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SUMMARY

In this abstract, we present a nonlinear curvelet-based sparsity-
promoting formulation of a seismic processing flow, consist-
ing of the following steps: seismic data regularization and
the restoration of migration amplitudes. We show that the
curvelet’s wavefront detection capability and invariance under
the migration-demigration operator lead to a formulation that
is stable under noise and missing data.

INTRODUCTION

In this abstract, recent applications of the discrete curvelet
transform (see e.g. Candes et al., 2006; Hennenfent and Herr-
mann, 2006b) are presented that range from data recovery from
acquisitions with large percentages of traces missing to the
restoration of migration amplitudes. Our approach derives from
two properties of curvelets, namely the detection of wave-
fronts, without prior information on the positions and local
dips (see e.g. Candes et al., 2006; Hennenfent and Herrmann,
2006b) and the relative invariance of curvelets under wave
propagation (see e.g. Candès and Demanet, 2005). These
properties render this transform suitable for a robust formula-
tion of data regularization (see e.g. Hennenfent and Herrmann,
2006a; Herrmann and Hennenfent, 2007); primary-multiple
separation (Herrmann et al., 2007); of migration-amplitude re-
covery (Herrmann et al., 2006) and of wavefield extrapolation
(Lin and Herrmann, 2007). All these methods derive from
sparsity in the curvelet domain that is a consequence of the
above properties. This sparsity corresponds to a rapid decay
for the magnitude-sorted curvelet coefficients and facilitates a
separation of (coherent) ’noise’ and ’signal’. This separation
underlies the successful applications of this transform to explo-
ration seismology (see e.g. Hennenfent and Herrmann, 2006b;
Herrmann et al., 2007).

CURVELETS

Curvelets are localized ’little plane-waves’ (see e.g. Hennen-
fent and Herrmann, 2006b) that are oscillatory in one direction
and smooth in the other direction(s). They are multiscale and
multi-directional. Curvelets have an anisotropic shape – they
obey the so-called parabolic scaling relationship, yielding a
width ∝ length2 for the support of curvelets. This anisotropic
scaling is optimal for detecting wavefronts and explains their
high compression rates on seismic data and images (Candes
et al., 2006; Hennenfent and Herrmann, 2006b; Herrmann et al.,
2007).

Curvelets represent a specific tiling of the 2-D/3-D frequency
plane into strictly localized multiscale and multi-angular wed-
ges. Because the directional sampling increases every-other
scale doubling, curvelets become more anisotropic at finer scales.
Curvelets compose an arbitrary column vector f, with the re-
ordered samples, according to f = CCCTCCCf with CCC and CCCT , the
forward/inverse discrete curvelet transform matrices (defined
by the fast discrete curvelet transform, FDCT, with wrapping

Candes et al., 2006; Ying et al., 2005). The symbol T repre-
sents the transpose, which is equivalent to the pseudoinverse
for our choise of discrete curvelet transform, which is a tight
frame with a moderate redundancy (a factor of roughly 8 for
d = 2 and 24 for d = 3 with d the number of dimensions).
Tight frames (see e.g. Daubechies, 1992) are signal represen-
tations that preserve energy. Consequently, CCCTCCC = III with III
the identity matrix. Because of the redundancy, the converse is
not the identity, i.e., CCCCCCT 6= III .

SPARSITY-PROMOTING INVERSION

To exploit curvelets, (in)complete and noisy measurements are
related to a sparse curvelet coefficient vector, x0, according to

y = AAAx0 +n (1)

with y a vector with noisy and possibly incomplete measure-
ments; AAA the synthesis matrix that includes the inverse curvelet
transform (CCCT ); and n, a zero-centered white Gaussian noise.
The matrix AAA is a wide rectangular matrix, so the vector x0
can not readily be calculated from the measurements, because
there exist infinitely many vectors that match y.

