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Introduction
 Concerned with explicit forms of wavefield 

propagator       of the linearized forward model

 Would like to find explicit       suitable for wave-
equation migration:
 simultaneously operates on sets of traces 
 fully incorporates velocity information of medium
 no parabolic approximations
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Introduction
 Goal: employ the complete 1-Way Helmholtz 

operator for

 Problem: computation & storage complexity
 creating and storing      is trivial
 however        is not trivial to compute and store 
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Introduction
 In this case        is computed by eigenvalue 

decomposition

 requires, per frequency:
 1 eigenvalue problem (O(n4))
 2 full matrix-vector for eigenspace transform (O(n2))
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Introduction
 Band-diagonalization techniques like parabolic 

approximation trades for speed with approximations

 Is there another way?



Our approach
 Consider a related, but simpler problem: shifting (or 

translating) signal

 operator is 
     is differential operator

S = e−j ∆x
2π D

D D =



Our approach
 Computation requires similar approach to

 However, for    ,               , so computation trivial 
with FFT

W±

L Λ LT

D = LΛLT =

L LT

S =

D L = DFT
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Our approach
 Suppose FFT does not exist yet

s(x)

...
...

Fω=1,2,3,4,...
s(k)



Our approach
 suppose some nodes didn’t finish their jobs

s(x)

...
...

s(k) Fω=1,4,...



Our approach
 mathematically, the system is incomplete

 evidently some information of original         is 
invariably lost. Or is it? 

=

s(x)

Fω=1,4,...

s(k)

s(x)



Compressed Sensing
 states that given system of the form

measured
signal =y

sparse representation of 
original data

x̃ = argmin
x

!x!1 = "
i = 1

N

#xi# s.t. Ax = y , $2%

with the symbol ˜ hereby reserved for quantities obtained by solv-
ing an optimization problem. The argminx stands for the argument of
the minimum, i.e., the value of the given argument for which the val-
ue of the expression attains its minimum value. This recovery is suc-
cessful when the measurement and sparsity representations are inco-
herent and when m is large enough compared to the number of non-
zero entries in x0. Because m!N, this recovery involves the inver-
sion of an underdetermined system.As long as the vector x0 is sparse
enough, recovery according to equation 2 is successful. Typically,
for Fourier measurements, five coefficients per nonzero entry are
sufficient for full recovery !Candès, 2007".

Instead of asking ourselves the question of how to recover x0 from
incomplete data, suppose now that we ask ourselves how to apply an
integer shift by ! to an arbitrary, but sparse, vector x0, without hav-
ing to shift each single entry. Shifts translate to phase rotations in the
Fourier domain and the Fourier basis functions !rows of the Fourier
matrix F" are incoherent with the Dirac basis I. More formally, con-
sider the approximate shift operation defined in terms of the expo-
nentiation of the discrete difference matrix D!RM"M. In that case,
the shift by ! can be written as

u = e−D! v = Lej!! LHv , $3%

where the decomposition matrix LH, with the symbol H denoting
the Hermitian transpose, is derived from the eigenvalue problem

D = L!LH. $4%

In this expression, ! is a diagonal matrix with the eigenvalues #
= diag$!% on its diagonal. These eigenvalues correspond to the an-
gular frequencies, while the orthonormal !de"composition matrices

LH, L correspond, when applying Neumann boundary conditions, to
the forward and inverse discrete cosine transforms, respectively. The
accuracy of this discrete approximation of the shift operator depends
on the type and order of the finite-difference approximation in D. Be-
cause the eigenvectors of the above shift operation correspond to the
rows of the Fourier-like !discrete cosine" measurement matrix of the
previously posed recovery problem, we can define an alternative
compressed procedure for applying the shift by solving the follow-
ing nonlinear optimization program:

