
A parallel windowed fast discrete curvelet transform applied to seismic processing
Darren Thomson*, Gilles Hennenfent, Henryk Modzelewski and Felix J. Herrmann
Seismic Laboratory for Imaging and Modeling, Earth & Ocean Sciences Department, University of British
Columbia

SUMMARY

We propose using overlapping, tapered windows to process seismic
data in parallel. This method consists of numerically tight linear oper-
ators and adjoints that are suitable for use in iterative algorithms. This
method is also highly scalable and makes parallel processing of large
seismic data sets feasible. We use this scheme to define the Parallel
Windowed Fast Discrete Curvelet Transform (PWFDCT), which we
apply to a seismic data interpolation algorithm. The successful per-
formance of our parallel processing scheme and algorithm on a two-
dimensional synthetic data is shown.

INTRODUCTION

Realistic seismic data sets, especially three-dimensional ones, can be
extremely large. It is not uncommon for a data set to be orders of mag-
nitude larger than what one could hope to fit in a computer’s memory.
This presents obvious challenges when attempting to process seismic
data and ultimately use it to create images of the subsurface. One ap-
proach is to simply shrink the data set by downsampling or by consid-
ering only a small subsection of the full data set. In many situations,
however, this is not satisfactory, and so a means for processing (and
later imaging) the full data set is needed. Ideally, such a scheme would
provide a straightforward way to make use of existing useful methods
for processing small data sets.

The obvious solution to problems that require more memory than any
single computer can offer is to use a large number of computers in
parallel. Parallel systems of various types are very common in high
performance computing, and are applied to problems of all sorts, in-
cluding many in seismic data processing. For instance, a parallel im-
plementation of the Fast Discrete Curvelet Transform (FDCT), which
can be applied to a variety of problems in seismic processing, exists
(L. Ying and Candès, 2005). However, there are limitations to the
scalability of this implementation, to the extent that processing typ-
ical large seismic data sets is still intractable. As is the case with
many classes of parallel algorithms, scalability is limited by growths
in the amount of communication required between processors working
in parallel, though this is dependent on the properties of the specific
system being used (see e.g. Gupta and Kumar, 1993). Other classes of
parallel algorithms involve splitting data sets into small pieces (”win-
dows”) and consider each window separately. While this is perfectly
legitimate in many applications, problems can arise at window borders
for a variety of reasons, including, commonly, artifacts related to the
periodicity of the transform or to the discontinuity across the border.

Here, we consider the application of overlapping windows processed
in parallel to a seismic data interpolation algorithm that makes use
of the FDCT. These overlapping windows include a taper that is ap-
plied to overlapping regions such that the overall energy of the system
is preserved throughout the operation. We restrict ourselves to two-
dimensional data here, but this method is easily generalized to an ar-
bitrary number of dimensions. This parallelization scheme addresses
shortcomings of other schemes that could be applied to this problem,
and can be generalized to create parallel windowed versions of a wide
variety of operators.

This paper begins with a brief review of parallel algorithms in scien-
tific computing. We then discuss our parallelization in more detail, in-

cluding how it has been applied to seismic data interpolation, as well as
some specific new issues that our scheme introduces to this (and other)
algorithms. Finally, we show and discuss the results of applying this
algorithm to a synthetic seismic data set with missing traces.

BACKGROUND

Parallel computation is necessary to solve realistic problems in many
fields. The way in which computations are split in order to run in par-
allel is highly dependent on the particular problem in question, but two
very basic approaches are commonly used in a wide variety of appli-
cations. Any algorithm that involves a large number of independent
operations on independent data are easily run in parallel by simply
giving each computing node a share of the work, without the need for
any communication between nodes for the duration of the process. A
large Monte Carlo experiment, for instance, is easily run in parallel in
this way. Another approach to building parallel algorithms is to give
each node a unique window of the data set that it is capable of han-
dling. In some cases, these windows can have small overlaps. This
is particularly useful in solving differential equations, where, for ex-
ample, finite difference solvers require knowledge of a function at a
given point of interest as well as the value of that same function at all
of the points surrounding it (see e.g. J. Fan and Rector, 1997). How-
ever, under some circumstances, running an algorithm unchanged in
parallel becomes very difficult. The FFT, for instance, requires a mas-
sive amount of communication when the data are spread across mul-
tiple nodes in parallel. As the number of nodes grows, the amount of
information that needs to be communicated becomes unfeasible. By
extension, this also impacts the FDCT (L. Ying and Candès, 2005).

