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Abstract—This talk presents a serverless approach to
seismic imaging in the cloud based on high-throughput
containerized batch processing, event-driven computations
and a domain-specific language compiler for solving the
underlying wave equations. A 3D case study on Azure
demonstrates that this approach allows reducing the op-
erating cost of up to a factor of 6, making the cloud a
viable alternative to on-premise HPC clusters for seismic
imaging.
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I. AUDIENCE

The content of this abstract is intended as a technical
talk for an audience with little to no prior knowl-
edge about cloud computing, but basic knowledge about
reverse-time migration and HPC. This talk is designed
for people who are interested in how the cloud can be
adapted for large-scale seismic imaging and inversion in
both research and production environments.

II. INTRODUCTION

Seismic imaging and parameter estimation are among
the most computationally challenging problems in sci-
entific computing and thus require access to high-
performance computing (HPC) clusters for working on
relevant problem sizes as encountered in today’s oil
and gas (O&G) industry. Some companies such as BP,
PGS and Exxon Mobile operate private HPC clusters
with maximum achievable performance in the order
of petaflops [1], [2], while some companies are even
moving towards exascale computing [3]. However, the
high upfront and maintenance cost of on-premise HPC
clusters make this option only financially viable in a
production environment where computational resources
constantly operate close to maximum capacity. Many
small and medium sized O&G companies, academic
institutions and service companies have a highly varying
demand for access to compute and/or are financially not

in a position to purchase on-premise HPC resources.
Furthermore, researchers in seismic inverse problems and
machine learning oftentimes require access to a variety
of application-dependent hardware, such as graphical
processing units (GPUs) or memory optimized compute
nodes for reverse-time migration (RTM).

Cloud computing thus offers a valuable alternative to
on-premise HPC clusters, as it provides a large vari-
ety of (theoretically) unlimited computational resources
without any upfront cost. Access to resources in the
cloud is based on a pay-as-you-go pricing model, making
it ideal for providing temporary access to compute or
for supplementing on-premise HPC resources to meet
short-term increases in computing demands. However,
some fundamental differences regarding hardware and
how computational resources are exposed to users exist
between on-premise HPC clusters and the cloud. While
cloud providers are increasingly investing in HPC tech-
nology, the majority of existing hardware is not HPC
optimized and networks are conventionally based on Eth-
ernet. Additionally, the pay-as-you-go pricing model is
a usage-based system, which means users are constantly
charged for running instances. This possibly results in
very high operating costs if instances sit idle for extended
amounts of time, which is common in standard RTM
workflows based on a client-server model in which the
master process distributes the workload to the parallel
workers. In this work, we demonstrate a serverless
approach to seismic imaging on Microsoft Azure, which
does not rely on a cluster of permanently running virtual
machines (VMs). Instead, expensive compute instances
are automatically launched and scaled by the cloud
environment, thus preventing instances from sitting idle.
For solving the underlying forward and adjoint wave
equations, we use a domain-specific language compiler
called Devito [4], [5], which combines a symbolic user
interface with automated performance optimization for
generating fast and parallel C code using just-in-time



Fig. 1: Azure setup for computing an RTM image as a
containerized embarrassingly parallel workload.

compilation. The separation of concerns between the
wave equation solver and the serverless workflow im-
plementation leads to a seismic imaging framework that
scales to large-scale problem sizes and allows reducing
the operating cost in the cloud up to a factor of 2 − 6,
as demonstrated in our subsequent RTM case study.

III. CURRENT STATE OF THE ART

The cloud is increasingly adopted by O&G companies
for general purpose computing, marketing, data storage
and analysis [6], but utilizing the cloud for HPC appli-
cations such as (least-squares) RTM and full-waveform
inversion (FWI) remains challenging. A wide range of
performance benchmarks on various cloud platforms find
that the cloud can generally not provide the same perfor-
mance in terms of latency, bandwidth and resilience as
conventional on-premise HPC clusters [7]–[9], or only
at considerable cost. Recently, cloud providers such as
Amazon Web Services (AWS) or Azure have increas-
ingly extended their HPC capabilities and improved
their networks [10], but HPC instances are oftentimes
considerably more expensive than standard cloud VMs
[10]. On the other hand, the cloud offers a range of novel
technologies such as massively parallel objective storage,
containerized batch computing and event-driven compu-
tations that allow addressing computational bottlenecks
in novel ways. Adapting these technologies requires re-
structuring seismic inversion codes, rather than running
legacy codes on a virtual cluster of permanently running
cloud instances (lift and shift). Companies that have
taken steps towards the development of cloud-native
technology include S-Cube, whose FWI workflow for

Fig. 2: Software stack of the Docker container for
computing the RTM images.

AWS utilizes object storage, but is still based on a
master-worker scheme [11]. Another example is Os-
okey [12], a company offering fully cloud-native and
serverless software for seismic data visualization and
interpretation. In a previous publication, we have adapted
these concepts for seismic imaging and introduced a
fully cloud-native workflow for serverless imaging on
AWS [13]. Here, we describe the implementation of this
approach on Azure and present a 3D imaging case study.