&y! = Rej!! Fv = RM!v

ũ = argminu!u!1 s.t. Au = y!
', $5%

in which we took the liberty to overload the symbol F with the dis-
crete cosine transform. The input for this nonlinear program is given
by the phase-rotated Fourier transform of v, restricted to a !small"
random set of m frequencies. The symbol ! is hereby reserved for
phase-rotated quantities. The shifted spike train is obtained by non-
linear recovery of the phase-rotated measurement vector y. Instead
of applying a full matrix-vector multiplication involving all tempo-
ral frequency components as in equation 3, the shift according to the
above program involves the repeated evaluation of the matrix A
!Cm"N and its transpose. In the extreme case of a vector with a single
nonzero entry for v, the matrix A will usually only need to be of size
5"N, leading to a significant reduction for the size of the matrix.An
example of the above procedure is included in Figure 1 where five
spikes with random positions and amplitudes in a vector of length N
= 200 are circularly shifted by 20 samples. Comparison of the re-
sults of applying the full shift operator !cf. equation 3" and the com-
pressed shift operator according to equation 5 shows that these re-
sults are identical. Only 15 random Fourier measurements were nec-
essary for the recovery of the shifted spike train. Instead of applying
a full 200"200 operator, application of the compressed operator of
size 15"200 is sufficient. These results were calculated with the
!1-solver of basis pursuit !BP" !Chen et al., 2001".

The idea of norm-one sparsity-based recovery is not exactly new
to the seismic imaging community. For instance, there exists a large
body of literature on sparsity-promoting penalty functions. Since the
seminal work of Claerbout and Muir !1973", norm-one regularized
inversion problems have been prevalent in the formulation of geo-
physical inverse problems with applications including deconvolu-
tion !Taylor et al., 1979; Oldenburg et al., 1981; Ulrych and Walker,
1982; Santosa and Symes, 1986; Levy et al., 1988; Sacchi et al.,
1994", filtering and seismic data regularization based on high-reso-
lution Fourier !Sacchi et al., 1998; Zwartjes and Gisolf, 2006", cur-
velet transforms !see e.g. Hennenfent and Herrmann, 2006a", non-
parametric seismic data recovery !F. J. Herrmann and G. Hennen-
fent, personal communication, 2007", adaptive subtraction for mul-
tiple attenuation !Guitton and Verschuur, 2004; Herrmann et al.,
2007", and Bayesian approaches with priors consisting of long-
tailed Cauchy distributions !Sacchi and Ulrych, 1996".

What is new in compressed sensing is the insight into the criteria
of successful recovery. For example, compressed sensing looks for
the existence of a transform that compresses the !inverse" extrapolat-
ed wavefield and is incoherent with the measurement basis. In that
case, the wavefield can be recovered from a relatively small subset of
measurements. We leverage these new insights toward the formula-
tion of the !inverse" wavefield extrapolation problem by identifying
the eigenfunctions of the modal transform !Grimbergen et al., 1998"
as the measuring basis and curvelet frames !Candès and Donoho,
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Figure 1. Example of compressed shifting of length 200 with five ar-
bitrary spikes. !a" The five spikes. !b" Shifted spikes by 20 samples
according to equation 3. !c" The same, but according to the com-
pressed program of equation 5. Notice that there is virtually no dif-
ference.
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x̃ = argmin
x

!x!1 = "
i = 1

N

#xi# s.t. Ax = y , $2%

with the symbol ˜ hereby reserved for quantities obtained by solv-
ing an optimization problem. The argminx stands for the argument of
the minimum, i.e., the value of the given argument for which the val-
ue of the expression attains its minimum value. This recovery is suc-
cessful when the measurement and sparsity representations are inco-
herent and when m is large enough compared to the number of non-
zero entries in x0. Because m!N, this recovery involves the inver-
sion of an underdetermined system.As long as the vector x0 is sparse
enough, recovery according to equation 2 is successful. Typically,
for Fourier measurements, five coefficients per nonzero entry are
sufficient for full recovery !Candès, 2007".

