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Outline
III. Compressive modeling, imaging, and inversion

• Inversion Helmholtz system by multi-level Krylov
• Linearized inversion by joint sparsity promotion
• Extensions & open problems
• application:

• primary prediction from simultaneous data by curvelet-based wavefield 
inversion

• compressive image volume recovery by focused curvelet-based wavefield 
inversion
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Seismic imaging & inversion 

Multiexperiment PDE-constrained optimization problem:

min
U∈U ,m∈M

1
2
‖P−DU

∥∥2

2
subject to H[m]U = Q

+ Free surface BC

P = Total multi-source and multi-frequency data volume
D = Detection operator
U = Solution of the Helmholtz equation
H = Discretized multi-frequency Helmholtz system
Q = Unknown seismic sources
m = Unknown model, e.g. c−2(x)
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Adjoint state methods [Plessix ‘06 & many others]

For each separate source q solve the unconstrained problem:

where model updates <=> migrated image

involve single implicit solves of Helmholtz system

with

with

H[m]u = q and H∗[m]v = r

F [m,q] = DH−1[m]q

r = DH(p− F [m])

δm = !
(

∑

ω

ω2
∑

s

ū" v

)
= K∗[m,Q]δd

with δd = vec(P−F [m,Q])

min
m∈M

1
2
‖p− F [m]‖2

2
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Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of convergence 
indirect Krylov solvers

Multiexperiment setup with multiple right-hand-sides is computationally 
prohibitive as part of iterative Newton methods

Inversion problem can be both over- and underdetermined [Symes, ‘09]
• data cannot be explained fully
• the source function is unknown & surface causes large nonlinearity
• there are local minima, many velocity models may explain data within some error

Proposed ideas to tackle multimodality by extensions & focusing make 
the situation worse by additional degrees of freedom
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Time domain vs. Frequency domain

Time domain Frequency domain
Solution of wave equation explicit, easy implicit, not easy

Imaging
time history,

checkpointing, 
not trivial

all frequencies,
freq. subsampling, 

easy

Computational algorithm

paralellizable via 
domain 

decomposition 
(DD)-type 
algorithm 

embarrasingly 
parallel in frequency, 
no communication, 
DD-type can apply 

for very large 
problem (3D)

Boundary condition and 
damping layer

not trivial trivial, use complex 
velocity 

Modeling relaxation not trivial trivial, use freq. dep. 
complex velocity 
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Multiexperiment wavefield simulations
Based on discretization of the Helmholtz equation:

      
          frequency sample interval

Hωj := H(ωj), ωj = 2πj∆f, j = 1, . . . , nf

∆f

Hu = −∆u− ω2mu = q





Hω1 0

0 Hω2

. . .
. . . . . . 0

0 Hωnf









Uω1︷ ︸︸ ︷
[u1 u2 · · · uns ]ω1

...

...
[u1 u2 · · · uns ]ωnf︸ ︷︷ ︸

Unf





=





Qω1︷ ︸︸ ︷
[q1 q2 · · · qns

]ω1

...

...
[b1 b2 · · · bns ]ωnf︸ ︷︷ ︸

Qnf







Computational complexity

nfO(n9)
nsnfO(n5) nsnfniterO(n3)

3D Direct methods Iterative Methods

LU factors -
Solution

Multiple-shots (right-hand sides), multiple frequencies
    : number of shots            : number of frequenciesnf

nfO(n4)
nsnfO(n3) nsnfniterO(n2)

2D Direct methods Iterative Methods

LU factors -
Solution

ns

For similar analysis for MUMPS, see [Virieux, The Leading Edge, 2009]

IM can be competitive if                      (with, e.g., preconditioner) niter ! nd



Complications

• Small eigenvalues close 
to zero, large eigenvalues 
unbounded:                 
ill-conditioned

• Real parts of eigenvalues 
change signs:                     
indefinite
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One-d example: not of practical interest but tells the story

Convergence is not guaranteed.

