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SUMMARY

Incomplete data represents a major challenge for a suc-
cessful prediction and subsequent removal of multiples.
In this paper, a new method will be represented that
tackles this challenge in a two-step approach. During
the first step, the recenly developed curvelet-based re-
covery by sparsity-promoting inversion (CRSI) is ap-
plied to the data, followed by a prediction of the pri-
maries. During the second high-resolution step, the esti-
mated primaries are used to improve the frequency con-
tent of the recovered data by combining the focal trans-
form, defined in terms of the estimated primaries, with
the curvelet transform. This focused curvelet transform
leads to an improved recovery, which can subsequently
be used as input for a second stage of multiple prediction
and primary-multiple separation.

INTRODUCTION

Surface-related multiple prediction and seismic interfer-
ometry are examples where weighted multi-dimensional
cross-convolutions and cross-correlations of seismic data
volumes provide information on Green’s functions that
describe the Earth response at the surface. For instance,
surface-related multiples can approximately be predicted
through a weighted multidimensional convolution of the
data with itself, while ’daylight imaging’ techniques ex-
tract the Green’s function by cross-correlation of wave-
fields (see e.g. Wapenaar et al., 2006, which contains
a collection of the most recent papers on this topic).
Recently, new approaches have been proposed, where
the Green’s functions are extracted through inversion or
deconvolution (See the contributions by Snieder et.al,
Schuster et.al. and Berkhout and Verschuur in Wape-
naar et al., 2006).

Unfortunately, these multidimensional techniques are sen-
sitive to missing traces (see e.g. Fig. 3(a) where the pre-
dicted multiples suffer significantly from the missing data).
Many different techniques have been proposed to solve
the interpolation problem. The different approaches can
roughly be divided into data-dependent approaches, as-
suming prior (velocity) information on the wave arrivals,
and non-parametric approaches that do not make such
assumptions. Examples of parametric methods are the
so-called data mappings (Bleistein et al., 2001), based
on approximate solutions of the wave equation. These
methods require information on the seismic velocity. Para-

bolic, apex-shifted Radon or migration-like transforms
such as DMO/NMO/AMO also fall in this category. Other
examples of data-adaptive methods are predictive, dip
filtering techniques and plane-wave destructors that re-
quire a preprocessing step (see e.g. Spitz, 1999; Fomel
and Guitton, 2006). Examples of non-parametric ap-
proaches include transform-based sparse inversion meth-
ods based on the Fourier or other transforms (Sacchi and
Ulrych, 1996; Elad et al., 2005; Zwartjes and Gisolf,
2006; Abma and Kabir, 2006).

In this work, we hold the middle between data-dependent
and transform-based methods by combining the data-
independent discrete curvelet transform (FDCT, Candes
et al., 2006; Ying et al., 2005; Hennenfent and Herr-
mann, 2006b) with the recently introduced data-adap-
tive focal transform (Berkhout and Verschuur, 2006). By
virtue of its compression on seismic data and its invari-
ance under wave propagation, the curvelet transform has
proven to be an excellent domain for the formulation of
seismic processing algorithms ranging from data regu-
larization (Hennenfent and Herrmann, 2006a; Herrmann
and Hennenfent, 2007); primary-multiple separation (Herr-
mann et al., 2007) to migration-amplitude recovery (see
e.g. Herrmann et al., 2006,and contributions by the au-
thors to the proceedings of this conference) and com-
pressed wavefield extrapolation (Lin and Herrmann, 2007).

While the non-parametric curvelet-based method recov-
ers incomplete data, the physics of wave propagation is
not truely exploited. Combining the non-adaptive curvelet
transform with the data-adaptive focal transform (Berkhout
and Verschuur, 2006) leads to a powerful formulation
where data is focused by inverting the primary operator
(= a multidimensional ’convolution’ with an estimate
of the major primaries). During this curvelet-regularized
inversion of the primary operator, ∆∆∆PPP, propagation paths
that include the surface are removed, yielding a more fo-
cused wavefield and hence a more compressed curvelet
vector.