Instead of asking ourselves the question of how to recover x0 from
incomplete data, suppose now that we ask ourselves how to apply an
integer shift by ! to an arbitrary, but sparse, vector x0, without hav-
ing to shift each single entry. Shifts translate to phase rotations in the
Fourier domain and the Fourier basis functions !rows of the Fourier
matrix F" are incoherent with the Dirac basis I. More formally, con-
sider the approximate shift operation defined in terms of the expo-
nentiation of the discrete difference matrix D!RM"M. In that case,
the shift by ! can be written as

u = e−D! v = Lej!! LHv , $3%

where the decomposition matrix LH, with the symbol H denoting
the Hermitian transpose, is derived from the eigenvalue problem

D = L!LH. $4%

In this expression, ! is a diagonal matrix with the eigenvalues #
= diag$!% on its diagonal. These eigenvalues correspond to the an-
gular frequencies, while the orthonormal !de"composition matrices

LH, L correspond, when applying Neumann boundary conditions, to
the forward and inverse discrete cosine transforms, respectively. The
accuracy of this discrete approximation of the shift operator depends
on the type and order of the finite-difference approximation in D. Be-
cause the eigenvectors of the above shift operation correspond to the
rows of the Fourier-like !discrete cosine" measurement matrix of the
previously posed recovery problem, we can define an alternative
compressed procedure for applying the shift by solving the follow-
ing nonlinear optimization program:

&y! = Rej!! Fv = RM!v

ũ = argminu!u!1 s.t. Au = y!
', $5%

in which we took the liberty to overload the symbol F with the dis-
crete cosine transform. The input for this nonlinear program is given
by the phase-rotated Fourier transform of v, restricted to a !small"
random set of m frequencies. The symbol ! is hereby reserved for
phase-rotated quantities. The shifted spike train is obtained by non-
linear recovery of the phase-rotated measurement vector y. Instead
of applying a full matrix-vector multiplication involving all tempo-
ral frequency components as in equation 3, the shift according to the
above program involves the repeated evaluation of the matrix A
!Cm"N and its transpose. In the extreme case of a vector with a single
nonzero entry for v, the matrix A will usually only need to be of size
5"N, leading to a significant reduction for the size of the matrix.An
example of the above procedure is included in Figure 1 where five
spikes with random positions and amplitudes in a vector of length N
= 200 are circularly shifted by 20 samples. Comparison of the re-
sults of applying the full shift operator !cf. equation 3" and the com-
pressed shift operator according to equation 5 shows that these re-
sults are identical. Only 15 random Fourier measurements were nec-
essary for the recovery of the shifted spike train. Instead of applying
a full 200"200 operator, application of the compressed operator of
size 15"200 is sufficient. These results were calculated with the
!1-solver of basis pursuit !BP" !Chen et al., 2001".

The idea of norm-one sparsity-based recovery is not exactly new
to the seismic imaging community. For instance, there exists a large
body of literature on sparsity-promoting penalty functions. Since the
seminal work of Claerbout and Muir !1973", norm-one regularized
inversion problems have been prevalent in the formulation of geo-
physical inverse problems with applications including deconvolu-
tion !Taylor et al., 1979; Oldenburg et al., 1981; Ulrych and Walker,
1982; Santosa and Symes, 1986; Levy et al., 1988; Sacchi et al.,
1994", filtering and seismic data regularization based on high-reso-
lution Fourier !Sacchi et al., 1998; Zwartjes and Gisolf, 2006", cur-
velet transforms !see e.g. Hennenfent and Herrmann, 2006a", non-
parametric seismic data recovery !F. J. Herrmann and G. Hennen-
fent, personal communication, 2007", adaptive subtraction for mul-
tiple attenuation !Guitton and Verschuur, 2004; Herrmann et al.,
2007", and Bayesian approaches with priors consisting of long-
tailed Cauchy distributions !Sacchi and Ulrych, 1996".