Indefiniteness the most difficult to 
handle. No iterative method for 
indefinite system

k = 2πfL/c = 50

constant



Tackle indefiniteness by Laplacian shift

Use as preconditioner the damped Helmholtz op.:

Then solve using iterative method the system

HM−1w = f , u = M−1w

M ∧= −∇ · (∇)− (1− 1
2

ĵ)
(ω

c

)2
, ĵ =

√
−1.

(And similarly for back-propagated wavefield)
[Erlangga, Oosterlee, Vuik, 2006]

[Riyanti et al., 2006]
[Plessix et al., 2007]HM−1 =: Ĥ



Indefiniteness removed

• Real parts of eigenvalues have the same signs: definite!       
Iterative methods will converge easier

• To obtain            method ,            computed by one multigrid 
iteration

• Large eigenvalue bounded by one, still some small eigenvalues 
ill-conditioned
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Tackle ill conditioning

Multilevel/scale operator:

Q =

shift small eigenvalues to 0︷ ︸︸ ︷
I− ZĤ−1ZT HM−1 +

shift zero eigenvalues to 1︷ ︸︸ ︷
ZĤ−1ZT ,

with

Z :  interpolation/fining operator
Ĥ = ZT HM−1Z, dimĤ! dimH

Then, solve HM−1Qy = f , u = M−1Qy
[Erlangga, Nabben, 2008]

[Erlangga, Herrmann, 2008]



Tackle ill conditioning

 

Z

Q = I− ZĤ−1ZT HM−1 + ZĤ−1ZT

- The action of       restricts components of errors, 
  which are responsible for slow convergence, into 
  the coarse grid (level)

ZT

- The action of           reduces those components in 
  coarse grid (level)

Ĥ−1

- The action of       interpolates the reduction 
  back into the fine level

-          is computed recursively:  Multilevel methodĤ−1



Ill conditioning removed

• Notice shift of eigenvalues towards one due to Q!

• The spectrum of                  is favorable for iterative methods
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More on eigenvalues

H HM−1 HM−1Q

Clustering around one

1D non-constant wavenumber k, smooth model k = (50, 100)



More on eigenvalues

H HM−1 HM−1Q

Clustering around one

1D non-constant wavenumber k, hard model

For constant, smooth, or hard 
model, one can expect the same 
convergence rate

k = (50, 100)



Eigenvectors: 1D constant velocity

H

HM−1

HM−1Q



Eigenvectors: 1D with velocity jump

H

HM−1Q

HM−1



Example: forward modeling

• Velocity contrast: 1500 - 4000 m/s

• Convergence is less dependent of 
frequency
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Example: Marmousi, cont’d
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Direct method, LU

Iterative method
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Example: forward modeling
One shot position, hard model : wavefield

grid in x−direction
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Example: imaging

x!direction (meter)
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Target model
m1 = m0 + δm

δm (not shown) is computed using data from 188 shots and 11 frequencies 
(0.5-5.0 Hz)



Parallellism

Timing for 99 frq/shot samples
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CPU time, single processor: (28 min) vs. Symes’s ( 7 min)
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Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of convergence 
indirect Krylov solvers 

Multiexperiment setup with multiple right-hand-sides is computationally 
prohibitive as part of iterative Newton methods

Inversion problem can be both over- and underdetermined [Symes, ‘09]
• data cannot be explained fully
• the source function is unknown & surface causes large nonlinearity
• there are local minima, many velocity models may explain data within some error

Proposed ideas to tackle multimodality by extensions & focusing make 
the situation worse by additional degrees of freedom

✓
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System-size reduction
 Apply CS to reduce cost of wavefield simulation with Helmholtz 

– use simultaneous sources instead of separated sources
– leverage transform-domain sparsity & randomized subsampling by one-norm 

sparsity promotion
– reduce size Helmholtz system

• sources (number of right-hand sides)
• angular frequencies (number of blocks)

