Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2007 SLIM group @ The University of British Columbia.

Multiple prediction from incomplete data with the focused curvelet transform

Felix J. Herrmann

joint work with Deli Wang and Gilles Hennenfent.

The problem

The problem cont'd

Our solution

Motivation

Data-driven (SRME) multiple prediction requires *fully* sampled data.

The Focal transform (Berkhout & Verschuur '06) allows for

- mapping of multiples => primaries
- incorporation of *prior* information in the recovery

Present a curvelet-based scheme for sparsitypromoting

- recovery of missing data
- prediction of primaries from multiples
- data inverse …

The curvelet transform

Representations for seismic data

Transform	Underlying assumption
FK	plane waves
linear/parabolic Radon transform	linear/parabolic events
wavelet transform	point-like events (1D singularities)
curvelet transform	curve-like events (2D singularities)

Properties curvelet transform:

- multiscale: tiling of the FK domain into dyadic coronae
- multi-directional: coronae subpartitioned into angular wedges, # of angle doubles every other scale
- anisotropic: parabolic scaling principle
- Rapid decay space
- Strictly localized in Fourier
- Frame with moderate redundancy (8 X in 2-D and 24 X in 3-D)

2-D curvelets

Oscillatory in one direction and smooth in the others! Obey *parabolic* scaling relation $length \approx width^2$

3-D curvelets

Curvelets are oscillatory in one direction and smooth in the others.

Curvelet sparsity promotion

Sparsity-promoting program

Solve for x₀

- exploit sparsity in the curvelet domain as a prior.
- find the sparsest set of curvelet coefficients that match the data.
- invert an underdetermined system.

Focused wavefield reconstruction with curvelets

Focused recovery

Non-data-adaptive Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI) derives from **curvelet-sparsity** of seismic data.

Berkhout and Verschuur's *data-adaptive* Focal transform derives from *focusing* of seismic data by the *major* primaries.

Both approaches entail the *inversion* of a linear operator.

Combination of the two yields

- improved focusing => more sparsity
- curvelet sparsity => better focusing

Primary operator

Primary operator

Frequency Slice (30Hz)

Primary operator

Primaries to first-order multiples:

$$\mathbf{\Delta \mathbf{p}}\mapsto \mathbf{m}^1 = (\mathbf{\Delta \mathbf{P} \mathcal{A}} *_{t,x} \mathbf{\Delta \mathbf{p}})$$

First-order multiples into primaries:

$$\mathbf{m}^1\mapsto \mathbf{\Delta p}pprox (\mathbf{\Delta P} \mathbf{\mathcal{A}} \otimes_{t,x} \mathbf{\Delta p})$$

with the acquisition matrix

$$oldsymbol{\mathcal{A}} = \left(oldsymbol{\mathcal{S}}^\dagger \mathbf{R} oldsymbol{\mathcal{D}}^\dagger
ight)$$

"inverting" for source and receiver wavelet wavelets geometry and surface reflectivity.

Curvelet-based Focal transform

Solve with 3-D curvelet transform

$$\mathbf{P}_{\epsilon}: \qquad \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} & \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T} \widetilde{\mathbf{x}} \end{cases}$$

with

- A := $\Delta \mathbf{P} \mathbf{C}^T$ and $\Delta \mathbf{P} := \mathbf{F}^H$ block diag $\{\Delta \mathbf{p}\}\mathbf{F}$
- $\mathbf{S} := \mathbf{C}$
- $\mathbf{y} = \mathbf{p}$
- \mathbf{p} = total data.

Difference

Recovery with focussing

Solve

$$\mathbf{P}_{\epsilon}: \qquad \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} & \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T} \widetilde{\mathbf{x}} \end{cases}$$

with

- $\mathbf{A} := \mathbf{R} \mathbf{\Delta} \mathbf{P} \mathbf{C}^T$
- \mathbf{S}^T := $\mathbf{\Delta} \mathbf{P} \mathbf{C}^T$
 - $\mathbf{y} = \mathbf{R}\mathbf{p}$
 - \mathbf{R} = picking operator.

Multiple prediction with fCRSI

Wavefield reconstruction with fCRSI

Multiple prediction

Primary prediction with fCRSI

Curvelet-based Focal transform

Solve

$$\mathbf{P}_{\epsilon}: \qquad \begin{cases} \widetilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} & \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \leq \epsilon \\ \widetilde{\mathbf{f}} = \mathbf{S}^{T} \widetilde{\mathbf{x}} \end{cases}$$

with

- $\mathbf{A} := \mathbf{\Delta} \mathbf{P} \mathbf{C}^T$
- $\mathbf{S} := \mathbf{C}$
- $\mathbf{y} = \mathbf{P}(:)$
- \mathbf{P} = total data
- $\tilde{\mathbf{f}}$ = focused data.

SLIM

Seismic Laboratory for Imaging and Modeling

An encore ... preliminary results for the data inverse

$$\mathbf{P}_{\epsilon}:$$

$$\begin{cases} \tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} \|\mathbf{x}\|_{1} & \text{s.t.} & \|\mathbf{A}\mathbf{x} - \mathbf{y}\|_{2} \le \epsilon \\ \tilde{\mathbf{p}}^{-1} = \mathbf{S}^{T} \tilde{\mathbf{x}} \end{cases}$$

with

$$\mathbf{A} := \mathbf{P}\mathbf{C}^T$$

$$\mathbf{S}^T := \mathbf{C}^T$$

 $\mathbf{y} = \hat{\mathbf{I}}$

p is the data to be inverted

Curvelet-sparsity regularized *data inverse* computed for the *whole* data volume

SL

Seismic Laboratory for Imaging and Modeling

Conclusions

CRSI

- recovers data by curvelet sparsity promotion
- uses sparsity as a prior

Focused CRSI

- incorporates additional prior information
- strips interaction with the surface <=> more sparsity
- improves the recovery and hence predicted multiples
- precursor of migration-based CRSI

Results of curvelet-based computation of the data inverse are encouraging.

Acknowledgments

The authors of CurveLab (Demanet, Ying, Candes, Donoho)

Dr. Verschuur for his synthetic data and the estimates for the primaries.

The SLIM team Sean Ross Ross, Cody Brown and Henryk Modzeleweski for developing SLIMPy: operator overloading in python

These results were created with Madagascar developed by Dr. Fomel.

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE (334810-05) of F.J.H. This research was carried out as part of the SINBAD project with support, secured through ITF (the Industry Technology Facilitator), from the following organizations: BG Group, BP, Chevron, ExxonMobil and Shell.