What is new in compressed sensing is the insight into the criteria
of successful recovery. For example, compressed sensing looks for
the existence of a transform that compresses the !inverse" extrapolat-
ed wavefield and is incoherent with the measurement basis. In that
case, the wavefield can be recovered from a relatively small subset of
measurements. We leverage these new insights toward the formula-
tion of the !inverse" wavefield extrapolation problem by identifying
the eigenfunctions of the modal transform !Grimbergen et al., 1998"
as the measuring basis and curvelet frames !Candès and Donoho,
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Figure 1. Example of compressed shifting of length 200 with five ar-
bitrary spikes. !a" The five spikes. !b" Shifted spikes by 20 samples
according to equation 3. !c" The same, but according to the com-
pressed program of equation 5. Notice that there is virtually no dif-
ference.
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Compressed Sensing
 states that given system of the form

 can exactly “recover” x from y by solving L1 problem

measured
signal =y

sparse representation of 
original data

x̃ = argmin
x

!x!1 = "
i = 1

N

#xi# s.t. Ax = y , $2%

with the symbol ˜ hereby reserved for quantities obtained by solv-
ing an optimization problem. The argminx stands for the argument of
the minimum, i.e., the value of the given argument for which the val-
ue of the expression attains its minimum value. This recovery is suc-
cessful when the measurement and sparsity representations are inco-
herent and when m is large enough compared to the number of non-
zero entries in x0. Because m!N, this recovery involves the inver-
sion of an underdetermined system.As long as the vector x0 is sparse
enough, recovery according to equation 2 is successful. Typically,
for Fourier measurements, five coefficients per nonzero entry are
sufficient for full recovery !Candès, 2007".

Instead of asking ourselves the question of how to recover x0 from
incomplete data, suppose now that we ask ourselves how to apply an
integer shift by ! to an arbitrary, but sparse, vector x0, without hav-
ing to shift each single entry. Shifts translate to phase rotations in the
Fourier domain and the Fourier basis functions !rows of the Fourier
matrix F" are incoherent with the Dirac basis I. More formally, con-
sider the approximate shift operation defined in terms of the expo-
nentiation of the discrete difference matrix D!RM"M. In that case,
the shift by ! can be written as

u = e−D! v = Lej!! LHv , $3%

where the decomposition matrix LH, with the symbol H denoting
the Hermitian transpose, is derived from the eigenvalue problem

D = L!LH. $4%

In this expression, ! is a diagonal matrix with the eigenvalues #
= diag$!% on its diagonal. These eigenvalues correspond to the an-
gular frequencies, while the orthonormal !de"composition matrices

LH, L correspond, when applying Neumann boundary conditions, to
the forward and inverse discrete cosine transforms, respectively. The
accuracy of this discrete approximation of the shift operator depends
on the type and order of the finite-difference approximation in D. Be-
cause the eigenvectors of the above shift operation correspond to the
rows of the Fourier-like !discrete cosine" measurement matrix of the
previously posed recovery problem, we can define an alternative
compressed procedure for applying the shift by solving the follow-
ing nonlinear optimization program:

&y! = Rej!! Fv = RM!v

ũ = argminu!u!1 s.t. Au = y!
', $5%

in which we took the liberty to overload the symbol F with the dis-
crete cosine transform. The input for this nonlinear program is given
by the phase-rotated Fourier transform of v, restricted to a !small"
random set of m frequencies. The symbol ! is hereby reserved for
phase-rotated quantities. The shifted spike train is obtained by non-
linear recovery of the phase-rotated measurement vector y. Instead
of applying a full matrix-vector multiplication involving all tempo-
ral frequency components as in equation 3, the shift according to the
above program involves the repeated evaluation of the matrix A
!Cm"N and its transpose. In the extreme case of a vector with a single
nonzero entry for v, the matrix A will usually only need to be of size
5"N, leading to a significant reduction for the size of the matrix.An
example of the above procedure is included in Figure 1 where five
spikes with random positions and amplitudes in a vector of length N
= 200 are circularly shifted by 20 samples. Comparison of the re-
sults of applying the full shift operator !cf. equation 3" and the com-
pressed shift operator according to equation 5 shows that these re-
sults are identical. Only 15 random Fourier measurements were nec-
essary for the recovery of the shifted spike train. Instead of applying
a full 200"200 operator, application of the compressed operator of
size 15"200 is sufficient. These results were calculated with the
!1-solver of basis pursuit !BP" !Chen et al., 2001".

