Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2015 SLIM group @ The University of British Columbia.

An algorithm for solving least-squares problems with a Helmholtz block and multiple right-hand-sides

Bas Peters, Chen Greif, Felix J. Herrmann

International Conference On Preconditioning Techniques For Scientific And Industrial Applications June 18, 2015

Problem of interest

$$\bar{\mathbf{u}} = \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix} \right\|_{2}$$

Originates from the 'discretize-then-optimize' framework for PDE-constrained optimization:

$$\min_{\mathbf{m},\mathbf{u}} \frac{1}{2} \|P\mathbf{u} - \mathbf{d}\|_2^2 \quad \text{s.t.} \quad H(\mathbf{m})\mathbf{u} = \mathbf{q}$$

[E. Haber & U.M. Ascher, 2001 ; G. Biros & O. Ghattas , 2005 ; Grote et. al., 2011]

 $H(\mathbf{m}) \in \mathbb{C}^{N \times N} \quad \text{discrete PDE}$ $\mathbf{m} \in \mathbb{R}^{N} \quad \text{medium parameters}$ $P \in \mathbb{R}^{m \times N} \quad \text{selects field at receivers}$ $\mathbf{u} \in \mathbb{C}^{N} \quad \text{field}$ $\mathbf{d} \in \mathbb{C}^{m} \quad \text{observed data}$ $\mathbf{q} \in \mathbb{C}^{N} \quad \text{source}$

PDE-constrained optimization

The PDE of interest in this talk is the scalar Helmholtz equation

[from:<u>http://www.sercel.com/about/Pages/what-is-geophysics.aspx]</u>

PDE-constrained optimization

Multi-experiment structure:

- 1 PDE: *N* ~ [1e6 1e9] grid points
- [1 100] right-hand-sides (k sources)
- [1-100] *m* receivers ($P \in \mathbb{R}^{m \times N}$)

PDE-constrained optimization

 $\min_{\mathbf{m},\mathbf{u}} \frac{1}{2} \| P\mathbf{u} - \mathbf{d} \|_2^2 \quad \text{s.t.} \quad H(\mathbf{m})\mathbf{u} = \mathbf{q}$ $\mathcal{L}(\mathbf{m}, \mathbf{u}, \boldsymbol{\gamma}) = \frac{1}{2} \|P\mathbf{u} - \mathbf{d}\|_2^2 + \boldsymbol{\gamma}^* (H(\mathbf{m})\mathbf{u} - \mathbf{d})\|_2^2 + \mathbf{v}^* (H(\mathbf{m})\mathbf{u} - \mathbf{d})\|_2$ eliminate field variables $\label{eq:EHaber et al., 2000; I Epanomeritakis et [T. van Leeuwen & F.J. Herrmann, 2014]} \\ \min_{\mathbf{m}} \frac{1}{2} \| PH(\mathbf{m})^{-1}\mathbf{q} - \mathbf{d} \|_2^2$ reduced gradient method / adjointstate / reduced Lagrangian 5

$\nabla_{\mathbf{u}}\phi(\mathbf{m},\bar{\mathbf{u}},\lambda) = 0 \iff \bar{\mathbf{u}} = \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix} \right\|_{2}$

reduced quadratic-penalty: $\bar{\phi}(\mathbf{m}, \bar{\mathbf{u}}, \lambda) = \frac{1}{2} \|P\bar{\mathbf{u}} - \mathbf{d}\|_2^2 + \frac{\lambda^2}{2} \|H(\mathbf{m})\bar{\mathbf{u}} - \mathbf{q}\|_2^2$

A reduced-space quad To minimize: $\min_{\mathbf{m}} \frac{1}{2} \| P \bar{\mathbf{u}} - \mathbf{m} \|$

at every outer iteration: • compute $\bar{\mathbf{u}} = \arg \min$

- evaluate $\phi(\mathbf{m}, \bar{\mathbf{u}}, \lambda)$ 8
- update m

[T. van Leeuwen & F.J. Herrmann, 2013]

$$\|\mathbf{ratic-penalty\ method} \\ \mathbf{d}\|_2^2 + \frac{\lambda^2}{2} \|H(\mathbf{m})\bar{\mathbf{u}} - \mathbf{q}\|_2^2$$

$$\left\| \begin{pmatrix} \lambda H(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix} \right\|_{2}$$

