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SUMMARY
We propose a method for seismic data interpolation based on 1) the
reformulation of the problem as a stable signal recovery problem and
2) the fact that seismic data is sparsely represented by curvelets. This
method does not require information on the seismic velocities. Most
importantly, this formulation potentially leads to an explicit recovery
condition. We also propose a large-scale problem solver for the `1-
regularization minimization involved in the recovery and successfully
illustrate the performance of our algorithm on 2D synthetic and real
examples.

INTRODUCTION

Seismic data is often irregularly (and sparsely) sampled along spatial
coordinates due to practical and economical constraints. This problem
of irregularly sampled and missing data mainly occurs in 3D seismic
settings although it does occasionally happen in 2D. On land, it can be
due to the presence of a lake, dead or severely contaminated traces, etc.
In marine surveys, it can be caused, for example, by the proximity of
a platform or by the cable feathering. As most of the multi-trace pro-
cessing algorithms do not handle irregular sampled (and aliased) data,
interpolation to a regular grid is necessary in order to process and sub-
sequently interpret the data. Indeed, data irregularities often transform
into image artifacts and poor spatial resolution in the migrated image.
Relatively simple approaches can be used to handle missing traces in
otherwise regularly sampled data. For instance, one can linearly inter-
polate neighboring traces. In the more general case of missing traces
in irregularly sampled seismic data, one can collect the traces in bins
and stack them. Unfortunately, these approaches do not account for
the presence of wavefronts in the data and consequently these types
of solutions to the seismic data interpolation problem do not neces-
sarily give optimal results. In the practice of seismic exploration,
several methods published in the geophysical literature are applied.
These methods can be divided in three main groups. Data mapping
methods are based on migration-like operators – e.g. offset contin-
uation (see e.g. Stovas and Fomel, 1993), shot continuation (see e.g.
Schwab, 1993). Claerbout (1992) and Spitz (1991) describe a sec-
ond type of methods based on the formulation of the data interpolation
problem as an iterative optimization problem with a convolution op-
erator. Finally, there are methods based on particular transforms –
e.g. the (non)uniform discrete Fourier transform (see e.g. Sacchi and
Ulrych, 1996; Duijndam and Schonewille, 1999; Zwartjes, 2005), the
linear Radon transform (see e.g. Thorson and Claerbout, 1985) and the
parabolic Radon transform (see e.g. Hampson, 1986).
In this paper, we limit ourselves to the case of missing traces in oth-
erwise regularly sampled data and improve upon Hennenfent and Her-
rmann (2005) by extending the idea of stable signal recovery (SSR)
from few and noise-contaminated observations, as introduced in Candès
et al. (2005b), to seismic data interpolation. This transform-based
method explores the sparsity of seismic data in the curvelet domain
and does not require information on the seismic velocities. Most im-
portantly, it potentially leads to an explicit recovery condition.

THEORY

Seismic data interpolation
Seismic data interpolation is an underdetermined inverse problem. In-
terpolation approaches typically involve some sort of a minimization

problem that aims at jointly minimizing a quadratic distance to the ac-
quired data penalized by a functional on the unknown (regularization
term). The general form for these minimization problems is as follows

min
x

1
2
‖y−Ax‖2

2 +λJ(x). (1)

In this expression, the n-vector y represents the acquired data, λ the
regularization parameter balancing the emphasis of data misfit versus
a priori information residing in the penalty term J(x), and A the op-
erator – e.g. restriction operator combined with a generic transform
– that relates the m-vector x – e.g. representation of the interpolated
seismic data in the transform domain – to the acquired data y. The
success of data interpolation depends upon choices for 1) the operator
A and the penalty term J(x), and 2) the regularization parameter λ .
High-resolution methods explore for example the sparsity (minimum
structure) of seismic data in a transform domain. Sacchi and Ulrych
(1996) followed later by Zwartjes (2005) use for instance the sparsity
of seismic data in the Fourier domain. Although these methods are
successful, it is unclear how to assess their performance.

Stable signal recovery
Consider a vastly underdetermined system of linear equations. The
problem is then to recover an unknown m-vector x0 from n � m con-
taminated observations y = Ax0 +n, where A is an n×m matrix and n
is an n-vector Gaussian error term of variance σ2. Such systems have
infinitely many solutions and one may wonder whether it is possible to
recover x0 accurately. Recent results from information theory (Candès
et al., 2004, 2005b) show that, if A obeys some specific (weak) con-
dition and, if x0 has few nonzero entries (i.e. x0 is sparse), then the
solution x̃ of the following minimization problem

min
x
‖x‖1 s.t. ‖Ax−y‖2 ≤ ε (2)