The idea of norm-one sparsity-based recovery is not exactly new
to the seismic imaging community. For instance, there exists a large
body of literature on sparsity-promoting penalty functions. Since the
seminal work of Claerbout and Muir !1973", norm-one regularized
inversion problems have been prevalent in the formulation of geo-
physical inverse problems with applications including deconvolu-
tion !Taylor et al., 1979; Oldenburg et al., 1981; Ulrych and Walker,
1982; Santosa and Symes, 1986; Levy et al., 1988; Sacchi et al.,
1994", filtering and seismic data regularization based on high-reso-
lution Fourier !Sacchi et al., 1998; Zwartjes and Gisolf, 2006", cur-
velet transforms !see e.g. Hennenfent and Herrmann, 2006a", non-
parametric seismic data recovery !F. J. Herrmann and G. Hennen-
fent, personal communication, 2007", adaptive subtraction for mul-
tiple attenuation !Guitton and Verschuur, 2004; Herrmann et al.,
2007", and Bayesian approaches with priors consisting of long-
tailed Cauchy distributions !Sacchi and Ulrych, 1996".

What is new in compressed sensing is the insight into the criteria
of successful recovery. For example, compressed sensing looks for
the existence of a transform that compresses the !inverse" extrapolat-
ed wavefield and is incoherent with the measurement basis. In that
case, the wavefield can be recovered from a relatively small subset of
measurements. We leverage these new insights toward the formula-
tion of the !inverse" wavefield extrapolation problem by identifying
the eigenfunctions of the modal transform !Grimbergen et al., 1998"
as the measuring basis and curvelet frames !Candès and Donoho,
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Figure 1. Example of compressed shifting of length 200 with five ar-
bitrary spikes. !a" The five spikes. !b" Shifted spikes by 20 samples
according to equation 3. !c" The same, but according to the com-
pressed program of equation 5. Notice that there is virtually no dif-
ference.
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x̃ = argmin
x

!x!1 = "
i = 1

N

#xi# s.t. Ax = y , $2%

with the symbol ˜ hereby reserved for quantities obtained by solv-
ing an optimization problem. The argminx stands for the argument of
the minimum, i.e., the value of the given argument for which the val-
ue of the expression attains its minimum value. This recovery is suc-
cessful when the measurement and sparsity representations are inco-
herent and when m is large enough compared to the number of non-
zero entries in x0. Because m!N, this recovery involves the inver-
sion of an underdetermined system.As long as the vector x0 is sparse
enough, recovery according to equation 2 is successful. Typically,
for Fourier measurements, five coefficients per nonzero entry are
sufficient for full recovery !Candès, 2007".

Instead of asking ourselves the question of how to recover x0 from
incomplete data, suppose now that we ask ourselves how to apply an
integer shift by ! to an arbitrary, but sparse, vector x0, without hav-
ing to shift each single entry. Shifts translate to phase rotations in the
Fourier domain and the Fourier basis functions !rows of the Fourier
matrix F" are incoherent with the Dirac basis I. More formally, con-
sider the approximate shift operation defined in terms of the expo-
nentiation of the discrete difference matrix D!RM"M. In that case,
the shift by ! can be written as

u = e−D! v = Lej!! LHv , $3%

where the decomposition matrix LH, with the symbol H denoting
the Hermitian transpose, is derived from the eigenvalue problem