 $\bar{\phi}(\mathbf{m}, \bar{\mathbf{u}}, \lambda)$ & $\nabla_{\mathbf{m}} \bar{\phi}(\mathbf{m}, \bar{\mathbf{u}}, \lambda)$

 \mathbf{u}

Properties of the problem $\bar{\mathbf{u}} = \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix} \right\|_{2}$

- *H* is indefinite, not Hermitian
- inconsistent
- full column rank
- may lose symmetry when using a Perfectly Matched Layer (PML)

Algorithms

Main challenge: solve $\bar{\mathbf{u}} =$

- iteratively & matrix-free
- no QR or LU factorizations
- at cost cost of a few PDE solves

$$= \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(\mathbf{m}) \\ P \end{pmatrix} \mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ \mathbf{d} \end{pmatrix} \right\|_{2}$$

Algorithms

What about preconditioned LSQR, CGLS? (preconditioner: λH) $(\lambda H(\mathbf{m}))^{-1}\mathbf{u} - (\lambda \mathbf{q} \mathbf{d}) \|_{\mathbf{q}}$

$$\bar{\mathbf{u}} = \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(\mathbf{m} \\ P \end{pmatrix} \right\|$$

using exact preconditioning this solves

• m + 1 distinct eigenvalues (identity + low-rank) $(m = n_{rec})$

 $(I + H_{\lambda}^{-*}P^*PH_{\lambda}^{-1})\mathbf{y} = \lambda \mathbf{q} + (H_{\lambda}^*)^{-1}P^*\mathbf{d}, \text{ with } H_{\lambda}\bar{\mathbf{u}} = \mathbf{y}$

Algorithms

What about preconditioned LSQR, CGLS? (preconditioner: λH) $(\lambda H(\mathbf{m}))^{-1}\mathbf{u} - \begin{pmatrix}\lambda\mathbf{q}\\\mathbf{d}\end{pmatrix} \|_{2}$

$$\bar{\mathbf{u}} = \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(\mathbf{m} \\ P \end{pmatrix} \right\|$$

- expected computational cost: $n_{\rm src} \times 2(1 + n_{\rm rec})$ PDE solves
- not competitive with Lagrangian based reduced-space algorithms which require $2n_{\rm src}$ PDE solves
- more PDE solves required in case of inexact PDE solves

LS-problem in normal-equation form:

 $(\lambda^2 H(\mathbf{m})^* H(\mathbf{m}) + P^*)$

Split-preconditioning by λH without computations

$$(I + H_{\lambda}^{-*}P^*PH_{\lambda}^{-1})\mathbf{y} = \lambda \mathbf{q} + (H_{\lambda}^*)^{-1}P^*\mathbf{d}, \text{ with } H_{\lambda}\bar{\mathbf{u}} = \mathbf{y}$$

• m + 1 distinct eigenvalues (identity + low-rank), even for inexact PDE solves • Exploit identity + low-rank structure by solving $H^{-*}P^* = W$

$$P)\bar{\mathbf{u}} = \lambda^2 H(\mathbf{m})\mathbf{q} + P^*\mathbf{d}$$

identity + low-rank factorization: $(I + WW^*)\mathbf{y} = \lambda \mathbf{q} + W\mathbf{d}, \text{ with } H_{\lambda}\bar{\mathbf{u}} = \mathbf{y}$

and invert system matrix as (Sherman-Morrison)

$$\mathbf{y} = (I - W(I + W^*W$$

(this is alway small enough to do explicitly, $m \leq 100$)

 $(V)^{-1}W^*)(\lambda \mathbf{q} + W\mathbf{d}), \text{ with } H_{\lambda}\bar{\mathbf{u}} = \mathbf{y}$

so we only need to invert the dense matrix $(I + W^*W) \in \mathbb{C}^{m \times m}$

identity + low-rank factorization:

 $(I + WW^*)\mathbf{y} = \lambda \mathbf{q} + W\mathbf{d}, \text{ with } H_{\lambda}\bar{\mathbf{u}} = \mathbf{y}$

Stability of Sherman-Morrison is a concern in general, but was found to be sufficiently accurate for some Helmholtz test problems.

