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Related Works

 Candes (2002), Edge preserving image
reconstruction using Curvelet transform.

 Candes (2003), Curvelet and Fourier Integral
Operators.

 Rickett (2003), Illumination-based migration

 Trad (2003), Sparse Radon Transform

 Claerbout (1994), Spectral Preconditioning



Problem Formulation

 The linear system of equation needs to be
solved is:

 Conventionally there are two approachs for
solving above equation:

1) Iterative solver (GMRES, PCG,…)
2) Approximating the normal operator:

€ 

d = Km+ n

€ 

ˆ m = (approx.(K*K ))−1K*d



Inversion

 A conventional form of inversion is:

 This can be solved using following
iterative solver:

 Where:

                       and

€ 

ˆ m :  
m

min  1
2

d −Km 2
2 +λJ(m)

€ 

δm = (K*K + A)−1(K*d + B)

€ 

A =∇2λJ(m)

€ 

B =∇λJ(m)



Basic Questions

• How can we improve the structure of K?
• Which type of norm is better to use?
• How can we incorporate the noise

information in solution as a typical
inverse problem?

• Which solver is better to be used and
how can we guarantee its
convergence?



Preconditioning using Curvelet Transform

 We precondition migration and normal
operator as:

 The sparsity of both migration and normal
operator increase after preconditioning.

 For preconditioned operator the singular
values shifted away from zero and have
tendency to concentrate in a point in spite of
operator itself.

 The convergence rate for preconditioned
normal operator faster than normal operator
itself.

€ 

ψ = K*K  ⇒  ˜ ψ =CK*KC*

€ 

K*  ⇒  ˜ K * = CK*C*





Preconditioned System
 We map the original system of equations to

preconditioned as:

 Or:

 Maximum Likelihood Solution:

 In ML solution priori knowledge about the
model is ignored

 We are looking for a solution which contains
priori information about model

€ 

CK*d =CK*KC*Cm+CK*n

€ 

˜ u = ˜ ψ ˜ m + ˜ n 

€ 

˜ ψ ˜ m ML = ˜ u 



First Guess!

 Hard-Thresholding of migrated noisy
data in Curvelet domain:

Where:             and

 Curvelet domain Hard-Thresholding is a
minimax denoising approach

 This process keeps only the events
which are lying on the curves as a priori
information

€ 

˜ ˆ u =θT ( ˜ u ) =θT (CK*d)

€ 

T = λΓ

€ 

Γ = diag( ˜ ψ )



Constrained Optimization

 Optimization Problem:

 Or approximately:

 and tolerance defined by:

 with       threshold and noise-dependent
tolerance on Curvelet coefficients

 with      define the control parameter

€ 

ˆ m :  min
m

 J(m) s.t. ˜ ψ ˜ m − ˜ ˆ u 
µ
≤ eµ

€ 

ˆ m :  min
m

 J(m) s.t. diag( ˜ ψ ) ˜ m − ˜ ˆ u 
µ
≤ eµ

€ 

eµ =
Γµ ˜ u µ ≥ λΓµ

λΓµ ˜ u µ ≤ λΓµ

 
 
 

€ 

eµ

€ 

λ



 An augmented Lagrangian method is
implemented to solve optimization
problem

 L1 norm is employed as J(m)

 For each subproblem a Steepest
Decent method is employed

 Initial value for model is the solution of
all-constraints-zero, which is the
minimax denoising solution

Solution of Constrained
Optimization



€ 

mk+1 = mk −τ kgk

€ 

% Update  Λ  and  µ

Algorithm

€ 

k = 0

€ 

m0,Λ0
± ,µ0 % Initial Values

% Sub Optimum Loop

  

€ 

gk =∇ml A (mk ,Λk
± ;µk ) % Gradient

  

€ 

τ k = arg
τ>0

min  l A (mk −τgk ,Λk
± ;µk )

 

  
 

  
% Line Search

% Update m



Setting the Initial Values
 Since the number of iteration is limited,

setting the initial values which are near to
final solution is very important

 The initial value for model is all-constraints-
zero solution in our optimization problem:

 The initial value for Lagrange-multipliers can
be in this form:

 In approximate form these value can be set
as:

€ 

diag( ˜ ψ ) ˜ m 0 = ˜ ˆ u 
€ 

Λ0
± = ± ˜ ψ C∇mJ(m0 )€ 

˜ ψ ˜ m 0 = ˜ ˆ u 

€ 

Λ0
± = ±diag( ˜ ψ )C∇mJ(m0 )



























Conclusion

 Preconditioning using Curvelet Transform
introduced and it shows enhancement in the
characteristics of migration and normal
operators.

 A new constrained optimization is constructed
by imposing sparsity on the model subject to
bounded constraints defined by noise level

 An augmented-Lagrangian method to solve
the optimization problem is implemented

 Results show Significant improvement rather
than Least Square migration