D = L!LH. $4%

In this expression, ! is a diagonal matrix with the eigenvalues #
= diag$!% on its diagonal. These eigenvalues correspond to the an-
gular frequencies, while the orthonormal !de"composition matrices

LH, L correspond, when applying Neumann boundary conditions, to
the forward and inverse discrete cosine transforms, respectively. The
accuracy of this discrete approximation of the shift operator depends
on the type and order of the finite-difference approximation in D. Be-
cause the eigenvectors of the above shift operation correspond to the
rows of the Fourier-like !discrete cosine" measurement matrix of the
previously posed recovery problem, we can define an alternative
compressed procedure for applying the shift by solving the follow-
ing nonlinear optimization program:

&y! = Rej!! Fv = RM!v

ũ = argminu!u!1 s.t. Au = y!
', $5%

in which we took the liberty to overload the symbol F with the dis-
crete cosine transform. The input for this nonlinear program is given
by the phase-rotated Fourier transform of v, restricted to a !small"
random set of m frequencies. The symbol ! is hereby reserved for
phase-rotated quantities. The shifted spike train is obtained by non-
linear recovery of the phase-rotated measurement vector y. Instead
of applying a full matrix-vector multiplication involving all tempo-
ral frequency components as in equation 3, the shift according to the
above program involves the repeated evaluation of the matrix A
!Cm"N and its transpose. In the extreme case of a vector with a single
nonzero entry for v, the matrix A will usually only need to be of size
5"N, leading to a significant reduction for the size of the matrix.An
example of the above procedure is included in Figure 1 where five
spikes with random positions and amplitudes in a vector of length N
= 200 are circularly shifted by 20 samples. Comparison of the re-
sults of applying the full shift operator !cf. equation 3" and the com-
pressed shift operator according to equation 5 shows that these re-
sults are identical. Only 15 random Fourier measurements were nec-
essary for the recovery of the shifted spike train. Instead of applying
a full 200"200 operator, application of the compressed operator of
size 15"200 is sufficient. These results were calculated with the
!1-solver of basis pursuit !BP" !Chen et al., 2001".

The idea of norm-one sparsity-based recovery is not exactly new
to the seismic imaging community. For instance, there exists a large
body of literature on sparsity-promoting penalty functions. Since the
seminal work of Claerbout and Muir !1973", norm-one regularized
inversion problems have been prevalent in the formulation of geo-
physical inverse problems with applications including deconvolu-
tion !Taylor et al., 1979; Oldenburg et al., 1981; Ulrych and Walker,
1982; Santosa and Symes, 1986; Levy et al., 1988; Sacchi et al.,
1994", filtering and seismic data regularization based on high-reso-
lution Fourier !Sacchi et al., 1998; Zwartjes and Gisolf, 2006", cur-
velet transforms !see e.g. Hennenfent and Herrmann, 2006a", non-
parametric seismic data recovery !F. J. Herrmann and G. Hennen-
fent, personal communication, 2007", adaptive subtraction for mul-
tiple attenuation !Guitton and Verschuur, 2004; Herrmann et al.,
2007", and Bayesian approaches with priors consisting of long-
tailed Cauchy distributions !Sacchi and Ulrych, 1996".

What is new in compressed sensing is the insight into the criteria
of successful recovery. For example, compressed sensing looks for
the existence of a transform that compresses the !inverse" extrapolat-
ed wavefield and is incoherent with the measurement basis. In that
case, the wavefield can be recovered from a relatively small subset of
measurements. We leverage these new insights toward the formula-
tion of the !inverse" wavefield extrapolation problem by identifying
the eigenfunctions of the modal transform !Grimbergen et al., 1998"
as the measuring basis and curvelet frames !Candès and Donoho,
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Figure 1. Example of compressed shifting of length 200 with five ar-
bitrary spikes. !a" The five spikes. !b" Shifted spikes by 20 samples
according to equation 3. !c" The same, but according to the com-
pressed program of equation 5. Notice that there is virtually no dif-
ference.
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with the symbol ˜ hereby reserved for quantities obtained by solv-
ing an optimization problem. The argminx stands for the argument of
the minimum, i.e., the value of the given argument for which the val-
ue of the expression attains its minimum value. This recovery is suc-
cessful when the measurement and sparsity representations are inco-
herent and when m is large enough compared to the number of non-
zero entries in x0. Because m!N, this recovery involves the inver-
sion of an underdetermined system.As long as the vector x0 is sparse
enough, recovery according to equation 2 is successful. Typically,
for Fourier measurements, five coefficients per nonzero entry are
sufficient for full recovery !Candès, 2007".