FFT-based operations, like the FDCT, as well as other operations that
are not easily run in parallel, often have desirable properties that can
be exploited to find solutions to various problems. Thus, it is advanta-
geous to have a system under which these operations can be performed
in parallel on large amounts of data. One approach is to split the data
into subsections, or windows, and operate on these separately. This
approach is ”embarrassingly parallel” - in other words, no communi-
cation between neighbouring processes is necessary during process-
ing. However, this approach often fails due to the creation of arti-
facts at the edges of the windows (J. Fan and Rector, 1997) as a re-
sult of, for example, the Gibbs phenomenon, which arises when an
approximation of the data (rather than the full representation in the
transform domain) is taken. Approximations in transform domains are
common, so a parallelization approach that eliminates the impact of
edge artifacts is necessary. Even when approximations are not taken
on separated windows, it is possible that differences between windows
will be introduced through the process. Also, to be scalable such
that it could feasibly handle large data sets, any parallel processing
scheme must minimize the amount of necessary communication be-
tween nodes. Furthermore, any parallelized operation that is going to
be performed repeatedly (i.e. as part of some iterative solver) needs
to have a defined adjoint operation, and should preserve energy. To-
gether, these properties create a numerically tight frame that will not
introduce any growing error in an iterative process.



THEORY

We propose a method to parallelize an arbitrary linear operator that
avoids problems related to edge artifacts and preserves overall energy.
It requires relatively little communication between parallel nodes, mak-
ing it highly scalable. Our particular interest here is focused on a scal-
able parallel generalization of the FDCT, but we stress the fact that any
linear operator could take the place of the FDCT in this framework.

Parallel Windowed FDCT
The basic structures of this framework are overlapping and tapered
windows. This scheme has previously been used in various parallel
processing applications (see e.g. J. Fan and Rector, 1997). The details
of these structures are quite flexible. In general, the sizes of the win-
dows and the overlapping regions do not have to be uniform through-
out the system. Here, though, we will only consider equally sized win-
dows with uniform overlap throughout the system. One can express
the overlap between windows by the value ε , which represents the
depth to which one window receives adjacent data from its neighbours
(Mallat, 1998), as illustrated in Figure 1. The overlapping regions of
the windows are tapered such that the energy of the system remains
constant when points in the data set are duplicated due to the overlaps.
The tapering also ensures that edges of the data goes smoothly to zero
at the edges, eliminating the potential of creating edge artifacts.

The taper is applied across the outer region of the overlapping win-
dows, affecting points that are within a distance of 2ε from an edge.
The tapering function b must satisfy the relationship

b′2 +b′′2 = 1, (1)

where b′ and b′′ signify the tapers in adjacent windows that cover the
same region. For consistency, we consider the application of an iden-
tical tapering function b to all windows. It follows from Eq. 1 that

b2
n +b2

2ε−n+1 = 1, (2)

where n is an integer on the interval [1,2ε], and subject to the boundary
conditions b1 = 0 and b2ε = 1. This condition ensures that the energy
of the system is conserved when summing values from adjacent win-
dows that represent the data at the same location. There are many
examples of functions that satisfy this relationship (Mallat, 1998), the
simplest being:

bn = sin
(

(n−1)π
2(2ε −1)

)
. (3)

To taper the end of the data set along each dimension, the function b is
translated to the points n = {N,N−1, · · · , N−2ε +1}, where N is the
total size of the overlapping windows. The tapering function is then

bn = sin
(

(N −n)π
2(2ε −1)

)
. (4)

Once the data is split into overlapping windows and tapered, opera-
tions, like the FDCT in our particular case, can be performed on each
window independently. The shape of the taper function and the over-
lap of neighbouring windows are both shown in Figure 1. The data in
this case is split into sixteen overlapping windows, four horizontally
and four vertically. The dashed lines in the image represent the edges
of the overlapping windows, with the region between nearby paral-
lel lines being shared between the two windows. The taper function
is shown, where one can see the value going to zero at the window
edges. Since the image and all windows are square in this case, the
taper functions along the vertical axis are the same as the horizontal
ones that are shown. Also, note that tapering is not done at the edges
of the image, since this would remove energy from the system. This
issue can be successfully dealt with in a number of ways, but we omit
this discussion.

