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SUMMARY

An explicit algorithm for the extrapolation of one-way wave-
fields is proposed which combines recent developments in in-
formation theory and theoretical signal processing with the
physics of wave propagation. Because of excessive memory
requirements, explicit formulations for wave propagation have
proven to be a challenge in 3-D. By using ideas from “com-
pressed sensing”, we are able to formulate the (inverse) wave-
field extrapolation problem on small subsets of the data vol-
ume, thereby reducing the size of the operators. According to
compressed sensing theory, signals can successfully be recov-
ered from an imcomplete set of measurements when the mea-
surement basis is incoherent with the representation in which
the wavefield is sparse. In this new approach, the eigenfunc-
tions of the Helmholtz operator are recognized as a basis that is
incoherent with curvelets that are known to compress seismic
wavefields. By casting the wavefield extrapolation problem in
this framework, wavefields can successfully be extrapolated in
the modal domain via a computationally cheaper operatoion.
A proof of principle for the “compressed sensing” method is
given for wavefield extrapolation in 2-D. The results show that
our method is stable and produces identical results compared
to the direct application of the full extrapolation operator.

INTRODUCTION

This paper introduces an explicit algorithm for the compressed
evaluation of one-way inverse wavefield extrapolation. The
main challenge in this method is the size of the eigenvectors
in the modal domain (Grimbergen et al., 1998) that diagonal-
ize the one-way wavefield extrapolation operators. We provide
a solution strategy that addresses this issues via a “compres-
sion” in the size of monochromatic extrapolation operators that
are solutions of the one-way wave equation in d dimensions
(Claerbout, 1971; Berkhout, 1982; Hale et al., 1992). This is
made possible by exploiting the sparsity of seismic wavefields
in the curvelet domain (Candès et al., 2006b; Donoho, 2006;
Tsaig and Donoho, 2006). As we shall see, this leads to the
possibility of using much smaller linear operators in the ex-
trapolation of one-way wavefields.

Compressed operators
The main result from the relatively new field of “compressed
sensing” (Candès et al., 2006b; Donoho, 2006; Tsaig and Donoho,
2006) states that an arbitrary k non-zero sparse spike train of
length N � k can exactly be recovered from m incoherent mea-
surements with m ∼ k (∼ means proportional to within logN
constants). The term incoherent here refers to a quality be-
tween two bases. Qualitatively speaking, a basis is incoherent
with respect to another basis if a sparse signal in one of the
bases generally does not have a sparse representation in the
other basis (see appendix B for a formal definition of this qual-
ity). A classical example of two bases that are incoherent with

each other is the identity basis and the Fourier basis.

This result means that the unknown spike train can, for in-
stance, exactly be recovered from m random Fourier measure-
ments. These measurements correspond to taking inner prod-
ucts between random rows, selected from the Fourier matrix,
and the vector containing the sparse spike train. This measure-
ment could explicitly be stated as

y = Ax0 (1)

with A := RMST ∈ Cm×N the synthesis matrix, M the mea-
surement matrix defined in terms of the Fourier matrix (M :=
F with F denoting the discrete Fourier transform matrix),
and R a restriction matrix randomly selecting m rows from M.
Here, S and ST are the sparsity analysis and synthesis matrices
for a domain that compresses the signal. The restriction matrix
is defined such that the columns of A are 2-norm normalized
to unity. The symbol := is used to denote definition. Simply
speaking, Eq. 1 corresponds to randomly selecting m Fourier
coefficients from the Fourier transform of x0.

Spike trains are sparse in the Dirac/identity basis so we set
ST := I . The rows of I are incoherent with the rows of the
Fourier measurement matrix that consists of complex expo-
nentials. Because x0 has few non zeros, it is sparse and this
sparse vector can exactly be recovered by solving the follow-
ing nonlinear optimization problem

ex = argmin
x

‖x‖1 =
NX

i=1

|xi| s.t. Ax = y (2)

with the symbol e hereby reserved for quantities obtained by
solving an optimization problem. The argminx stands for the
argument of the minimum, i.e., the value of the given argu-
ment for which the value of the expression attains its mini-
mum value. This recovery is successful when the measure-
ment and sparsity representations are incoherent and when m
is large enough compared to the number of non-zero entries
in x0. Since m � N this recovery involves the inversion of an
underdetermined system. As long as the vector x0 is sparse
enough, recovery according to Eq. 2 is successful. Typically
for Fourier measurements 5 coefficients per non-zero entry are
sufficient for full recovery (Candés, 2007).

