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Application of stable signal recovery to seismic 
data interpolation
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Motivation

! improve 

– multiple prediction & removal

– aliased ground roll removal

– imaging

! reduce acquisition cost & time

– acquire less data
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Approach

! exploit geometry of seismic data

– high dimensional

• typically 5D - i.e. time ! source 

location ! receiver location

– very strong geometrical structure (i.e. 

wavefronts)

! provide sampling criteria for 
seismic data

– how well can one expect to recover 

seismic data given an acquisition 

geometry? (interpolation of vintage 

survey)

– what is the ‘optimal’ acquisition 

geometry in order to recover seismic 

data within a given accuracy? (sparse 

sampling scheme)
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Agenda

! seismic data interpolation problem

– forward & “classical” inverse problem

! Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI)

– compressibility as a prior

– curvelets

! synthetic and real data examples
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Seismic data interpolation problem
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Forward & “classical” inverse problem

! (severely) underdetermined system of linear equations

– infinitely many solutions

! among “classical” approaches

– minimize energy (i.e. quadratic constraint)

signal =

picking

matrix

y

f0

P + n noise

ideal data

f̃= argmin
f

1

2
‖y−Pf‖22
︸ ︷︷ ︸

data misfit

+! ‖Lf‖22
︸ ︷︷ ︸

energy constraint
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Compressibility as a prior

! what is compressibility?

– generalization of sparsity

– x is compressible if its sorted entries decay sufficiently fast

– compressible signals have small l1 norm

‖x‖1 :=

∑

i

|x|(i)
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Compressibility as a prior

! why use sparsity/compressibility?

– powerful property (i.e. extra piece of information about the signal)

Idea of promoting sparsity for geophysical problems is commonly 
attributed to Claerbout and Muir in 1973 and was further developed 
e.g. by Oldenburg who proposed to deconvolve seismic traces for 
reflectivity as sparse spike trains.
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Compressible representations

! seek

– simplicity

• signal f0 is built as a linear combination of few atoms from dictionary D

– expressiveness

• each selected atom significantly contributes to the construction of f0 (i.e. 

energy of the signal f0 is concentrated in few significant coefficients)

coefficientssignal

x0

= D

dictionary

f0
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Representations for seismic data

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

! curvelet transform

– multi-scale: tiling of the FK domain into 

dyadic coronae

– multi-directional: coronae sub-

partitioned into angular wedges, # of 

angle doubles every other scale

– anisotropic: parabolic scaling principle

– local

k1

k2
angular

wedge
2j

2j/2

11

Seismic Laboratory for Imaging and Modeling

2D curvelets
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Sparsity-promoting inversion*

! reformulation of the problem

! Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI)

– look for the sparsest/most compressible,

physical solution

signal =y + n noise

curvelet representation 

of ideal data

PC
H

x0

KEY POINT OF THE RECOVERY

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P1)











x̃= argminx ‖Wx‖1 s.t. ‖y−PCHx‖2 ≤ !

f̃= CH x̃

(P0)















x̃= arg

sparsity constraint
︷ ︸︸ ︷

min
x

‖x‖0 s.t.

data misfit
︷ ︸︸ ︷

‖y−PCHx‖2 ≤ !

f̃= CH x̃
* inspired by Stable Signal Recovery (SSR) theory by E. Candès, J. Romberg, T. Tao & Fourier Reconstruction with 
Sparse Inversion (FRSI) by P. Zwartjes
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Sampling & aliasing
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From aliasing to noise
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Examples

! synthetic: Delphi dataset

– uplift from image to volume (time ! source location ! receiver location) 

interpolation

– influence of missing data structure

! real: ExxonMobil test dataset

– challenging land data

• ground roll

– slow (i.e. weak minimum velocity constraint)

– strong (~ 30 dB stronger than signal)

• underlying de-aliasing problem
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Model

shot of study

spatial sampling:  12.5 m
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shot of study

avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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t

xs

xr

data

image
interpolation
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xr

t

xs

xr

volume
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windowing

t

xr

windowing

comparison
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40% traces
remaining

image interpolation with
no velocity constraint

volume interpolation with
no velocity constraint

data

11.67 dB 16.99 dB

20% traces
remaining

image interpolation with
no velocity constraint

volume interpolation with
no velocity constraint

data

3.90 dB 9.26 dB

avg. spatial sampling:  31.25 m

avg. spatial sampling:  62.5 m

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)
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40% traces
remaining

difference (image) difference (volume)data

20% traces
remaining

difference (image) difference (volume)data

avg. spatial sampling:  31.25 m

avg. spatial sampling:  62.5 m

11.67 dB 16.99 dB

3.90 dB 9.26 dB
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avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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Interpolated result

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 16.92 dB
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Model

spatial sampling:  12.5 m
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Difference

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 16.92 dB
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avg. spatial sampling:  62.5 m

Data
20% traces
remaining
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Interpolated result

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 9.26 dB
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Model

spatial sampling:  12.5 m
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Difference

spatial sampling:  12.5 m

(no minimum velocity constraint)

SNR = 9.26 dB
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Experiment

comparison

1

2 3

4

5

1. remove random 

receiver positions

2. increase spatial 

sampling

3. interpolate

4. decrease spatial 

sampling

5. apply basic FK filter
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avg. spatial sampling:  10 m
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avg. spatial sampling:  10 m
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SNR = 7.79 dB
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SNR = 7.79 dB
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(basic FK filtering )
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Experiment

1 2 3

1. increase spatial 

sampling

2. interpolate

3. apply basic FK filter
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Conclusions

! curvelets exploit the very strong geometrical structure of seismic data

! compressibility is a powerful property (i.e. extra piece of information about 
the signal) that offers striking benefits

! randomness in the structure of missing data significantly helps recovery

! Curvelet Reconstruction with Sparsity-promoting Inversion (CRSI) 
performs well

– synthetic: Delphi dataset

• from 62.5 m to 12.5 m

• significant uplift from image to volume interpolation

• significant influence of the structure of missing data

– real: ExxonMobil test dataset

• from 10 m to 2.5 m

• CRSI interpolates both signal & noise (i.e. ground roll)
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