Instead of asking ourselves the question of how to recover x0 from
incomplete data, suppose now that we ask ourselves how to apply an
integer shift by ! to an arbitrary, but sparse, vector x0, without hav-
ing to shift each single entry. Shifts translate to phase rotations in the
Fourier domain and the Fourier basis functions !rows of the Fourier
matrix F" are incoherent with the Dirac basis I. More formally, con-
sider the approximate shift operation defined in terms of the expo-
nentiation of the discrete difference matrix D!RM"M. In that case,
the shift by ! can be written as

u = e−D! v = Lej!! LHv , $3%

where the decomposition matrix LH, with the symbol H denoting
the Hermitian transpose, is derived from the eigenvalue problem

D = L!LH. $4%

In this expression, ! is a diagonal matrix with the eigenvalues #
= diag$!% on its diagonal. These eigenvalues correspond to the an-
gular frequencies, while the orthonormal !de"composition matrices

LH, L correspond, when applying Neumann boundary conditions, to
the forward and inverse discrete cosine transforms, respectively. The
accuracy of this discrete approximation of the shift operator depends
on the type and order of the finite-difference approximation in D. Be-
cause the eigenvectors of the above shift operation correspond to the
rows of the Fourier-like !discrete cosine" measurement matrix of the
previously posed recovery problem, we can define an alternative
compressed procedure for applying the shift by solving the follow-
ing nonlinear optimization program:

&y! = Rej!! Fv = RM!v

ũ = argminu!u!1 s.t. Au = y!
', $5%

in which we took the liberty to overload the symbol F with the dis-
crete cosine transform. The input for this nonlinear program is given
by the phase-rotated Fourier transform of v, restricted to a !small"
random set of m frequencies. The symbol ! is hereby reserved for
phase-rotated quantities. The shifted spike train is obtained by non-
linear recovery of the phase-rotated measurement vector y. Instead
of applying a full matrix-vector multiplication involving all tempo-
ral frequency components as in equation 3, the shift according to the
above program involves the repeated evaluation of the matrix A
!Cm"N and its transpose. In the extreme case of a vector with a single
nonzero entry for v, the matrix A will usually only need to be of size
5"N, leading to a significant reduction for the size of the matrix.An
example of the above procedure is included in Figure 1 where five
spikes with random positions and amplitudes in a vector of length N
= 200 are circularly shifted by 20 samples. Comparison of the re-
sults of applying the full shift operator !cf. equation 3" and the com-
pressed shift operator according to equation 5 shows that these re-
sults are identical. Only 15 random Fourier measurements were nec-
essary for the recovery of the shifted spike train. Instead of applying
a full 200"200 operator, application of the compressed operator of
size 15"200 is sufficient. These results were calculated with the
!1-solver of basis pursuit !BP" !Chen et al., 2001".