Instead of asking ourselves the question of how to recover x0
from incomplete data suppose now that we ask ourselves how
to apply an integer shift by τ to an arbitrary but sparse vector
x0, without having to shift each single entry. We all know that
shifts translate to phase rotations in the Fourier domain and
that the Fourier basis functions (rows of the Fourier matrix, F )
are incoherent with the Dirac basis, I . More formally, consider
the approximate shift operation, defined in terms of the expo-
nentiation of the discrete difference matrix D ∈RM×M . In that
case, the shift by τ can be written as

u = e−Dτ v = Le jΩΩΩτ LHv, (3)



where the decomposition matrix LH , with the symbol H de-
noting the Hermitian transpose, is derived from the eigenvalue
problem

D = LΩΩΩLH . (4)

In this expression, ΩΩΩ is a diagonal matrix with the eigenval-
ues ω = diag(ΩΩΩ) on its diagonal. These eigenvalues corre-
spond to the angular frequencies, while the orthonormal (de-
)composition matrices LH , L correspond, when applying Neu-
mann boundary conditions, to the forward and inverse discrete
cosine transforms, respectively. The accuracy of this discrete
approximation of the shift operator depends on the type and
order of the finite-difference approximation in D. Because
the eigenvectors of the above shift operation correspond to the
rows of Fourier-like (discrete cosine) measurement matrix of
the previously posed recovery problem, we can define an alter-
native “compressed” procedure for applying the shift by solv-
ing the following nonlinear optimization program(

y′ = Re jΩΩΩτFv = RM′veu = argminu ‖u‖1 s.t. Au = y′
(5)

in which we took the liberty to overload the symbol F with the
discrete cosine transform. The input for this nonlinear program
is given by the phase-rotated Fourier transform of v, restricted
to a (small) random set of m frequencies. The symbol ′ is
hereby reserved for phase rotated quantities. The shifted spike
train is obtained by nonlinear recovery of the phase-rotated
measurement vector y. Instead of applying a full matrix-vector
multiplication involving all temporal frequency components as
in Eq. 3, the shift according to the above program involves the
repeated evaluation of the matrix A ∈Cm×N and its transpose.
In the extreme case of a vector with a single non-zero entry
for v, the matrix A will usually only need to be of size 5×N,
leading to a significant reduction for the size of the matrix. An
example of the above procedure is included in Fig. 1, where
5 spikes with random positions and amplitudes in a vector of
length N = 200 are circular shifted by 20 samples. Compari-
son of the results of applying the full shift operator (cf. Eq. 3)
and the compressed shift operator according to Eq. 5 shows
that these results are identical. Only 15 random Fourier mea-
surements were necessary for the recovery of the shifted spike
train. Instead of applying a full 200× 200 operator, applica-
tion of the compressed operator of size 15× 200 is sufficient.
These results were calculated with the `1-solver of Basis Pur-
suit (Chen et al., 2001).

One-way wavefield extrapolation operator

Motivated by the above reduction of the shifting operator, we
propose that the same technique can be applied to the operator
which extrapolates one-way wavefields. After discretization
along the space and time axes, the multi-frequency downward
wavefield extrapolation of a downgoing time-domain wave-
field vector p+|x3 ∈ RM at depthlevel x3 can be written in the
form of a matrix-vector product (Grimbergen et al., 1998)

u = e jH1∆x3 v = Wv (6)

with u = p+|x′3 , v = p+|x3 for x3 > x′3. The wavefield vectors
contain the reordered entries of discretized wavefield . The
propagation over the interval ∆x3 = x3 − x′3 is determined by

Figure 1: Example of compressed shifting of length 200 with
5 arbitrary spikes. Top: the 5 spikes; Middle: shifted spikes
by 20 samples according to Eq. 3. Bottom: the same but ac-
cording to the compressed program of Eq. 5. Notice that there
is virtually no difference.

the square-root of the block-diagonal multi-frequency M×M
Helmholtz matrix H2 = H1H1 with M = nν ×n f the size of the
discretized wavefield, nν the number of total spatial samples
and n f the number of angular frequencies. Similar expressions
hold for upward extrapolation of an upgoing wavefield.

The evaluation of the matrix W ∈ CM×M is expensive since it
involves the solution of a sparse eigenvalue problem that di-
agonalizes the discretized Helmholtz matrix H2. The solution
of this eigenproblem leads to the following factorization of the
extrapolation operator

W = F HLe jΛΛΛ1/2
∆x3 LHF (7)

= MT M′ (8)

with LH the orthonormal modal decomposition matrix. The
modal transform matrix L contains the 2-norm normalized eigen-
functions that solve

H2 = LΛΛΛLH (9)

with ΛΛΛ a diagonal matrix with the eigenvalues on the diagonal.
From this point on the system of eigenvectors and eigenval-
ues pertains to the Helmholtz equation. Commensurate with
the language of compressed sensing, we will call the matrix
M := LHF the “measurement” matrix and M′ := e jΛΛΛ1/2

∆x3 M
the phase-rotated measurement matrix.

