smoothing constrains on the to-be-estimated
diagonal (λ ). These constraints reflect the behavior of
the normal operator for smooth velocity models. In the
curvelet domain, this smoothness constraint corresponds
to limiting the size of the differences amongst neigbor-
ing curvelet coefficients. Mathematically, the diagonal
estimation can be written in terms of the following min-
inmization problem:

min
λ

1
2
||ΨΨΨr−CCCT diag(u)λ ||`2 +κ||LLLλ ||`2 , (5)

with LLL = [DDDx DDDz DDDθ ] a so-called sharpening opera-
tor penalizing fluctuations amongst neighboring coeffi-
cients in λ which is in the curvelet domain. DDDx,z contain

the first-order differences at each scale in the x,z direc-
tions, and DDDθ the first-order difference in the θ direction.
These differences are scale dependent because the spa-
tial grid and angles of the curvelet partitioning of phase
space both depend on the scale.

SPARSITY-CONTINUITY ENHANCING AMPLI-
TUDE RECOVERY

Normal operator is an important operator since its in-
verse can correct for the inaccuracy created by migra-
tion process. We introduce a solution for seismic ampli-
tude recovery which utilizes the diagonal approximation
mentioned in the last section.

We can now rewrite the normal equation 2 in the fol-
lowing approximate form

'
(
AAAAAAT m

)
+ e (6)

= AAAx0 + e,

with AAA = CCCT
Γ. Above equation is the direct result of

equation 3. Γ =
√

ΛΛΛ is the square-root of the ’eigen-
values’ and can be shown to be smooth in the curvelet
domain (equation 5). x0 = AAAT m is called the sparsity
vector.

We propose an amplitude recovery solution. This solu-
tion is formulated in terms of a sparsity-promoting non-
linear optimization problem and can be seen as a formal-
ization of earlier ideas on stable seismic image recovery.
During the optimization, sparsity in the transformed do-
main as well as continuity along imaged reflectors, are
jointly promoted. Both penalties are part of the follow-
ing nonlinear optimization problem (see Herrmann et al.
(2006))

P :

{
x̂ = minx J(x) subject to ‖y−AAAx‖2 ≤ ε

m̂ =
(
AAAT )† x̂,

(7)
where sparsity vector x is optimized with respect to the
penalty functional J(x) and the data misfit. We use the
term sparsity vector for x to point out that this vector
corresponds to the coefficients of a transform that is de-
signed to be sparse on the model. The penalty func-
tional J(x) is designed to promote sparsity and conti-
nuity. The above optimization problem solves for the
model by finding a coefficient vector x that minimizes
the penalty term subject to fitting the data to within a
user-specified tolerance level ε . We reserved the ’tilde’
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symbol to denote estimates that are found through opti-
mization. The recovered model m is calculated by com-
puting the inverse of AAATTT , which represents the diagonally-
weighted curvelet synthesis matrix.

RECOVERY ALGORITHM

Our algorithm for approximately inverting the normal
operator involves the following sequence of steps:

1. Form the normal operator using one’s favorite
numerical implementation for the migration op-
erator and its adjoint, (i.e., ΨΨΨ = KKKTTT KKK) . This
discrete normal operator needs to be made zero
order;

2. Select a reference vector (depth corrected migrated
image), r, that is close enough to the unknown
image;

3. Estimate the diagonal approximation. This diag-
onal approximation defines the synthesis matrix
AAA;

4. Estimate x by solving the nonlinear optimization
problem P. This program inverts the synthesis
matrix. The discretized model vector m is cal-
culated from the recovered coefficient vector x
through the pseudo inverse of AAAT ;

EXAMPLES

Figures 1(a) and 1(b) show a typical subsalt imaging
model. Figure 1(a) shows a velocity model for SEG-AA’
salt model and the reflectivity which can be obtained
by differentiating it from its smoothed version used is
shown in Figure 1(b). The synthetic data generated us-
ing finite difference code (see e.g. Symes, 2006) using
velocity model shown in figure 1(a). This synthetic data
is muted to avoid direct waves, tapered and bandpass
filtered to avoid dipping waves and further migrated as
shown in figure 2(a). This migrated image is used in or-
der to recover amplitudes according to our method. The
depth corrected and bandpass filtered (to remove dip-
ping wave) migrated image is used as the reference vec-
tor. The reference vector is used for diagonal approxi-
mation of normal operator according our method. Sub-
sequently, the diagonal approximation is used accord-
ing to our nonlinear amplitude recover method to obtain
the enhanced image shown in Figure 2(b). For this ex-
ample, we used a two-way wave-equation reverse-time
migration and modeling (see e.g. Symes, 2006). The
dataset consist of 324 shots and 176 receivers for each
shot, each trace contains 626 samples with 8 ms sam-
pling intervals.

CONCLUSION

This paper presents a fast and robust approach for ap-
proximation of normal operator and utilizes it in ampli-
tude recovery in seismic image. We formulated the ap-
proximation of the normal operator an eigenvalue-like
decomposition with curvelets as eigenvector. Our pro-
posed method is faster than other Krylov-based meth-
ods since our method evaluates the normal operator only
once. The method presented in this paper combines the
compression of images by curvelets with the invariance
of this transform under the normal operator. This com-
bination allows us to formulate a stable recovery method
for seismic amplitudes. Compared to other approaches
for migration preconditioning, our method (i) brings the
amplitude correction problem within the context of sta-
ble signal recovery; (ii) provides for a diagonal approx-
imation of normal operator.
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(a)

(b)

Figure 1: (a) SEG-AA velocity model used to generate synthetic data (b) Reflectivity of the SEG-AA model .
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(a)

(b)

Figure 2: (a) Migrated synthetic data (b) Enhanced image using our recovery method.
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