The focusing operator itself is derived from the data and
contains an estimate for the major primaries obtained
from e.g. a SRME-primary estimation procedure (Ver-
schuur and Berkhout, 1997). In this abstract, we present
a method where the focal operator is robustly inverted by
curvelet regularization, i.e. by promoting sparsity in the
curvelet domain. The robustness in this context refers to
stability under noise and more importantly under miss-
ing traces, leading to an improved recovery for data with
large percentages of traces missing. First, we briefly dis-
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cuss sparsity promoting inversion, followed by curvelet
recovery by sparse inversion (CRSI). Next, we combine
this method with the focal transform, leading to focused
curvelet recovery by sparse inversion (fCRSI). The pro-
posed algorithm is tested on a 3D seismic data volume.

SPARSITY-PROMOTING INVERSION

To exploit curvelets, incomplete and noisy measurements
are related to a sparse curvelet coefficient vector, x0, ac-
cording to

y = AAAx0 +n

with y a vector with noisy and incomplete measurements;
AAA the synthesis matrix that includes the inverse curvelet
transform (CCCT ); and n, a zero-centered white Gaussian
noise. The matrix AAA is a wide rectangular matrix, so the
vector x0 can not readily be calculated from the mea-
surements, because there exist infinitely many vectors
that match y.

Recent work in ’compressive sampling’ (Candès et al.,
2006; Donoho, 2006) has shown that rectangular matri-
ces can stably be inverted by solving a nonlinear spar-
sity promoting program (Elad et al., 2005). These in-
versions require a fast decay for the magnitude-sorted
curvelet coefficients. Following these results, the vector
x0 can be recovered from noise-corrupted and incom-
plete data. Sparsity-promoting norm-one penalty func-
tionals are not new to the geosciences (see for instance
the seminal work of Claerbout and Muir (1973), fol-
lowed by many others). New are (i) the curvelet trans-
form that obtains near optimal theoretical and empirical
(Candes et al., 2006; Hennenfent and Herrmann, 2006b)
compression rates on seismic data and images and (ii)
the theoretical understanding of the conditions for a suc-
cessful recovery.

In this work, the seismic recovery problem is solved by
the norm-one nonlinear program:

Pε :

{
x̃ = argminx ‖x‖1 s.t. ‖AAAx−y‖2 ≤ ε

f̃ = SSST x̃

in which ε is a noise-dependent tolerance level. The
nonlinear program Pε is general and the (curvelet-based)
synthesis matrix, AAA, and the inverse sparsity transform,
SSST , are defined in accordance with the application. The
vector f̃ represents the estimated solution (denoted by
the symbol )̃. The above nonlinear program is solved
with a threshold-based cooling method following ideas
from Figueiredo and Nowak (2003) and Elad et al. (2005).

SEISMIC DATA RECOVERY

CRSI
In our formulation, seismic data regularization involves
the solution of Pε with AAA := RRRCCCT , SSS := CCC given incom-
plete data, y = RRRf, with f the fully sampled data and RRR
the picking matrix that selects the acquired traces from
the total data volume. In recent years, the authors re-
peatedly reported on successful curvelet-based recovery
of seismic data (see e.g. Herrmann, 2005; Hennenfent
and Herrmann, 2006a, 2007). Compared to other meth-
ods, such as sparse Fourier recovery (Sacchi and Ul-
rych, 1996; Zwartjes and Gisolf, 2006) and plane-wave
destruction (Fomel and Guitton, 2006), curvelet-based
methods work for data with conflicting dips. Fig. 2 con-
tains an example where data is recovered from 85% traces
missing. This figure shows that CRSI is able to recover
the complete data volume at the expense of the high-
est frequency band. This estimate for the interpolated
data is used to calculate an improved estimate for the
primaries.