We now consider the entire process in the context of linear operators
acting on data vectors. In the parallel context, it is useful to distinguish
between global vectors and operators, which comprise the entire paral-
lel system, and local vectors and operators that exist only on individual
nodes. Our notation will reflect this distinction. For instance, the dis-
tributed operator and vector A and x are easily distinguished from the
local operator and vector Ai and xi that exist on a node indexed by i.
Note that there will be cases when we want to apply a local operator
Ai to the data on every node in a global vector x. This involves a block
diagonal global operator where each block consists of the particular
Ai corresponding to a given xi, which is simply a subsection of x. We
denote the block diagonal global operator for a local operator as [Ai].

An arbitrary global data vector is expanded into overlapping sections
using the global windowing operator W. The tapering operator T is
then applied across the system. It is easy to see that the tapering opera-
tor is diagonal, and will have repeating patterns in blocks representing
each node. Alternatively, one can simply look at the tapering operator
as a local Ti on each node. Once W and T have been applied, any
arbitrary linear operator Ai can be applied on each node.

Figure 1: 2D synthetic seismic data with 30% missing vertical traces.
Dotted lines represent borders of overlapping windows. Taper function
is shown above for clarity.

Perhaps the most useful part of considering windowing and tapering as
linear operators in matrix form is that looking at these matrices makes
understanding the adjoints of these operations simple. Since T is diag-
onal, it is its own adjoint. For W, the adjoint operation involves sum-
ming together overlapping regions. Since the forward operation was a
”scatter,” the adjoint becomes a ”gather,” where data that correspond
to the same point are summed (Claerbout, 1992). In a parallel comput-
ing realization, this means that a given node sends its outer band to the
nodes to which they belong, then gathers data related to its inner band
from those same neigbours, and sums them together. Importantly, the
combination of these processes satisfies the relation

WHTHTW = I, (5)



This ensures perfect reconstruction of the data when applying the op-
erators followed by their adjoints. It implies that energy is preserved
through the entire process. It follows that in any iterative algorithm
instabilities or inaccuracies will not be introduced by this windowing
and tapering process. The use of operator adjoints and the preservation
of energy distinguishes our method from previous uses of overlapping
and tapered windows.

At this point, it is useful to define a new operator that we will call
the Parallel Windowed FDCT (PWFDCT), which is most simply de-
scribed as the block diagonal global operator that is created by apply-
ing the FDCT Ci independently on each node after applying the global
windowing and tapering operators T and W. In other words,

C := [Ci]TW. (6)

Since the local FDCT C is numerically tight, it follows that

CHC = I. (7)

Other properties of C are similarly shared by C. It is possible, then,
to make use of the PWFDCT in existing algorithms that include the
FDCT. It should be noted, though, that curvelets at very large scales
(or, equivalenty, low frequencies) are not represented in the same way
they would be if a single FDCT were performed on the global data.
However, since the benefits of curvelets are mostly found at the finer
scales (higher frequencies), the lack of large scale curvelet representa-
tion is not a problem. This makes a wide variety of algorithms capable
of handling data sets much larger than otherwise possible. An exam-
ple of a seismic data interpolation algorithm where the PWFDCT takes
the place of the FDCT follows. The PWFDCT will be applied to other
seismic processing problems, including primary-multiple separation
and seismic deconvolution, in the future.

Interpolation
Hennenfent and Herrmann (2006) exploits the multiscale, multidirec-
tional and continuity properties of seismic wavefronts which lead to
sparsity of seismic data in the curvelet domain to solve the interpo-
lation problem (see also Herrmann and Hennenfent, 2006, for more
details). Reformulated using global operators and vectors, the interpo-
lated data f̃ is obtained by f̃ = CH x̃ where

x̃ = argmin
x

‖x‖1 s.t. ‖y−RCHx‖2 ≤ ε. (8)

In this expression, y represents the acquired data with missing traces in
otherwise regularly sampled data, R a restriction (or so-called picking)
operator that extracts the acquired traces from the interpolated data, x
the PWFDCT representation of the interpolated data, and ε the size
of the noise present in the acquired data. Eq. (8) is solved using a
large-scale problem solver for `1-regularization minimization based on
cooling method optimization and an iterative thresholding algorithm
(Daubechies et al., 2004)

