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Related Works

 Candes (2002), Edge preserving image
reconstruction using Curvelet transform.

 Candes (2003), Curvelet and Fourier Integral
Operators.

 Rickett (2003), Illumination-based migration

 Trad (2003), Sparse Radon Transform

 Claerbout (1994), Spectral Preconditioning



Problem Formulation

 The linear system of equation needs to be
solved is:

 Conventionally there are two approachs for
solving above equation:

1) Iterative solver (GMRES, PCG,…)
2) Approximating the normal operator:

€ 

d = Km+ n

€ 

ˆ m = (approx.(K*K ))−1K*d



Inversion

 A conventional form of inversion is:

 This can be solved using following
iterative solver:

 Where:

                       and

€ 

ˆ m :  
m

min  1
2

d −Km 2
2 +λJ(m)

€ 

δm = (K*K + A)−1(K*d + B)

€ 

A =∇2λJ(m)

€ 

B =∇λJ(m)



Basic Questions

• How can we improve the structure of K?
• Which type of norm is better to use?
• How can we incorporate the noise

information in solution as a typical
inverse problem?

• Which solver is better to be used and
how can we guarantee its
convergence?



Preconditioning using Curvelet Transform

 We precondition migration and normal
operator as:

 The sparsity of both migration and normal
operator increase after preconditioning.

 For preconditioned operator the singular
values shifted away from zero and have
tendency to concentrate in a point in spite of
operator itself.

 The convergence rate for preconditioned
normal operator faster than normal operator
itself.

€ 

ψ = K*K  ⇒  ˜ ψ =CK*KC*

€ 

K*  ⇒  ˜ K * = CK*C*





Preconditioned System
 We map the original system of equations to

preconditioned as:

 Or:

 Maximum Likelihood Solution:

 In ML solution priori knowledge about the
model is ignored

 We are looking for a solution which contains
priori information about model

€ 

CK*d =CK*KC*Cm+CK*n

€ 

˜ u = ˜ ψ ˜ m + ˜ n 

€ 

˜ ψ ˜ m ML = ˜ u 



First Guess!

 Hard-Thresholding of migrated noisy
data in Curvelet domain:

Where:             and

 Curvelet domain Hard-Thresholding is a
minimax denoising approach

 This process keeps only the events
which are lying on the curves as a priori
information

€ 

˜ ˆ u =θT ( ˜ u ) =θT (CK*d)

€ 

T = λΓ

€ 

Γ = diag( ˜ ψ )



Constrained Optimization

 Optimization Problem:

 Or approximately:

 and tolerance defined by:

 with       threshold and noise-dependent
tolerance on Curvelet coefficients

 with      define the control parameter

€ 

ˆ m :  min
m

 J(m) s.t. ˜ ψ ˜ m − ˜ ˆ u 
µ
≤ eµ

€ 

ˆ m :  min
m

 J(m) s.t. diag( ˜ ψ ) ˜ m − ˜ ˆ u 
µ
≤ eµ

€ 

eµ =
Γµ ˜ u µ ≥ λΓµ

λΓµ ˜ u µ ≤ λΓµ

 
 
 

€ 

eµ

€ 

λ



 An augmented Lagrangian method is
implemented to solve optimization
problem

 L1 norm is employed as J(m)

 For each subproblem a Steepest
Decent method is employed

 Initial value for model is the solution of
all-constraints-zero, which is the
minimax denoising solution

Solution of Constrained
Optimization



€ 

mk+1 = mk −τ kgk

€ 

% Update  Λ  and  µ

Algorithm

€ 

k = 0

€ 

m0,Λ0
± ,µ0 % Initial Values

% Sub Optimum Loop

  

€ 

gk =∇ml A (mk ,Λk
± ;µk ) % Gradient

  

€ 

τ k = arg
τ>0

min  l A (mk −τgk ,Λk
± ;µk )

 

  
 

  
% Line Search

% Update m



Setting the Initial Values
 Since the number of iteration is limited,

setting the initial values which are near to
final solution is very important

 The initial value for model is all-constraints-
zero solution in our optimization problem:

 The initial value for Lagrange-multipliers can
be in this form:

 In approximate form these value can be set
as:

€ 

diag( ˜ ψ ) ˜ m 0 = ˜ ˆ u 
€ 

Λ0
± = ± ˜ ψ C∇mJ(m0 )€ 

˜ ψ ˜ m 0 = ˜ ˆ u 

€ 

Λ0
± = ±diag( ˜ ψ )C∇mJ(m0 )



























Conclusion

 Preconditioning using Curvelet Transform
introduced and it shows enhancement in the
characteristics of migration and normal
operators.

 A new constrained optimization is constructed
by imposing sparsity on the model subject to
bounded constraints defined by noise level

 An augmented-Lagrangian method to solve
the optimization problem is implemented

 Results show Significant improvement rather
than Least Square migration