IV. METHODS AND KEY RESULTS

A. Workflow

The key contribution of this talk is a serverless imple-
menation of an RTM workflow on Azure. The two main
steps of a (generic) RTM workflow are the parallel com-
putation of individual images for each source location
and the subsequent summation of all components into a
single image, which can be interpreted as an instance
of a MapReduce program [14]. Rather than running
RTM on a cluster of permanently running VMs, we
utilize a combination a high-throughput batch processing
and event-driven computations to compute images for
separate source locations as an embarrassingly parallel
workflow (Figure 1 and 2). The parallel computation
of RTM images for separate source locations is im-
plemented with Azure Batch, a service for scheduling
and running containerized workloads. The image of each
respective source location is processed by Azure Batch as
a separate job, each of which can be executed on a single
or multiple VMs (i.e. using MPI-based domain decom-
position). Azure Batch accesses computational resources
from a batch pool and automatically adds and removes
VMs from the pool based on the number of pending jobs,
thus mitigating idle instances. The software for solving
the underlying forward and adjoint wave equations is



Fig. 3: Event-driven gradient summation on Azure, using
Azure Functions and Queue Storage.

deployed to the batch workers through Docker containers
and Devito’s compiler automatically performs a series of
performance optimization to generate optimized C code
for solving the PDEs (Figure 2).

As communication between individual jobs is not
possible, we separately implement the reduce part of
RTM (i.e. the summation of all images into a single
data cube) using Azure functions. These event-driven
functions are automatically invoked when a batch work-
ers writes its computed image to the object storage
system (blob storage) and sends the corresponding object
identifier to a message queue, which collects the IDs
of all results (Figure 3). As soon as object IDs are
added to the queue, Azure functions that sum up to
10 images from the queue are automatically invoked by
the cloud environment. Each function writes its summed
image back to the storage and the process is repeated
recursively until all images have been summed into a
single volume. As such, the summation process is both
asynchronous and parallel, as the summation is started
as soon as the first images are available and multiple
Azure functions can be invoked at the same time.

B. RTM Case study

For our 3D RTM case study on Azure, we use a syn-
thetic velocity model derived from the 3D SEG Salt and
Overthrust models, with dimensions of 3.325× 10× 10
km. We discretize the model using a 12.5 m grid, which
results in 267 × 801 × 801 grid points. We generate
data at 15 Hz peak frequency for a randomized seismic
acquisition geometry, with data being recorded by 1, 500
receivers that are randomly distributed along the ocean
floor. The source vessel fires the seismic source on
a dense regular grid, consisting of 799 × 799 source

(a) (b)

Fig. 4: (a) Sorted runtimes for computing the RTM
image. Each job corresponds to the image of a single
source location. (b) Cumulative idle time for computing
this workload as a function of the number of parallel
workers on either a fixed cluster of VMs or using Azure
Batch. The right-hand y-axis shows the corresponding
cost, which is proportional to the idle time.

locations (638, 401 in total). For imaging, we assume
source-receiver reciprocity, which means that sources
and receivers are interchangeable and data can be sorted
into 1, 500 shot records with 638, 401 receivers each. We
model wave propagation for generating the seismic data
with an anisotropic pseudo-acoustic TTI wave equation
and implement discretized versions of the forward and
adjoint (linearized) equations with Devito, as presented
in [15].

For the computations, we use Azure’s memory op-
timized E64 and E64s VMs, which have 432 GB of
memory, 64 vCPUs and a 2.3 GHz Intel Xeon E5−2673
processor [10]. To fit the forward wavefields in memory,
we utilize two VMs per source and use MPI-based do-
main decomposition for solving the wave equations. The
time-to-solution of each individual image as a function
of the source location is plotted in Figure 4a, with
the average container runtime being 119.28 minutes per
image. The on-demand price of the E64/E64s instances
is 3.629$ per hour, which results in a cumulative cost
of 10, 750$ for the full experiment and a total runtime
of approximately 30 hours using 100 VMs. Figure 4b,
shows the cumulative idle time for computing the work-
load from Figure 4a on a fixed cluster as a function of
the number of parallel VMs. We model the idle time
by assuming that all 1, 500 jobs (one job per source
location) are distributed to the parallel workers on a first-
come-first-serve basis and that a master worker collects
all results. The idle time using a fixed VM cluster
results from the fact that all cluster workers have to
wait for the final worker to finish its computations, while



Fig. 5: Horizontal depth slice through the final 3D image
cube at 1, 500 m depth.

Azure Batch automatically scales down the cluster, thus
preventing instances from sitting idle. While VM clusters
on Azure in principle support auto-scaling as well, this is
not possible if MPI is used to distribute the data/sources
to the workers. Thus, performing RTM on a fixed cluster
of VMs results in additional costs due to idle time up to
a factor of 2×. By utilizing low-priority instances, it is
possible to further reduce the operating cost by a factor
of 2− 3 (i.e. up to a factor 6 in total).

V. CONCLUSION

Adapting the cloud using serverless workflows, in
contrast to lift and shift, allows us to leverage cloud
services such as batch computing and reduce the op-
erating cost of RTM by a factor of 2−6. This transition
is made possible through abstract user interfaces and an
automatic code generation framework, which is highly
flexible, but provides the necessary performance to work
on industry-scale problems.

VI. PRESENTER BIO

P. Witte, M. Louboutin and F. J. Herrmann are part
of the core Devito development team and have closely
collaborated with multiple cloud companies to develop
serverless implementations of RTM. They believe that
the computational cost and complexity of seismic in-
version can only be managed through abstractions, auto-
matic code generation and software based on a separation
of concerns. C. Jones is the head of development at
Osokey, a company specialized in cloud-native software
for seismic data analysis.
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