The idea of norm-one sparsity-based recovery is not exactly new
to the seismic imaging community. For instance, there exists a large
body of literature on sparsity-promoting penalty functions. Since the
seminal work of Claerbout and Muir !1973", norm-one regularized
inversion problems have been prevalent in the formulation of geo-
physical inverse problems with applications including deconvolu-
tion !Taylor et al., 1979; Oldenburg et al., 1981; Ulrych and Walker,
1982; Santosa and Symes, 1986; Levy et al., 1988; Sacchi et al.,
1994", filtering and seismic data regularization based on high-reso-
lution Fourier !Sacchi et al., 1998; Zwartjes and Gisolf, 2006", cur-
velet transforms !see e.g. Hennenfent and Herrmann, 2006a", non-
parametric seismic data recovery !F. J. Herrmann and G. Hennen-
fent, personal communication, 2007", adaptive subtraction for mul-
tiple attenuation !Guitton and Verschuur, 2004; Herrmann et al.,
2007", and Bayesian approaches with priors consisting of long-
tailed Cauchy distributions !Sacchi and Ulrych, 1996".

What is new in compressed sensing is the insight into the criteria
of successful recovery. For example, compressed sensing looks for
the existence of a transform that compresses the !inverse" extrapolat-
ed wavefield and is incoherent with the measurement basis. In that
case, the wavefield can be recovered from a relatively small subset of
measurements. We leverage these new insights toward the formula-
tion of the !inverse" wavefield extrapolation problem by identifying
the eigenfunctions of the modal transform !Grimbergen et al., 1998"
as the measuring basis and curvelet frames !Candès and Donoho,
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Figure 1. Example of compressed shifting of length 200 with five ar-
bitrary spikes. !a" The five spikes. !b" Shifted spikes by 20 samples
according to equation 3. !c" The same, but according to the com-
pressed program of equation 5. Notice that there is virtually no dif-
ference.
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Compressed Sensing
 x has to be sparse
 A has to be Fourier transform

 Compressed sensing theory gives us strict bounds on 
regions of recoverability

 Enables deliberate incomplete computations



Compressed Sensing “Computation”
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Compressed Sensing “Computation”
 if we “shift” s(k) with             , what happens when 

we recover s(x) using s’(k)?

 Answer: we recover a shifted s(x)!
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Compressed Sensing “Computation”
 In a nutshell:

 Trades the cost of L1 solvers for a compressed 
operator that is cheaper to compute, store, and 
synthesize

 L1 solver research is currently a hot topic in applied 
mathematics
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Sparsity through curvelets
 for extrapolation to reflectivity, we first transform 

signal into a sparsifies reflectivity

 we know reflectivity are sparse in curvelets
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Example (Canadian overthrust)

original reflectivity downward extrapolated 50m

inverse extrapolated explicitly



Example (Canadian overthrust)

inverse extrapolated explicitly inverse extrapolated with 
compressed computation

~15% coefficients used



Discussions
 Bottom line: synthesis, operation, and storage cost 

savings versus L1-solver cost
 require good sparsity-promoting basis (ie Curvelets)
 potential to apply same technique to a variety of 

different operators



Conclusions
 1) Take linear operator with suitable structure for 

compressed sensing, having a diagonalizing basis 
which is incoherent with the signal basis

 2) Compressed sensing theory tells us how much 
computation we can throw away while still 
recovering full signal with L1 solver

 3) Then we can take advantage of results in 
compressed sampling for compressed computation

 Take home point:
 Exploit compressed sensing theory for gains in 

scientific computation



Still awake?
 Check-out the full paper at:

Lin, T.T.Y. and F. Herrmann, 2007, Compressed wavefield extrapolation: 
Geophysics, 72, SM77-SM93



Compressed wavefield extrapolation

 Randomly subsample in the Modal domain
 Recover by norm-one minimization
 Capitalize on 

 the incoherence between modal functions and 
impulse sources

 reduced explicit matrix size






y = Re−jω
√

Λ∆x3LTu
x̃ = arg minx ‖x‖1 s.t. RLTx = y
ũ′ = x̃



Compressed wavefield extrapolation 
with curvelets

 Original and reconstructed signals remain in the 
curvelet domain

 Original curvelet transform must be done outside of 
the algorithm






y = Re−jω
√

Λ∆x3LTCTu
x̃ = arg minx ‖x‖1 s.t. RLTCTx = y
ũ′ = x̃