 Apply CS to reduce cost of computing image volumes by multi-
dimensional correlations via explicit matrix-matrix multiplies

– randomize and subsample wavefields in model space
– leverage transform-domain sparsity and focusing in the model space by joint 

sparsity promotion with mixed (1,2) norms
– reduce costs of storage and explicit matrix-matrix multiplies

• sources (right-hand sides), receivers, depth
• angular frequencies (blocks)
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Relation to existing work
 Simultaneous & continuous acquisition:

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and 
Sparsity by N. Neelamani and C. Krohn and  J. Krebs and M. Deffenbaugh and J. 
Romberg, ‘08

 Simultaneous simulations & migration:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
– Phase encoding of shot records in prestack migration by Romero et. al., ’00.

 Imaging:
– How to choose a subset of frequencies in frequency-domain finite-difference 

migration by Mulder & Plessix, ’04.
– Efficient waveform inversion and imaging: A strategy for selecting temporal 

frequencies by Sirque and Pratt, ’04.

 Full-waveform inversion:
– 3D prestack plane-wave, full-waveform inversion by Vigh and Starr, ‘08

 Wavefield extrapolation:
– Compressed wavefield extrapolation by T. Lin and F.J.H, ’07
– Compressive wave computations by L. Demanet (SIA ’08 MS79 & Preprint)
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Tools
 Compressive sensing based on Johnson-Lindenstrauss embeddings

– Compressive sensing [Donoho, 06‘, Candes, Romberg, Tao, ‘06]

 Fast matrix computations based on Johnson-Lindenstrauss embeddings
– Improved Approximation Algorithms for Large Matrices via Random Projections by Tamás 

Sarlós, ’08

 Joint sparsity-promotion with mixed (1,2) norm minimization
– Joint-sparse recovery from multiple measurements by E. van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

b = RMx
x̃ = arg min

x
‖x‖1 subject to ‖RMx− b‖2 ≤ σ

x̃ ≈ x

[randomized subsampling]

AB ≈ A (RM)∗ (RM)B



Simultaneous & continuous sources
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 Matrix-free preconditioned indirect solver based on multilevel 
Krylov with deflation [Erlanga, Nabben, ’08, Erlanga and F.J.H, ‘08]

 Solution gives multidimensional wavefield 
 Block-diagonal structure H and multiple rhs are amenable to CS as 

long as CS sampling matrix commutes with H
 Corresponds to simultaneous acquisition

– replaces impulsive individual sources by simultaneous randomized sources
– reduces number simultaneous sources (rhs) & angular frequencies (blocks)

H︷ ︸︸ ︷



Hω1 0

0 Hω2

. . .
. . . . . . 0

0 Hωnf





U︷ ︸︸ ︷



Uω1

Uω1

...
Unf




=

B︷ ︸︸ ︷



Bω1

Bω2

...
Bnf



 HU = B⇓

Wavefield computations

u(xs, xr, t)
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Sparse recovery

Challenges:
– large to extreme large system size (number of unknowns is 225 for a really small problem)
– find proper subsampling matrix that is physically realizable and numerically fast
– find proper sparsifying transforms that balances sparsity with mutual coherence

Solver:
– bring in as many entries per iteration as possible
– projected gradient with root finding method (           ,  Friedlander & van den Berg, ‘07-’08)
– few matrix-vector multiplies
– use matrix-free implementations where possible

P1 :






y = RMd
x̃ = arg minx ‖x‖1 subject to Ax = y
A = RMS∗

d̃ = S∗x̃

SPG!1
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Subsample along source and frequency coordinates
Use fast transform-based sampling algorithms such as scrambled Fourier 
[Romberg, ‘08] or Hadamard ensembles [Gan et. al., ‘08]

– Different random restriction for each                  simultaneous experiments
– Restriction reduces system size
– Different from implementations of sampling matrices based on Kronecker-products
– Numerical complexity CS sampling               

θw = Uniform([0, 2π])

RM =

sub sampler︷ ︸︸ ︷



RΣ
1 ⊗ I⊗RΩ

1

...