Thresholding
Algorithms that involve nonlinear thresholding in a transform domain
present a problem when using tapered overlapping windows. The
Curvelet-based interpolation method described above is but one ex-
ample of an entire class of algorithms that use approximation or esti-
mation in a transform domain (in particular a domain where the data in
question is sparse), all of which involve thresholding. Fundamental to
the approximation and estimation process is the selection of the most
significant coefficients in the transform domain. The problem arises
from the very fact that the overlapping regions are tapered. If we con-
sider the FDCT, it is clear that the amplitude of curvelets representing
data in the tapered regions will have their amplitudes reduced by the
taper. Thus, when applying a uniform threshold value over the global
system, it is likely that coefficients that would otherwise be considered
”significant” will fall below the threshold solely because of the impact

of the tapering. This introduces errors that have the potential to grow
through the iterative processes that commonly make use of threshold-
ing. Thus, it is important to correct threshold values to account for the
impact of the tapering, such that coefficients that should be kept are
not accidentally discounted.

A number of methods for correcting threshold values are possible. The
problem essentially involves finding an operator in the transform do-
main that is the equivalent of the tapering operator. In the case of the
FDCT, we are interested in the diagonal operator D such that

CH DC = T. (9)

This operator D can then be applied to the threshold vector to ob-
tain a corrected threshold vector that can be used to more properly
distinguish between significant and insignificant data in the transform
(curvelet) domain. Since the FDCT is localized in both space and spa-
tial frequency, the approximated diagonal operator D is expected to be
an accurate approximation.

The simplest way to obtain D is through a large Monte Carlo sampling,
where random noise realizations are tapered and then transformed.
The root mean square (RMS) of all of the transformed results then
gives an arbitrarily accurate approximation of D. Optionally, the same
noise realizations can also transformed without the taper applied. The
RMS of the transformed tapered noise realizations can then be divided
by the RMS of the transformed untapered noise realizations to remove
any remaining noise artifacts from the Monte Carlo sampling.

It is also possible, in our case, to approximate D by evaluating the
taper function at the centroid of each curvelet, and using that value as a
weighting to apply to the relevant coefficient. However, this approach
explicitly ignores the spacial extent of curvelets, since the value of the
taper at the centroid of a given curvelet will in general not represent
the overall effect of the tapering on that curvelet.

Other methods for finding D are possible, but further discussion is
omitted here.

Scalability
The parallelization scheme described herein is expected to be highly
scalable. The computational cost will be, as in any parallel operation,
have two aspects. The first is the cost of the operations on each node.
In the language of this paper, this is the cost of the arbitrary local
operator Ai, or, for the Parallel Windowed FDCT, the local FDCT Ci.

In general, though, the limiting factor in most parallel processing ap-
plications is the cost of communication between parallel nodes, and
here our method has advantages. The communication is contained in
the windowing operator W. In the forward operation, each node only
needs to communicate with the nodes containing adjoining data win-
dows. It is straightforward to verify that each node needs to communi-
cate (M +N)2ε−4ε2 points, where M and N are the dimensions of the
overlapping windows. It is important to note that the amount of com-
munication does not depend on the number of windows used or the size
of the full data set. This distinguishes our approach from, for instance,
the parallel FFT and other operations based on it, and implies that the
method we describe will scale to very large sizes without growth in
the amount of necessary communication between neighbouring nodes,
which is especially important when communication between nodes is
costly in relation to computation (Gupta and Kumar, 1993).

RESULTS

The interpolation algorithm described above was tested, making use of
the PWFDCT, on the synthetic seismic data set with missing vertical
traces shown in Figure 1. The particular global windowing and taper-
ing operators W and T divided the data set into sixteen windows, with
the overlap and taper parameterized by ε = 16.



