Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0).
Copyright (c) 2004 SLIM group @ The University of British Columbia.

UBC

Migration preconditioning with

Peyman Poor Moghaddam and
Felix J. Herrmann



1)
2)
3)
1)
5)

Overview

Objectives

Related Works

Problem Formulations
Results and comparisons
Conclusion



Related Works

m Candes (2002), Edge preserving image
reconstruction using Curvelet transform.

m Candes (2003), Curvelet and Fourier Integral
Operators.

m Rickett (2003), lllumination-based migration

m Trad (2003), Sparse Radon Transform
m Claerbout (1994), Spectral Preconditioning



Problem Formulation

The linear system of equation needs to be
solved is:

d=Km+n

Conventionally there are two approachs for
solving above equation:

Iterative solver (GMRES, PCQG,...)
Approximating the normal operator:

m = (approx.(K ‘K ))_1 K'd



Inversion

m A conventional form of inversion is:

. .1
m: min 5‘d—KmH§+)\J(m)

m This can be solved using following
iterative solver:

om=(K K+A ' (K'd+B)
m Where:
A=V?*)J(m)and B=VAJ(m)




Basic Questions

- How can we improve the structure of K?
- Which type of norm is better to use?

- How can we incorporate the noise
information in solution as a typical
inverse problem?

- Which solver is better to be used and
how can we guarantee its
convergence”?



Preconditioning using Curvelet Transform

m We precondition migration and normal
operator as:

K" = K'=CK'C" v=KK = {=CK KC'

m The sparsity of both migration and normal
operator increase after preconditioning.

m For preconditioned operator the singular
values shifted away from zero and have
tendency to concentrate in a point in spite of
operator itself.

m The convergence rate for preconditioned
normal operator faster than normal operator
itself.
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Normalized residual error
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CK'd=CK KC'Cm+CK n
m Or:
i = Qi+ 7

m Maximum Likelihood Solution:

~

Prityy, =0
® In ML solution priori knowledge about the
model is ignored

= We are looking for a solution which contains
priori information about model

Preconditioned System
= We map the original system of equations to
preconditioned as:
o
.




First Guess!

m Hard-Thresholding of migrated noisy
data in Curvelet domain:

il =0,(ii)=6,(CK d)
_ Where: 7=AI and [ = /diag()

m Curvelet domain Hard-Thresholding is a
minimax denoising approach

m This process keeps only the events
2 which are lying on the curves as a priori

. iInformation




Constrained Optimization

m Optimization Problem:
m: min J(m) s.t. ‘wm u‘ <e,
m Or approxmately

m: min J(m) s.t. ‘dlag(ljj)m u‘ <e,

= and tolerance defined by:

{ I‘M lZM Z)LFM
e, =

)LFM ﬂu < )»FM

= with ¢ threshold and noise-dependent
tolerance on Curvelet coefficients

m with A define the control parameter



Solution of Constrained
Optimization

m An augmented Lagrangian method is
iImplemented to solve optimization
problem

m L1 norm is employed as J(m)

m For each subproblem a Steepest
Decent method is employed

m |nitial value for model is the solution of
all-constraints-zero, which is the
minimax denoising solution




g =Vl almy, k;,uk) % QGradient

T, =argmin ¢ a(m; - 1g., A1) % Line Search

7>0
My =My =Tk 8k % Update m

% Update A and u

Algorithm
my, ANy, Uy % Initial Values
% Sub Optimum Loop
.



Setting the Initial Values

m Since the number of iteration is limited,
setting the initial values which are near to
final solution is very important

m The initial value for model is all-constraints-

o zero solution in our optlmlzatlon problem:

Yy =il

= The initial value for Lagrange-multipliers can

be in this form:
Ay ==yCV, J(my)

= In approximate form these value can be set
as: diag()m, = i Ay = =diag(y)CV ,, J(my)
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LSQR Migration
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Threshold Denoised
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Thresholded and Corrected Denoised
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Marmoussi Noise Free Model
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Migrated Noisy Image
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Thresholded Denoised
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Thresholded and Corrected Denoised
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Moisy Image

Control Parameter: A = 1.5
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Conclusion

m Preconditioning using Curvelet Transform
iIntroduced and it shows enhancement in the
characteristics of migration and normal

o operators.

= A new constrained optimization is constructed
- by imposing sparsity on the model subject to
. = An augmented-Lagrangian method to solve
the optimization problem is implemented
m Results show Significant improvement rather

bounded constraints defined by noise level
. than Least Square migration