COMPRESSED WAVEFIELD EXTRAPOLATION

This section describes how the above one-way wavefield ex-
trapolation operator can be formulated in the “compressed op-
erator” framework much like the shift operator above. Ac-
cording to the theory of compressed sensing, successful recov-
ery from the non-linear recovery problem in Eq. 2 depends on
three main factors:



• the compression rate of the to-be-recovered signal eu.
This compression rate is quantified by a power-law de-
cay rate for the magnitude sorted coefficients

|ui∈I | ≤Cri−r with r ≥ 1, (10)

with I the indices such that uI(1) ≥ uI(2) ≥ ·· · ≥ uI(N)
and r the compression rate with Cr a constant depend-
ing on the signal’s energy. The faster the decay the
larger r.

• the mutual coherence between the rows of the measure-
ment matrix M and the basis of eu. In the previous spike
shift example this is respectively the Fourier transform
and the Dirac (identity) basis. However, in order to fa-
cilitate the above compression rate criteria, we can also
choose to represent our signal in any arbitrary sparsity-
promoting basis. Provided that we can find a synthesis
matrix ST which transforms the signal to the desired
basis, our signal to be recovered is ST eu. We can thus
generally consider the mutual coherence between M
and ST , which is defined by

µ(M,S) =
√

N max
(i, j)∈[1···N]×[1···N]

|〈mi, s j〉| (11)

with mi and s j the rows of M and S, respectively. The
mutual coherence between the Dirac-Fourier pair is min-
imal (µ = 1). The smaller the coherence the fewer ob-
servations are required for successful recovery (Candès
et al., 2006b; Tsaig and Donoho, 2006; Hennenfent and
Herrmann, 2006a).

• the randomness of the restriction that is optimal for
cases where R selects rows according to a uniform dis-
tribution.

Depending on the mutual coherence and the compression rate
obtained by the sparsity representation, a generalized version
of the “compressed operation” program as described by Eq. 5
is able to recover eu for data y′ with large percentages (up to
80% in 2-D) missing. In the case of one-way wavefield extrap-
olation, the measurement basis M is LHF , the spectral eigen-
basis of the Helmholtz matrix H2. Thus in order to fulfill the
mutual coherence and the compression rate requirements we
need to find a basis which simultaneously compresses seismic
wavefield signals while maintaining a low mutual coherence
with LHF .

It has been shown in literature that seismic signals, includ-
ing wavefields, are highly compressible in the curvelet basis,
which expands the wavefield in terms of localized, multiscale
and multidirectional prototype waveforms that are anisotropi-
cally shaped. As such, the curvelet transform provides a near-
optimal sparsity matrix ST for the purpose of wavefield com-
pression Candès and Donoho (2000). Furthermore, it can be
qualitatively argued that curvelets hold a very low mutual co-
herence with LHF , due to its rapidly decaying nature in the
physical domain. Interested readers can refer to (Candès et al.,
2006a; Ying et al., 2005) for a more detailed analysis on the
behavior of curvelets.

Choosing the discrete curvelet transform as ST , we propose
to cast the one-way forward wavefield extrapolation into the

following nonlinear optimization problem

W1 :

8>>><>>>:
y′ = RM′v
A := RMCTex = argminx ‖x‖1 s.t. Ax = y′eu = CT ex,

(12)

for an appropriately chosen restriction matrix and for the mea-
surement matrix M, defined as in Eq. (7), and with its rotation
defined by

M′ := e jΛΛΛ1/2
∆x3 M. (13)

In Eq. 12, CT refers to curvelet synthesis by the fast inverse
curvelet transform (Candès et al., 2006a; Ying et al., 2005;
Hennenfent and Herrmann, 2006b, and Appendix B). During
the compressed extrapolation, the wavefield is extrapolated with
a compressed forward extrapolation operator bW′ = RM′ ∈Cm×M .
The forward extrapolated wavefield is subsequently recovered
by the nonlinear inversion, promoting sparsity in the curvelet
domain. This compressed formulation, which we write in short
hand, as eu = W1[v], (14)

is designed to yield the same results as for the full forward
extrapolation, u = Wv.

Restriction strategies
The restriction matrix in the compressed formulation for the
one-way wavefield extrapolation problem allows for a reduc-
tion of the computational cost to synthesize the propagation
matrices as well as of their storage requirements. Missed sam-
ples of the modal plane can simply be left unconstructed, or
ignored in the applying the extrapolation operator. While de-
vising a strategy for the restriction, the following issues need to
be taken into consideration for the evaluation of the synthesis
matrix A′

• the cost of solving the eigenvalue decomposition for
each temporal frequency. For a wavefield of size M,
i.e. u ∈ RM with n f = O(M1/d) angular frequencies
and nν = O(M(d−1)/d) spatial samples, the computa-
tion of the eigenfunction decompositions for the sparse
Helmholtz matrix requires O(M(2d−1)/d) operations for
the full problem and O(m2

