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Motivation
Exploit two aspects of curvelets, namely their

 parsimoniousness
 invariance under certain operators

Formulate
 non-adaptive wavefield reconstruction algorithms
 data-adaptive matching algorithms 

Applications
 nonlinear sampling theory for wavefields
 nonlinear migration-amplitude recovery
 nonlinear primary-multiple separation



Approach
Employ parsimoniousness by sparsity promotion.

Exploit behavior of certain operators in phase space
 diagonalization <=> curvelet domain scaling
 smoothness <=> structure of phase space

Combine parsimoniousness with structure in phase 
space

 diagonal approximation operators
 stable amplitude recovery
 improved adaptive separation



Migration-amplitude recovery methods are based on
 diagonal approximation of Pseudo’s
 estimate scaling from a reference vector and 

demigrated-migrated reference vector
 Illumination-based normalization (Rickett ‘02)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

Primary-multiple separation methods are based on
 diagonal approximation in the Fourier domain
 estimate scaling from mismatch pred. multiples & data

 adaptive subtraction (Verschuur and Berkhout ‘97)

We are interested in a formulation that
 estimates the scaling with smoothness control
 prevents overfitting
 allows for conflicting dips
 incorporates curvelet-domain sparsity promotion



The curvelet transform



2-D curvelets

curvelets are of rapid decay 
in space

curvelets are strictly localized 
in frequency

x-t f-k
Oscillatory in one direction and smooth in the others!
Obey parabolic scaling relation length ≈ width2



Coefficients Amplitude Decay In 
Transform Domains

Fourier
Wavelets

Curvelets



Partial Reconstruction
Fourier (1% largest coefficients)

SNR = 2.1 dB



Partial Reconstruction
Curvelets (1% largest coefficients)

SNR = 6.0 dB



Non-adaptive curvelet-
domain sparsity 

promotion
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Linear quadratic (lsqr):

• model Gaussian

Non-linear:

• model Cauchy (sparse)

Problem:

• data does not contain point scatterers

• not sparse
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x̃ = arg min
x

‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

x̃ = arg min
x

‖x‖2 s.t. ‖Ax− y‖2 ≤ ε



Our contribution

Model as superposition of little 
plane waves.

Compound modeling operator 
with curvelet synthesis:

Exploit parsimoniousness of 
curvelets on seismic data & 
images ...
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K !→ KCT

m0 !→ x0

m̃ = CT x̃



Sparsity-promoting program
Problems boil down to solving for

with 

 exploit sparsity in the curvelet domain as a prior
 find the sparsest set of curvelet coefficients that 

match the data, i.e.,
 invert an underdetermined system

signal =y + n noise

curvelet representation 
of ideal data

x0

A

x0

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

m̃ = CT x̃

y ≈ KCT x̃



Seismic wavefield 
reconstruction with 

CRSI



Sparsity-promoting inversion*
Reformulation of the problem

Curvelet Reconstruction with Sparsity-promoting 
Inversion (CRSI)

 look for the sparsest/most compressible,
physical solution KEY POINT OF THE 

RECOVERY

* inspired by Stable Signal Recovery (SSR) theory by E. Candès, J. Romberg, T. Tao, 
Compressed sensing by D. Donoho & Fourier Reconstruction with Sparse Inversion (FRSI) 
by P. Zwartjes

signal =y + n noise

curvelet representation 
of ideal data
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sparsity constraint
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x

‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃
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x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃

Pε :

{
x̃ = arg minx ‖Wx‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = CT x̃



Original data



80 % missing



CRSI recovery
 with 3-D 
curvelets



Adaptive curvelet-
domain matched 

filtering



Forward model
Linear model for amplitude mismatch:

 spatially-varying dip filter
 zero-order Pseudo

After discretization

 linear operator
 f and g known
 matrix B is full and not known ....