RΣ
ns′ ⊗ I⊗RΩ

ns′





random phase encoder︷ ︸︸ ︷(
F∗

2 diag
(
eîθ

)
⊗ I

)
F3, (3)

where F2,3 are the 2,3-D Fourier transforms, and where θ = Uniform([0, 2π]) is a random

phase rotation. Notice that the F2 and phase rotations act along the source/receiver coor-

dinates. Application of this CS-sampling matrix, RM, to the original source wavefields in

s turns these single shots into a subset (n′
s " ns) of time-harmonic simultaneous sources

that are randomly phase encoded and that have for each simultaneous shot a different set of

angular frequencies missing—i.e., there are n′
f " nf frequencies non-zero (see Figure 2(a)).

Because seismic data is bandwidth limited, we sample with a probability that is weighted

by the power spectrum of the source wavelet. The advantage of this implementation is that

it is matrix-free, fast, and it turns interferences into harmless noise (see Figure 2(b)).

The sparsfying transform: Aside from proper CS sampling the recovery from simulta-

neous simulations depends on a sparsifying transform that compresses seismic data, is fast,

and reasonably incoherent with the CS sampling matrix. We accomplish this by defining

the sparsity transform as the Kronecker product between the 2-D discrete curvelet trans-

form (Candès et al., 2006) along the source-receiver coordinates, and the discrete wavelet

transform along the time coordinate—i.e., S := C ⊗W with C, W the curvelet- and

wavelet-transform matrices, respectively.

8

CS sampling matrix

n′
s ! ns

O(n3 log n)
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Source-solution sampling equivalence

Full data can be recovered via sparsity promotion, i.e.,






Q = D∗ s︸︷︷︸
single shots

HU = B

y = RMDU

⇐⇒






Q = D∗ RMs︸ ︷︷ ︸
simul. shots

HU = B

y = DU

P1 :






x̃ = arg minx ‖x‖1 subject to Ax = y
A = RMS∗

d̃ = S∗x̃



R MH-1

R M H-1
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 Use fast discrete 2-D Curvelet transform based on wrapping [Demanet 
‘06] along shot and receiver coordinates

– compresses highly geometrical features of monochromatic wavefields 
– incoherent with compressive-sampling matrix that acts along the source coordinate

 Use fast discrete wavelet transform along the time coordinate
– compresses front-like features arriving along the time direction
– reasonable incoherent with sampling of angular frequencies

 Combine both transforms through a Kronecker product

 Numerical complexity sparsifying transform               

O(n3 log n)

S = C2d ⊗W

Sparsifying transform



Complexity analysis
Assume discretization size in each dimension is n, and

Time-domain finite differences:
            in 2-D
 large constants

Multilevel-Krylov preconditioned [Erlangga, Nabben, FJH, ’08]

  
 small constants

ns = nt = nf = O(n)

O(n4)

O(n4) = nfnsnitO(n2) with nit = O(1)



Complexity analysis cont’d
Cost sparsity promoting optimization dominated by matrix-
vector products

 Sparsity transform is
 Gaussian projection            per frequency
 Cost          , which does not lead to asymptotic improvement

Use fast transforms (e.g. Random Convolutions by Romberg 
’08)

 fast projection in time & shot directions:
 Cost

Bottom line: Computational cost for the   -solver is less
                                   than the cost of solving Helmholtz

 smaller memory imprint
 cost reduction dependent on complexity = transform-domain 

sparsity of the solution

O(n3)
O(n4)

O(n log n)
O(n3 log n) instead of O(n4)

!1
(O(n3 log n) vs. O(n4))

O(n3 log n)



simple model complex model

Velocity models



Green’s functions
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Recovered data
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Implications