ν ×m f ) for the compressed
problem. The reduced number of spatial samples equals
mν = pν ·O(M(d−1)/d) and the reduced number of fre-
quencies m f = p f ·n f with pν , p f < 1 the fractions of
the size of the restriction over the total size of the wave-
field’s discretization;

• the cost of applying (repeated) matrix-vector products,
which is O(M2(d−1)/d) for the full problem and pν ·
p f ·O(M2(d−1)/d) for the compressed problem;

• the memory use for each frequency amounting to stor-
ing a M(d−1)/d ×M(d−1)/d matrix for the full problem
and a mν ×m with m = mν ×m f for the compressed
problem;

• an additional O(N logN) for the computation of the
curvelet transform;



For d = 3, the size of the wavefield vector grows cubicly (M =
n f × n1 × n2), which illustrates the formidable challenge we
are faced with when designing explicit (inverse) wavefield ex-
trapolation operators in higher dimensions.

Depending on the requirements (memory imprint versus num-
ber of flops), the restriction can be designed to

• select a subset of temporal frequencies that leads to
a direct reduction of the number of “block diagonal”
eigenproblems that need be solved and to a reduction
of the number of eigenvectors that need to be stored;

• select a subset of eigenvalues. In principle, discrete
eigenfunctions can be calculated at a random subset of
discrete eigenvalues by applying the appropriate shifts
towards the eigenvalues. This random selection also
leads to a reduction of the number of eigenfunctions
that need to be stored in memory.

• a combination of temporal-frequency and eigenvalue
restrictions;

EXTRAPOLATION EXAMPLES

In this section, we apply our proposed method to wavefield
propagation in a lateral varying medium profile, consisting of a
single Gaussian shaped low-velocity zone as shown in Fig 2(a).
The Helmholtz operator is discretized with ∆x1 = 4m, ∆t =
0.004s with nt = nν = 256. During the experiments, a chain of
horizontally oriented fine-scale curvelets is extrapolated down-
ward with the propagation direction over a distance of ∆x3 =
600m perpendicular to the direction in which the medium varies.

(a) (b)

Figure 2: (a) Lateral velocity profiles with background veloc-
ity 2000ms−1 and a velocity dip of 1200ms−1. Spatial sam-
pling interval of the profile is set to 4m with 256 samples,
while its width at half maximum amplitude is set to 80m. (b)
A chain of horizontally-oriented fine-scale curvelets playing
the role of a “plane wave”.

The results for the forward extrapolation are plotted in Figs 3.
This figure include the results with the full modal-domain for-
ward extrapolation operator, u = Wv, and with the nonlin-
ear compressed operator, eu = W1[v] (cf. Eq. (12)). The ini-
tial wavefield v is plotted in Fig. 2(b). The discretized wave-
fields consist of M = 216 samples. The compressed extrapo-
lation results are obtained with a cooling method outlined in
(Daubechies et al., 2005; Elad et al., 2005) which proves ef-
fective for L1-optimization problems. The examples show that
a fraction p = 0.16 is sufficient to recover the forward propa-
gated wavefields for the Gaussian low and high (with p denot-

ing the total fractional reduction of the measurement matrix,
calculated as the product of p f and pν ). The compressed for-
mulation leads to a gain of in memory usage and more impor-
tantly a gain in the cost for computing the operators.

(a) (b)

(c) (d)

Figure 3: Compressed forward extrapolation according to W1
(cf. Eq. (12)) for different restrictions. The velocity model cor-
responds is plotted in Fig. 2(a). The initial source wavefield
v is plotted in Fig. 2(b). (a) The full extrapolated wavefield
u = Wv is included for reference; (b) The compressed for-
ward propagated wavefield with p f = 0.2 and pν = 0.2; (c)
The same as (b) but with p f = 0.4 and pν = 0.4; (d) The
same as (b) but with p f = 0.6 and pν = 0.4. Observe that
the forward propagated wavefield is largely recovered for the
restriction in (c).

CONCLUSIONS

In this paper, we proposed a compressed extrapolation algo-
rithm that combines the diagonalization of the Helmholtz op-
erator by the modal transform with recent insights from the
field of compressed sensing. In our approach, the eigenfunc-
tions spanning the modal transform are recognized as a suit-
able measurement basis that is incoherent with the curvelet
frames that are known to compress seismic wavefields. This
observation allows for a compression of operators by casting
the action of the operator into a compressed sampling and sub-
sequent recovery problem. The data is compressively sampled
in the modal domain, where the operator is diagonalized, and
subsequently recovered with the nonlinear sparsity promoting
techniques from compressed sensing. This procedure leads to
a reduction of the size of the operators with an overall compu-
tational gain that is contingent upon the cost for the recovery.
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