In case Sherman-Morrison is not accurate enough:

$$\arg\min_{\mathbf{y}} \left\| \begin{pmatrix} I \\ W^* \end{pmatrix} \mathbf{y} - \begin{pmatrix} \\ \end{pmatrix} \right\|$$

 $\lambda \mathbf{q}$ ||2|

for angular frequency ω do // solve *m* Helmholtz problems $H_{\lambda}^*W = P^*$ $M = (I + W^*W)^{-1}$ for right hand side i do $\mathbf{y}_i = (I - WMW^*) (\lambda \mathbf{q}_i + W\mathbf{d}_i)$ solve for $\bar{\mathbf{u}}_i$ $H_{\lambda} \bar{\mathbf{u}}_i = \mathbf{y}_i$ end for end for

Matrix-free algorithm

- no direct solves
- related mildly overdetermined systems [L. M. Delves & I. Barrodale, 1979]

Computational cost:

- 1 PDE per receiver
- 1 PDE per source

Memory requirements:

- 1 vector per receiver (*W*)
- system matrix (H)
- storage for solving systems with H

Inexact solutions to the linear systems:

for angular frequency ω do '/ solve *m* Helmholtz problems inexactly $\longrightarrow \hat{H}^*_{\lambda} \hat{W} = P^* + R_W$ $\hat{M} = (I + \hat{W}^* \hat{W})^{-1}$ for right hand side \mathbf{b}_i do $\hat{\mathbf{y}}_i = \left(I - \hat{W}\hat{M}\hat{W}^*\right)\left(\lambda\mathbf{q}_i + \hat{W}\mathbf{d}_i\right)$ solve for $\bar{\mathbf{u}}_i$ inexactly $H_{\lambda}\hat{\mathbf{u}}_{i} = \hat{\mathbf{y}}_{i} + \mathbf{r}_{\mathbf{u}}$ end for end for

error propagation (1 right-hand-side, 1 receiver case):

error propagation (1 right-hand-side, 1 receiver case):

derivation of error bounds based on observable quantities is work in progress

solve as:
$$\hat{\mathbf{y}} = (I - \hat{m}\hat{\mathbf{w}}\hat{\mathbf{w}}^*)(\lambda \mathbf{q} + \hat{\mathbf{w}}d)$$

with $\hat{m} = \frac{1}{1 + \hat{\mathbf{w}}^*\hat{\mathbf{w}}}$

Suggested PDE-solver

Need to store 1 vector per receiver -> use PDE-solver with low-memory & setup requirements

Helmholtz:

- [A. Bjorck & T. Elfving, 1979; D. Gordon & R. Gordon, 2010; • CGMN (only 4 vectors) / CARP-CG T. van Leeuwen & F.J. Herrmann, 2014]
- Shifted-Laplacian w/ multi-grid [Y.A. Erlangga, 2008; H. Calandra et al., 2013] [R. Lago & F.J. Herrmann, 2015]
- combination of the above

Randomization and subsampling

What is the number of receivers is too large, storage wise?

Can we approximate the least-squares problem using randomization & subsampling?

Use ideas from algorithms such as

- [V Rokhlin & M Tygert, 2008]
- Blendenpik [H. Avron et. al., 2010]
- LSRN [X. Meng, M. A. Saunders, M. W. Mahoney, 2014]

Randomization and subsampling

Initial attempt in this work:

apply randomization and subsampling to the receiver block only for a one-step approximation:

 $\bar{\mathbf{u}} = \arg\min_{\mathbf{u}} \left\| \begin{pmatrix} \lambda H(V) \\ V \end{pmatrix} \right\|$

$$V \in \mathbb{C}^{l \times m}, \quad l < m$$

reduces

- # of PDE solves
- # vectors to be stored

$$\binom{\mathbf{m}}{P} \mathbf{u} - \begin{pmatrix} \lambda \mathbf{q} \\ V \mathbf{d} \end{pmatrix} \Big\|_2$$

(complex, random, flat)

Simultaneous receivers

S

3D Example - true model

10 x 10 x 2 km, 5 Hz, 27-point discretization, ~1e7 grid points, source at [0,0,0]

Conclusions

- There is potential for randomization and subsampling to reduce the computational cost and memory requirements.
- Proposed algorithm might be used for other large-scale mildly overdetermined problems with many variables & few constraints.