f = Bg

(
Bf

)
(x) =

∫

x∈Rd
ejk·xb(x, k)f̂(k)dk

B = Pseudodifferential operator
b(x, k) = the symbol



Forward model
Diagonal approximation in the curvelet domain:

 curvelet domain scaling
 opens the way to an estimation of w

Examples:

f = Bg
≈ CT diag{w}Cg

B f g

migration migrated “image” “reflectivity”

multiple removal obliquity factor total data predicted 
multiples

KT K



Key idea
Problems with estimating w

 inversion of an underdetermined system
 over fitting
 positivity and reasonable scaling by w

Solution:
 use smoothness of the symbol 
 formulate nonlinear estimation problem that minimizes

with

 solve with l-BFGS

Jγ(z) =
1
2
‖d− Fγez‖2

2,

gradJ(z) = diag{ez}
[
FT (

Fez − d
)]



Key idea
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Key idea
Impose smoothness via following system of equations

with

first-order differences in space and angle directions for 
each scale. Equivalent to

with

f = CT diag{Cg}w
0 = γLw

L =
[
DT

1 DT
2 DT

θ

]T

w̃ = arg minw
1
2
‖b−P[w]‖2

2 + γ2‖Lw‖2
2

P = CT diag{Cg}



Smoothness penalty

increasing smoothness

 reduces overfitting
 scaling is positive and reasonable



Smoothness penalty
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Smoothness penalty
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Smoothness penalty
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Seismic amplitude 
recovery



Matching procedure
Compute reference vector <=> defines g

 migrate data 
 apply spherical-divergence correction

Create “data” <=> defines f
 demigrate
 migrate

Estimate scaling by inversion procedure

Define scaled curvelet transform

Recover migration amplitudes by sparsity promotion.









Primary-multiple 
separation



Matching procedure

Predict multiples <=> defines g
 apply conventional Fourier matched filtering 

Consider total data as “true” multiples <=> defines f
 do not know true multiples
 use total data instead
 minimize energy mismatch

Estimate scaling by an inversion procedure.

Define scaled curvelet-domain threshold.

Separate primaries & multiples by sparsity promotion.



Problem formulation
Signal model for total data

Multiple prediction by e.g. SRME may contain amplitude 
errors, i.e.,

Solve

with s the total data. Use z to correct the predicted 
multiples, i.e.,

or correct the thresholding

s = s1 + s2

s2 = Bs̆2

s2 ≈ CT diag{w}Cs̆2

s̆2 !→ CT diag{w̃}Cs̆2 with w̃ = ez̃

t = diag{w̃}|Cs̆2|

Jγ(z) =
1
2
‖s− Fγez‖2

2,



Synthetic example

Total data SRME predicted multiples
s̆2

s



Synthetic example

s̆1

Curvelet estimated primariesSRME predicted primaries
s̃1 = CT Tt

(
Cp

)

t = Cs̆2



Synthetic example

Corrected multiplesCorrected multiples
s̆corr.
2 = CT diag{w}Cs̆2 for γ = 0 s̆corr.

2 = CT diag{w}Cs̆2 for γ = 0.5



Synthetic example

Scaled thresholded primariesScaled thresholded primaries
s̃1 = CT Tt

(
Cp

)

t = diag{w}|Cs̃2|
s̃1 = CT Tt

(
Cp

)

t = diag{w}|Cs̃2|



Synthetic example

Curvelet estimated primaries
s̃1 = CT Tt

(
Cp

)

t = Cs̆2

Scaled thresholded primaries
s̃1 = CT Tt

(
Cp

)

t = diag{w}|Cs̃2|



Real example

SRME predicted primariesSRME predicted multiples
s̆2 s̆1



Real example

Thresholded primaries
s̃1 = CT Tt

(
Cp

)

t = Cs̆2

s̃1 = CT Tt
(
Cp

)

t = diag{w}|Cs̃2|

Scaled thresholded primaries



Conclusions

Combining the parsimonious curvelet transform 
with phase-space structure allows us to

� control diagonal estimation <=> over fitting
� handle data with conflicting dips
� stably recover & separate

Application
� improved migration-amplitude recovery
� improved primary-multiple separations

Future
� 3-D
� non-smooth symbols
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