Recent work in ’compressive sampling’ (Candès et al., 2006;
Donoho, 2006) has shown that rectangular matrices can stably
be inverted by solving a nonlinear sparsity promoting program
(Elad et al., 2005). These inversions require a fast decay for
the magnitude-sorted curvelet coefficients. Following these re-
sults, the vector x0 can be recovered from noise-corrupted and
incomplete data. Sparsity-promoting norm-one penalty func-
tionals are not new to the geosciences (see for instance the
seminal work of Claerbout and Muir (1973), followed by many
others). New are (i) the curvelet transform that obtains near
optimal theoretical and empirical (Candes et al., 2006; Hen-
nenfent and Herrmann, 2006b) compression rates on seismic
data and images and (ii) the theoretical understanding of the
conditions for a successful recovery. In this work, problems
in seismic imaging and processing are solved by the norm-one
nonlinear program:

Pε :

(ex = argminx ‖x‖1 s.t. ‖AAAx−y‖2 ≤ εef = SSST ex (2)

in which ε is a noise-dependent tolerance level. Eq. 2 is gen-
eral and the (curvelet-based) synthesis matrix, AAA, and the in-
verse sparsity transform, SSST , are defined in accordance with
the application. The vector ef represents the estimated solution
(denoted by the symbol e). The above nonlinear program is
solved with a threshold-based cooling method following ideas
from Figueiredo and Nowak (2003) and Elad et al. (2005).

SEISMIC DATA RECOVERY

Seismic data acquisition is often based on equally-spaced sam-
pling. Indeed, when Nyquist’s sampling theorem is met, equidis-
tant sampling allows for a perfect reconstruction of bandwidth-
limited signals. Unfortunately, sampling rates are often inad-
equate, which leads to difficult to remove aliasing. For the
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same average sampling interval, random subsampling leads to
an easily denoiseable spectrum, as long as the to-be-recovered
signal is compressible (Hennenfent and Herrmann, 2007). Ran-
dom (compressive) sampling has been a topic of intense scien-
tific debate (see e.g. Sun et al., 1997) and the response by
Vermeer (1998). What differs in our approach is the nonlinear
recovery from incomplete data. Recovery from compressive
sampling depends on sparsity and mixing. Mixing turns harm-
ful aliasing into relatively harmless noise and depends on the
randomness of the acquisition and the incoherence (max corre-
lation) between the measurement basis (Diracs) and curvelets.
The better the mixing the better the recovery (Donoho et al.,
2006; Herrmann and Hennenfent, 2007).

Curvelet-based recovery: In our formulation, seismic data
regularization involves the solution of Pε with AAA := RRRCCCT , SSS :=
CCC, given incomplete data, y = RRRf, with f the fully sampled
data and RRR the picking matrix. In recent years, the authors
repeatedly reported on succesful curvelet-based recovery of
seismic data (see e.g. Herrmann, 2005; Hennenfent and Herr-
mann, 2006a, 2007). Compared to other methods, such as
sparse Fourier recovery (Sacchi and Ulrych, 1996; Zwartjes
and Gisolf, 2006) and plane-wave destruction (Fomel and Gui-
tton, 2006), curvelet-based methods work for data with con-
flicting dips. Fig. 1, shows an unfavorable recovery example,
where aliased groundroll is recovered by interpolation from a
5m grid to a grid of 2.5m, where the groundroll is no longer
aliased. Large amplitude contrast and regular subsampling
make this example difficult.

Focused recovery: Combining the non-adaptive curvelet trans-
form with the data-adaptive focal transform (Berkhout and Ver-
schuur, 2006), leads to a powerful formulation where data is
focused by inverting the primary operator (= a multidimen-
sional ’convolution’ with an estimate of the major primaries).
During this curvelet-regularized inversion of the primary op-
erator, ∆∆∆PPP, propagation paths that include the surface are re-
moved, yielding a more focused wavefield and hence a more
compressed curvelet vector. This improved focussing is achieved
by Pε with the synthesis matrix AAA := RRR∆∆∆PPPCCCT and inverse spar-
sity transform SSST := ∆∆∆PPPCCCT . The solution of Pε now entails
the inversion of ∆∆∆PPP, yielding the sparsest set of curvelet co-
efficients that matches the incomplete data when ’convolved’
with the primaries. By virtue of the improved compression,
focusing improves the recovery (compare Fig 2(c) and 2(d)).

MIGRATION-AMPLITUDE RECOVERY
After processing seismic data can be modeled by the linearized
Born scattering/demigration operator, d = KKKm + n, with the
remaining nonlinear signal components and measurement er-
rors modeled by Gaussian noise, n. A seismic image is cre-
ated by applying the adjoint of the modeling operator. This
image, y = KKKT d or y = ΨΨΨm + e, contains the imprint of clut-
ter, e = KKKT n, and the Gramm (demigration-migration) opera-
tor, ΨΨΨ := KKKT KKK, and serves as input to our amplitude recovery
scheme which estimates the reflectivity, m. The following ap-
proximate identity is used

AAAAAAT r'ΨΨΨr (3)

with r a reference vector. This expression follows from a
curvelet decomposition of the Gramm operator, ΨΨΨr'CCCT DDDΨCCCr.