fCRSI
Combining the non-adaptive curvelet transform with the
data-adaptive focal transform (Berkhout and Verschuur,
2006), leads to a powerful formulation where data is fo-
cused by inverting the primary operator. During this
curvelet-regularized inversion of the primary operator,
∆∆∆PPP, propagation paths that include the surface are re-
moved, yielding a more focused wavefield and hence
a more compressed curvelet vector. This improved fo-
cusing is achieved by Pε with the synthesis matrix AAA :=
RRR∆∆∆PPPCCCT and inverse sparsity transform SSST := ∆∆∆PPPCCCT . The
solution of Pε now entails the inversion of ∆∆∆PPPCCCT , yield-
ing the sparsest set of curvelet coefficients that matches
the incomplete data when ’convolved’ with the primaries.
The symbol ∆∆∆PPP refers to applying a temporal Fourier
transform, followed by a frequency-slice-by-frequency-
slice matrix multiplication by ∆̂P(ω), followed by an
inverse temporal Fourier transform for each slice. This
operator is compounded with the 3-D inverse curvelet
transform that brings the data from the curvelet domain
back to a 3D data volume. This choice for the synthesis
operator corresponds to a curvelet-regularized formu-
lation of the focal transform (Berkhout and Verschuur,
2006).

The focal transform corresponds to an imaging towards
the source without applying an imaging condition. After
applying the focal transform, the data is focused towards
the source, a property used by Berkhout and Verschuur
(2006) who “cut out” the aliased energy in the focal do-
main, prior to applying the inverse focal transform. In
our approach, we follow a less ’ad hoc’ approach by
only promoting sparsity in the domain spanned by the
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focused curvelet transform. In this way, no assumptions
except for sparsity are made. This sparsity assumption
seems reasonable since curvelets are sparse on wave-
fields and the focused data itself is a wavefield, where
the primaries are mapped to a directional source and the
first-order multiples are mapped to primaries etc. etc.
Because the wavefield is stripped from one interaction
with the surface, the focused wavefield will be more
focused and hence the sparsity-promoting norm in the
curvelet domain will be more effective.

Aside from the focusing argument, the improved per-
formance (cf. Fig 2(a) and 2(b)) can be attributed to
the increase in mutual incoherence between the Dirac
measurement basis and the columns of ∆∆∆PPPCCCT (see also
Herrmann and Hennenfent, 2007; Hennenfent and Herr-
mann, 2007). While CRSI could only recover the data
volume with the finest scale removed, fCRSI is able to
recover the full data leading to a sharper recovery, espe-
cially visible for the diffracted events in the time slice.
The improvements for the recovery reflect in an improve-
ment for the predicted multiples as shown in Fig. 3. In
turn, the fCSRI recovered data yields an improved pre-
diction for the multiples.

DISCUSSION AND CONCLUSIONS

The presented methodology banks on two properties of
curvelets: their ability to detect wavefronts (the ’wave-
front set’) and their approximate invariance under wave
propagation. By compounding the curvelet transform
with the focal transform, we were able to improve the
recovery from incomplete data by curvelet-based spar-
sity promotion. This improved performance is due to
the additional focusing by the primaries, rendering the
curvelet-sparsity promotion during the recovery more
effective. As with curvelet-based recovery without fo-
cusing, the recovery is improved by random sampling.
This imperative random sampling breaks the aliasing by
turning the missing data into a removable noise-term.
For further details on this important observation, refer to
other contributions by the authors to the proceedings of
this conference. Since the focal transform corresponds
to an imaging of seismic data towards the source, our
results suggest that migrated images can in principle be
recovered from data with large percentages of random
traces missing.
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Figure 1: Synthetic dataset. (a) Original data. (b) Ran-
domly subsampled data with 85% of the traces missing.
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(a) (b)

Figure 2: Curvelet-based seismic data recovery. (a) Recovery with CRSI. (b) Recovery with fCRSI. Comparison
between the CRSI- and fCRSI results shows a clear improvement in the frequency content of the recovered data for
fCRSI.

(a) (b)

Figure 3: SRME-multiple prediction. (a) SRME-predicted multiples from randomly subsampled data with 85% of the
traces missing (cf. Fig. 1(b)). (b) SRME-predicted from the fCRSI recovered data (cf. Fig. 2(b)).
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