is within the noise level ‖x̃− x0‖2 ≤ C1 · ε . In this expression, ε is
the size of the error term n and C1 a positive well behaved (i.e. small)
constant. Note that, in the noise-free case, x0 can be recovered exactly
(Candès et al., 2005b). Roughly speaking, the condition on A requires
that there exists a positive constant S < m such that every subset of S or
less columns of A approximately behaves like an orthonormal system.
In this case, solving (2) recovers any sparse signal x0 with the number
of nonzero entries of about S or less.
Similar results were obtained in a more realistic setting where the sig-
nal of interest f0 is assumed to be approximately sparse or compress-
ible – i.e. sorted absolute values of entries decay like a power law –
in some orthonormal sparsity basis S and incompletely measured in a
second orthonormal basis M. The measurement – also called observa-
tion – y of the vector f0 against the vector m is defined as the projec-
tion of f0 onto m – i.e y = mH f0 (the symbol H denotes the Hermitian
transpose). In that case, A := RMSH , where R is a restriction matrix
which extracts n rows from the m×m orthonormal matrix MSH , while
normalizing the columns to unit norm. Then the solution x̃ to


minx ‖x‖1 s.t. ‖y−Ax‖2 ≤ ε

f̃ = SH x̃
(3)

verifies

‖x̃−x0‖2 ≤C2 · ε +C3 ·
‖x0−x0,S‖1√

S
(4)



provided

S ≤C4 ·
1

µ2 ·n (5)

ignoring log-like factors. Eq. (5) is called the recovery condition. In
these expressions, x0,S is the truncated vector corresponding to the S
largest entries (in absolute value) of x0 = Sf0, (Ci)i=2,3,4 positive well
behaved constants, and µ the mutual coherence given by

µ(M,S) =
√

m ·max
k,l

|mk(sl)H | (6)

with mk the kth row of M and sl the lth row of S.

This result is significant for several reasons. First of all, it essentially
states that recovering the S largest entries (in absolute value) of the
decomposition x0 in the sparsity basis S of f0 requires only n ∝ S ·µ2

observations in the measurement basis M. It thus provides a robust
recovery criterion. Secondly, this criterion directly links the required
number of measurements n to the sparsity S of the to-be-recovered
function and the mutual coherence µ (dependent on the choice of S
and M). Note that the more similar mk and sl , the larger the mutual
coherence and consequently the larger the number of observations re-
quired for the recovery. Thirdly, this result gives an upper bound of the
approximation error which shows that the estimate is almost as good
as if we knew the S-largest entries of x0. In the seismic context, this
framework can thus address important questions such as 1) how well
one can expect to recover seismic data given an acquisition geometry,
and 2) what the ’optimal’ acquisition geometry is in order to recover
seismic data within a given accuracy.

Fig. 1 illustrates this recovery result with a simple example. The origi-
nal 1024-sample signal f0 (Fig. 1(a)) is defined as a single nonzero en-
try in the Discrete Cosine Transform (DCT) domain. The Dirac/spike
basis is chosen as the measurement basis M because it has a low mu-
tual coherence with the sparsity basis DCT. Indeed, there is no vector
from S that has a large inner product with any vector of M. Experi-
mentally, we measure µ(DCT,Dirac) =

√
2. In order to recover x0 and

consequently f0 by solving Eq. (3), 5 random observations of f0 are
typically required (Tsaig and Donoho, 2005). The recovered signal f̃
(Fig. 1(b)) virtually overlays f0.

(a) (b)

Figure 1: Perfect recovery of a 1024-sample signal from 5 random
observations in the Dirac basis. (a) The original signal f0 is randomly
measured 5 times in the Dirac basis; (b) the recovered signal f̃ virtually
overlays f0.

Application of SSR to seismic data interpolation
In the case of missing traces in otherwise regularly sampled data, the
acquired data y is a subgroup of traces of the ideal data f0. Mathemat-
ically it translates as the action of a restriction operator (or so-called
picking operator) R on the ideal data. The seismic experiment can thus
be written as

y = RMf0 +n. (7)

M is the identity/Dirac basis I. Each of its row contains a discrete
Dirac function that singles out a unique time sample among all possi-
ble time samples in the vector f0. R extracts those rows from M that

represent time samples actually acquired. R and M are thus fixed by
the acquisition.

The recovery condition is a tradeoff between sparsity/compressibility
and mutual coherence. For a given number of observations, an increase
of mutual coherence by a factor of 2 requires the solution to be 4 times
sparser in order to still recover it for example. Herrmann and Hennen-
fent (2006) show that the emphasis should be put on compressibility
rather than mutual coherence and propose to solve for f0 as a sparse
superposition of curvelet coefficients (i.e. S defined as the curvelet
transform analysis operator C). Curvelets achieve indeed a much bet-
ter compressibility of seismic data than Fourier (most incoherent with
seismic spatial sampling) at the expense of a moderate loss of inco-
herency with the seismic acquisition (see e.g. Candès et al., 2005a;
Herrmann and Hennenfent, 2006, for more details about the curvelet
transform and its applications to seismic data processing). The inter-
polated data f̃ is then obtained by f̃ = CH x̃, where

x̃ = argmin
x
‖x‖1 s.t. ‖y−RICH︸ ︷︷ ︸

A

x‖2 ≤ ε (8)

with ε the size of the noise present in the acquired data y. This mini-
mization problem has the significant advantage over Eq. (1) to relieve
the user of testing several regularization parameters λ .