Following work by Guitton (2004) and more recently on op-
timal scaling of reverse-time migration (W. W. Symes, per-
sonal communication, 2007), this diagonal can be estimated
by solving a least-squares problem that uses the reference and
demigrated-migrated reference vector as input. The factoriza-
tion in Eq. 3 is based on a synthesis matrix given by AAA := CCCT

ΓΓΓ

with ΓΓΓ :=
√

DDDΨ. This factorization leads to y' AAAx0 + e as an
approximate image representation that is amenable to Pε . Af-
ter solving for x0, the reflectivity is obtained by applying the
synthesis operator, SSST :=

`
AAAT ´†, with † the pseudoinverse, toex.

The diagonal approximation serves two purposes. It approxi-
mately corrects the amplitudes and it whitens the colored clut-
ter. As the results in Fig. 3(b) indicate, a recovery with Pε ,
leads to a stable (under noise) recovery of the imaged reflec-
tivity. These improvements (cf. Fig. 3(a) and 3(b)) are obtained
by a penalty functional that jointly promotes the curvelet spar-
sity and the continuity along the reflectors. Results for the
SEG AA’ dataset (O’Brien and Gray, 1997; Aminzadeh et al.,
1997) are summarized in Fig. 3. These results are obtained for
linearized Born data, modeled with the adjoint of reverse-time
migration with optimal checkpointing (W. W. Symes, personal
communication, 2007). The estimated images show a nice am-
plitude recovery and clutter removal for reflection data with a
signal-to-noise ratio (SNR) of only 3dB.

DISCUSSION AND CONCLUSIONS

The seismic data regularization derived its performance from
curvelet compression, random subsampling and the inclusion
of an additional focusing operator. The approximate invariance
under demigration-migration allowed for a computationally-
efficient migration amplitude recovery scheme. Since our scheme
is based on a phase-space approximation, our scaling is less
restrictive with respect to conflicting dips. The successful ap-
plication of curvelets, juxtaposed by sparsity-promoting inver-
sion, opens a range of new perspectives on seismic data pro-
cessing, wavefield extrapolation and imaging. Because of their
singular wavefront detection capability, curvelets represent in
our vision an ideal domain for future developments in explo-
ration seismology.

ACKNOWLEDGMENTS

The authors would like to thank Eric Verschuur and Chris Stolk
for their input. We also would like to thank the authors of
CurveLab for making their codes available and William Symes
for his reverse-time migration code. The examples presented
were prepared with Madagascar (rsf.sourceforge.net/),
supplemented by SLIMPy operator overloading, developed by
Sean Ross Ross. ExxonMobil and Norsk Hydro are thanked
for making the field datasets available. Eric Verschuur and
M. O’Brien, S. Gray and J. Dellinger are thanked for providing
the synthetic multiple dataset for the SEG AA’ available. This
work was in part financially supported by the NSERC Dis-
covery (22R81254) and CRD Grants DNOISE (334810-05) of
F.J.H. and was carried out as part of the SINBAD project with
support, secured through ITF, from BG Group, BP, Chevron,
ExxonMobil and Shell.



Curvelet-based seismic processing

(a) (b)

Figure 1: Illustrations of curvelet-based seismic data recovery. (a) Original shot record with aliased groundroll sampled with an
interval of 5m. (b) Interpolated result, yielding a sample interval of 2.5m for which the groundroll is no longer aliased.

(a) (b)

(c) (d)

Figure 2: Comparison between curvelet-based recovery by sparsity-promoting inversion with and without focusing. (a) Full real
SAGA data volume. (b) Randomly subsampled data with 80% of the traces missing. (c) Curvelet-based recovery. (d) Curvelet-
based recovery with focusing. Notice the significant improvement from the focusing with the primary operator.
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(a)

(b)

Figure 3: Image amplitude recovery for a migrated image calculated from noisy data (SNR 3dB). (a) Image with clutter. (b) Image
after nonlinear recovery. The clearly visible non-stationary noise in (a) is mostly removed during the recovery while the amplitudes
are also restored. Steeply dipping reflectors under the salt are also well recovered.
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