To demonstrate the importance of using overlapping and tapering, we
did a similar interpolation using windows that were neither tapered nor
overlapping. Through most of these windows, the algorithm works just
as well as it does in overlapping windows. However, edge artifacts are
evident near window borders, as would be expected. In Figure 1, we
show a subsection of the full output of interpolation runs using over-
lapping and non-overlapping windows. The same subsection is used
for both, and contains one full window and parts of its nearest neigh-
bours. In the example using non-overlapping windows (Figure 2(a)),
the edges of the windows are obvious from the artifacts that appear.
When overlapping windows are used (Figure 2(b)), the artifacts are no
longer evident, and it is not clear at all where the window borders are.
In essence, the interpolation performs just as well in the proximity of
the window edges as it does in the middle of the window, which is
clearly untrue for non-overlapping windows. The importance of over-
lapping and tapering is thus, as expected, clear from this example. We

(a)

(b)

Figure 2: Interpolation output for (a) non-overlapping windows and
for (b) overlapping, tapered windows with threshold correction. Ar-
rows indicate locations of artifacts in (a) and show the improvement in
(b).

also compared different methods for correcting the threshold value in
the curvelet domain to account for the taper. When the taper was not
taken into account in thresholding, errors were evident in the overlap-
ping region. When correcting threshold values by using a Monte Carlo
sampling or by evaluating the taper function at curvelet centroids, ar-
tifacts related to erroneous thresholding are eliminated. We omit the
figures demonstrating this due to space limitations.

CONCLUSIONS

Since seismic data sets are typically very large, it is important to have
the capability to process data sets much larger than a single computer
could potentially hold in memory. In order to run many algorithms in
parallel, it is not sufficient to process data in separate pieces. At the
same time, these same algorithms are often not scalable in their nor-
mal form due to exponential growth in the amount of communication
between nodes that they require. For these reasons, we have developed
a scheme that involves overlapping, tapered data windows that can be
processed in parallel that is highly scalable since the communication
costs do not grow with the number of processing nodes. We have used
this method to define the PWFDCT, but we stress that this method is
general and that the FDCT can be replaced by an arbitrary operator
acting on each overlapping window independently as desired.

We applied the PWFDCT to a seismic data interpolation algorithm that
is shown, in another presentation to this conference, to be success-
ful using the FDCT. We have demonstrated that good results can be
achieved with the PWFDCT in this algorithm, and shown the impor-
tance of the overlapping and tapering. Furthermore, we have demon-
strated that it is possible to correct for the effect of tapering on thresh-
old values in the transform domain.

Much future work is expected to arise from the ideas described herein.
In particular, we will apply the PWFDCT to other seismic data pro-
cessing algorithms, enabling them to work on much larger data sets
than is currently feasible. The parallelization method described here
will also be applied to other operators besides the FDCT. Finally, we
hope that this method will open up new possibilities in parallel signal
processing in a variety of fields.

ACKNOWLEDGMENTS

The authors would like to thank the authors of the Fast Discrete Curvelet
Transform (FDCT) for making this code available at www.curvelet.org.
This work was in part financially supported by NSERC Discovery
Grant 22R81254 of Felix J. Herrmann and was carried out as part of
the SINBAD project with support, secured through ITF (the Industry
Technology Facilitator), from the following organizations: BG Group,
BP, Chevron, ExxonMobil and Shell.

REFERENCES

Claerbout, J. F., 1992, Earth soundings analysis: Processing versus
inversion: Blackwell Scientific publishing.

Daubechies, I., M. Defrise, and C. de Mol, 2004, An iterative thresh-
olding algorithm for linear inverse problems with a sparsity con-
straint: Comm. Pure Appl. Math., 1413–1457.

Gupta, A. and V. Kumar, 1993, The scalability of FFT on parallel com-
puters: IEEE Transaction on Parallel and Distributed Systems.

Hennenfent, G. and F. J. Herrmann, 2006, Application of stable seis-
mic signal recovery to seismic interpolation. (submitted for pre-
sentation at 76th SEG Conference & Exhibition).

Herrmann, F. J. and G. Hennenfent, 2006, Non-parametric seismic
data recovery with curvelet frames. (to be submitted).

J. Fan, K.T. Nihei, L. M. N. C. and J. Rector, 1997, Overlap domain
decomposition method for wave propagation: Presented at the 67th
SEG Conference & Exhibition.

L. Ying, L. D. and E. Candès, 2005, 3D discrete curvelet transform.
submitted for publication.

Mallat, S., 1998, A wavelet tour of signal processing: Academic Press.


