Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2004 SLIM group @ The University of British Columbia.



# Migration preconditioning with Curvelets



# Peyman Poor Moghaddam and Felix J. Herrmann

### Overview

- 1) Objectives
- 2) Related Works
- **3)** Problem Formulations
- 4) **Results and comparisons**
- 5) Conclusion

### **Related Works**

- Candes (2002), Edge preserving image reconstruction using Curvelet transform.
- Candes (2003), Curvelet and Fourier Integral Operators.
- Rickett (2003), Illumination-based migration
- Trad (2003), Sparse Radon Transform
- Claerbout (1994), Spectral Preconditioning

### Problem Formulation

The linear system of equation needs to be solved is:

d = Km + n

- Conventionally there are two approachs for solving above equation:
- 1) Iterative solver (GMRES, PCG,...)
- 2) Approximating the normal operator:

 $\hat{m} = (approx.(K^*K))^{-1}K^*d$ 

### Inversion

# • A conventional form of inversion is: $\hat{m}: \min_{m} \frac{1}{2} \|d - Km\|_{2}^{2} + \lambda J(m)$

This can be solved using following iterative solver:

$$\delta m = (K^* K + A)^{-1} (K^* d + B)$$

### Where:

$$A = \nabla^2 \lambda J(m)$$
 and  $B = \nabla \lambda J(m)$ 

### **Basic Questions**

- How can we improve the structure of K?
- Which type of norm is better to use?
- How can we incorporate the noise information in solution as a typical inverse problem?
- Which solver is better to be used and how can we guarantee its convergence?

### Preconditioning using Curvelet Transform

We precondition migration and normal operator as:

 $K^* \Rightarrow \tilde{K}^* = CK^*C^* \qquad \psi = K^*K \Rightarrow \tilde{\psi} = CK^*KC^*$ 

- The sparsity of both migration and normal operator increase after preconditioning.
- For preconditioned operator the singular values shifted away from zero and have tendency to concentrate in a point in spite of operator itself.
- The convergence rate for preconditioned normal operator faster than normal operator itself.



# Preconditioned System

We map the original system of equations to preconditioned as:

 $CK^*d = CK^*KC^*Cm + CK^*n$ 

 $\tilde{u}=\tilde{\psi}\tilde{m}+\tilde{n}$ 

Maximum Likelihood Solution:

Or:

 $\tilde{\psi}\tilde{m}_{ML}=\tilde{u}$ 

- In ML solution priori knowledge about the model is ignored
- We are looking for a solution which contains priori information about model

### First Guess!

Hard-Thresholding of migrated noisy data in Curvelet domain:

 $\hat{\tilde{u}} = \theta_T(\tilde{u}) = \theta_T(CK^*d)$ 

Where:  $T = \lambda \Gamma$  and  $\Gamma = \sqrt{diag(\tilde{\psi})}$ 

- Curvelet domain Hard-Thresholding is a minimax denoising approach
- This process keeps only the events which are lying on the curves as a priori information

### **Constrained Optimization**

Optimization Problem:

 $\hat{m}$ : min J(m) s.t.  $\left|\tilde{\psi}\tilde{m} - \hat{\hat{u}}\right|_{\mu} \le e_{\mu}$ • Or approximately:

 $\hat{m}$ : min J(m) s.t.  $\left| diag(\tilde{\psi})\tilde{m} - \hat{\tilde{u}} \right|_{\mu} \le e_{\mu}$ and tolerance defined by:

$$e_{\mu} = \begin{cases} \Gamma_{\mu} & \tilde{u}_{\mu} \geq \lambda \Gamma_{\mu} \\ \lambda \Gamma_{\mu} & \tilde{u}_{\mu} \leq \lambda \Gamma_{\mu} \end{cases}$$

with <sup>e<sub>µ</sub></sup> threshold and noise-dependent tolerance on Curvelet coefficients

• with  $\lambda$  define the control parameter



# Solution of Constrained Optimization

- An augmented Lagrangian method is implemented to solve optimization problem
- L1 norm is employed as J(m)
- For each subproblem a Steepest Decent method is employed
- Initial value for model is the solution of all-constraints-zero, which is the minimax denoising solution

### Algorithm

k = 0 $m_0, \Lambda_0^{\pm}, \mu_0$  % Initial Values % Sub Optimum Loop  $g_k = \nabla_m \ell_A(m_k, \Lambda_k^{\pm}; \mu_k)$  % Gradient  $\tau_k = \arg\left[\min_{\tau>0} \ell_A(m_k - \tau g_k, \Lambda_k^{\pm}; \mu_k)\right]$ % Line Search  $m_{k+1} = m_k - \tau_k g_k$  % Update m % Update  $\Lambda$  and  $\mu$ 

# Setting the Initial Values

- Since the number of iteration is limited, setting the initial values which are near to final solution is very important
- The initial value for model is all-constraintszero solution in our optimization problem:  $\tilde{\psi}\tilde{m}_0 = \hat{\tilde{u}}$
- The initial value for Lagrange-multipliers can be in this form:

 $\Lambda_0^{\pm} = \pm \tilde{\psi} C \nabla_m J(m_0)$ 

In approximate form these value can be set as:  $diag(\tilde{\psi})\tilde{m}_0 = \hat{\tilde{u}}$   $\Lambda_0^{\pm} = \pm diag(\tilde{\psi})C\nabla_m J(m_0)$ 

### Noisy Image



#### **LSQR** Migration



#### **Threshold Denoised**



#### **Thresholded and Corrected Denoised**



#### **Optimized Denoised**





**Optimized Plus Spike Removing Denoised** 

#### Marmoussi Noise Free Model



#### **Migrated Noisy Image**



#### **Thresholded Denoised**



#### **Thresholded and Corrected Denoised**



#### **Optimized Denoised**





Control Parameter:  $\lambda = 1.5$ 

Control Parameter:  $\lambda$  = 3



## Conclusion

- Preconditioning using Curvelet Transform introduced and it shows enhancement in the characteristics of migration and normal operators.
- A new constrained optimization is constructed by imposing sparsity on the model subject to bounded constraints defined by noise level
- An augmented-Lagrangian method to solve the optimization problem is implemented
- Results show Significant improvement rather than Least Square migration