Acknowledgements

Tristan van Leeuwen, Art Petrenko & Rafael Lago for the CGMN & CARP-CG implementation

This work was in part financially supported by the Natural Sciences and Engineering Research Council of Canada Discovery Grant (22R81254) and the Collaborative Research and Development Grant DNOISE II (375142-08). This research was carried out as part of the SINBAD II project with support from the following organizations: BG Group, BGP, CGG, Chevron, ConocoPhillips, ION, Petrobras, PGS, Statoil, Total SA, Sub Salt Solutions, WesternGeco, and Woodside.

References

- 1. A. Bjorck and T. Elfving, Accelerated projection methods for computing pseudoinverse solutions of systems of linear equations, BIT, 19 (1979), pp. 145–163.
- 2. D. Gordon and R. Gordon, CARP-CG: A robust and efficient parallel solver for linear systems, applied to strongly convection dominated pdes, Parallel Computing, 36 (2010), pp. 495–515.
- 3. Tristan van Leeuwen and Felix J. Herrmann, frequency-domain seismic inversion with controlled sloppiness, SIAM Journal on Scientific Computing, 36 (2014), pp. S192–S217.
- 4. M.J. Grote, J. Huber, and O. Schenk, Interior point methods for the inverse medium problem on massively parallel architectures, Procedia Computer Science, 4 (2011), pp. 1466 – 1474. Proceedings of the International Conference on Computational Science, {ICCS} 2011.
- 5. Eldad Haber, Uri M Ascher, and Doug Oldenburg, On optimization techniques for solving nonlinear inverse problems, Inverse Problems, 16 (2000), pp. 1263–1280.
- p. 1847.
- inversion. Inverse Problems, 24(3):034015, June 2008.
- 8. George Biros and Omar Ghattas, Parallel lagrange-newton-krylov- schur methods for pde-constrained optimization. part i: The krylovschur solver, SIAM Journal on Scientific Computing, 27 (2005), pp. 687–713.
- 9. R.E. Kleinman and P.M.van den Berg, A modified gradient method for two- dimensional problems in tomography, Journal of Computational and Applied Mathematics, 42 (1992), pp. 17 – 35.

6. E Haber and U M Ascher, Preconditioned all-at-once methods for large, sparse parameter estimation problems, Inverse Problems, 17 (2001),

7. I Epanomeritakis, V Akcelik, O Ghattas, and J Bielak. A Newton-CG method for large-scale three-dimensional elastic full-waveform seismic

References (2)

- 10. B Peters, FJ Herrmann, T van Leeuwen. Wave-equation Based Inversion with the Penalty Method-Adjoint-state Versus Wavefieldreconstruction Inversion. 76th EAGE Conference, 2014.
- 11.Calandra, H., Gratton, S., Pinel, X. and Vasseur, X. [2013] An improved two-grid preconditioner for the solution of three-dimensional Helmholtz problems in heterogeneous media. Numerical Linear Algebra with Applications.
- 12.Erlangga, Y.A. [2008] Advances in iterative methods and preconditioners for the Helmholtz equation. Archives of Computational Methods in Engineering, 15, 37–66.
- 13.Delves, L. M., and I. Barrodale. "A fast direct method for the least squares solution of slightly overdetermined sets of linear equations." IMA Journal of Applied Mathematics 24.2 (1979): 149-156.
- 14.Rafael Lago, Felix J. Herrmann. Towards a robust geometric multigrid scheme for {Helmholtz} equation, Tech Report, UBC, 2015.