Large-scale problem solver for `1-regularization minimization
We propose a parallelizable (see Thomson et al., 2006) algorithm to
solve Eq. (8). The solver is based on cooling method optimization
and an iterative thresholding algorithm (Daubechies et al., 2004). The
cooling method aims at finding the optimal multiplier λ ∗ for L (x,λ ) :=
λ‖x‖1 +‖Ax−y‖2

2−ε2, the Lagrangian function of (8), such that the
residual r := ‖Ax−y‖2 ≤ ε . The algorithm is as follows

x0 := initial guess
λ0 := initial Lagrange multiplier
while r > ε

minx L (x,λk)
λk+1 = αk λk with 0 < αk < 1

end while.

The critical part of this algorithm is the minimization of L (x,λk) done
by the iterative thresholding algorithm presented in Daubechies et al.
(2004). At each sub-iteration, evaluation of

xi+1 = Sλk

(
xi +AH(y−Axi)

)
(9)

with
Sλk

(x) := sign(x) ·max(|x|−λk,0) (10)

yields an approximate estimate for x which converges to the solution
of the subproblem for a large enough number of iterations. In prac-
tice, one only needs to approximately solve each subproblem, which
significantly accelerates the overall procedure.

RESULTS

Synthetic examples
For the first example, we limit ourselves to 150 iterations (30 updates
of the Lagrange multiplier and 5 sub-iterations). Fig. 2(a) shows the
synthetic dataset with two events, one linear and the other hyperbolic,
with 40% randomly-distributed missing traces. The events show an
amplitude-versus-offset (AVO) effect. Fig. 2(b) shows the recovered
events (signal-to-noise ratio (SNR) = 39.2 dB) and Fig. 2(c) the differ-
ence between the original and recovered dataset plotted using the same
color scale as Fig. 2(a) and Fig. 2(b). There is hardly any recovery er-
ror beside a light dimming in the largest gap around trace number 310,
which is more visible in the recovered linear event AVO effect com-
pared to the original one (Fig. 2(d)). Note that this small amplitude
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Figure 2: Reconstruction of linear and hyperbolic events from syn-
thetic data with 40% randomly-distributed missing traces. The events
show an AVO effect. (a) input data with gaps; (b) recovered events;
(c) difference between original and recovered events plotted using the
same color scale as (a) and (b); (c) Original AVO effect (plain line)
and recovered AVO effect (dash line). Shape and amplitude of events
are recovered with high fidelity.

decline can be corrected by doing more Lagrange multiplier updates –
i.e. more iterations.

For the second example, we limit ourselves to 400 iterations (80 up-
dates of the Lagrange multiplier and 5 sub-iterations), which is still
practical for algorithms based on fast transforms. Fig. 3(a) shows
the synthetic dataset, Fig. 3(b) the input data with 20% randomly-
distributed missing traces, Fig. 3(c) the recovered seismic signal (SNR
= 24.4 dB), and Fig. 3(d) the difference between the original and re-
covered dataset plotted using the same color scale as Fig. 3(a),Fig. 3(b)
and Fig. 3(c). Despite small errors mainly concentrated near the apex,
the overall recovery quality is satisfactory. Note especially that ampli-
tudes and continuity are well preserved along wavefronts.

Field data example
In this example, we limit ourselves to 400 iterations (80 updates of
the Lagrange multiplier and 5 sub-iterations). Fig. 4(a) shows a real
marine dataset, Fig. 4(b) the input data with 40% randomly-distributed
missing traces, Fig. 4(c) the recovered seismic signal (SNR = 20.5 dB),
and Fig. 4(d) the difference between the original and recovered dataset
plotted using the same color scale as Fig. 4(a), Fig. 4(b) and Fig. 4(c).
Despite small errors mainly concentrated near the zero offset and in the
150-180 trace range where the local ratio of missing traces is higher,
the overall recovery quality is good. Note again that amplitudes and
continuity are quite well preserved along wavefronts.

CONCLUSIONS

We have presented a method for seismic data interpolation which is an
extension to the stable signal recovery as introduced in Candès et al.
(2005b). Instead of resorting to an orthonormal basis, we proposed the
redundant curvelet transform as the sparsity representation for seismic
data. This fast-transform-based method – the curvelet transform is of
same numerical complexity as the FFT – exploits the multiscale, multi-
directional and continuity properties of seismic wavefronts which lead
to sparsity of seismic data in the curvelet domain without requiring in-
formation on the seismic velocities. The recovery is carried out with a
large-scale `1-regularization minimization problem solver and the ex-

(a)

(b)

(c)

(d)

Figure 3: Stable seismic signal recovery. (a) synthetic data; (b) input
data with 20% randomly-distributed traces missing; (c) interpolated
data; (d) difference between (a) and (c) plotted using the same color
scale.
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Figure 4: Stable seismic signal recovery. (a) real marine data; (b) input
data with 40% randomly-distributed traces missing; (c) interpolated
data; (d) difference between (a) and (c) plotted using the same color
scale.

amples clearly illustrate the performance of our algorithm in the 2D
source-receiver domain on synthetic and real examples. Extension to
3D is straightforward and our methodology may – as long as the con-
tinuity along the wavefronts is preserved (the wavefronts may contain
caustics) – also be integrated in so-called data mapping approaches.
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