CSed PDE constrained optimization problem

is equivalent to

 reduced system of equations for forward modeling
 freedom to choose amount of undersampling and M 

commensurate complexity of the model
 Solutions requires sparsity-promotion
 CS on the model side

min
U∈U ,m∈M

1
2
‖RM

(
d−DU

)
‖2
2 subject to H[m]U = Q

min
U∈U ,m∈M

1
2
‖y −DU‖2

2 subject to H[m]U = Q



Implications

Add sparsity promoting prior

Recast into unconstrained optimization problem:

with

 requires extension of projected gradient    -solver to 
nonlinear forward map ...

 preconditioning for nonlinear operators

!1

min
U∈U ,x∈X

1
2
‖y −DU‖22 subject to H[SHx]U = Q ∧ ‖x‖1 ≤ τ

min
x∈X

1
2
‖y −F [x]‖22 s.t. ‖x‖1 ≤ τ

F [x] = DH−1[SHx]Q



Seismic Laboratory for Imaging and Modeling

Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of convergence 
indirect Krylov solvers

Multiexperiment setup with multiple right-hand-sides is computationally 
prohibitive as part of iterative Newton methods

Inversion problem can be both over- and underdetermined [Symes, ‘09]
• data cannot be explained fully
• the source function is unknown & surface causes large nonlinearity
• there are local minima, many velocity models may explain data within some error

Proposed ideas to tackle multimodality by extensions & focusing make 
the situation worse by additional degrees of freedom

✓
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• data cannot be explained fully
• the source function is unknown & surface causes large nonlinearity
• there are local minima, many velocity models may explain data within some error

Proposed ideas to tackle multimodality by extensions & focusing make 
the situation worse by additional degrees of freedom
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Seismic imaging & inversion

Multiexperiment PDE-constrained optimization problem: 

min
U∈U ,m∈M

1
2
‖P−DU

∥∥2

2
subject to H[m]U = Q

+ Free surface BC

P = Total multi-source and multi-frequency data volume
D = Detection operator
U = Solution of the Helmholtz equation
H = Discretized multi-frequency Helmholtz system
Q = Unknown seismic sources
m = Unknown model, e.g. c−2(x)
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Source-function & surface nonlinearity
 Estimation of source function & removal of free-surface nonlinearity 

are intrinsically related.

 Removal of these effects involves
– inversion of Fredholm integral equation of the first kind => full matrices
– blind deconvolution problem

 Based on the following monochromatic expression:

 “Informed” blind deconvolution problem

upgoing wavefield︷︸︸︷
P̂i ≈ Ĝi︸︷︷︸

surface-free impulse response

downgoing wavefield︷ ︸︸ ︷[
Q̂i − P̂i

]

unknown
source function

unknown
source function
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Common approach: damped least-squares
Monochromatic forward model:

Monochromatic pseudo-inverse:

Receivers

Shots

Shots

Receivers

Frequency

 

[Berkhout ‘82]
[F.J.H ’07-’08]
[Wapenaar ‘08]

˜̂Gi = V̂iÛ
∗
i

(
ÛiÛ

∗
i + ε2i I

)−1
, i = 1 · · · nf ,

Ĝi︸︷︷︸
unknown ”image”

to be inverted wavefield︷︸︸︷
Ûi = V̂i︸︷︷︸

known wavefield

i = 1 · · · nf
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Curvelet-based wavefield inversion (CWI)
Cast into rigorous linear-algebra framework, i.e.

which with the Kronecker identity

becomes for each frequency

Set up a system for all frequencies and incorporate the temporal 
Fourier transform ....

vec (AXB) =
(
BH ⊗A

)
vec (X)

ĜiÛi ≈ V̂i, i = 1 · · · nf ,

(
Û

∗
i ⊗ I

)
vec

(
Ĝi

)
≈ vec

(
V̂i

)
, i = 1 · · · nf ,
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Curvelet-based wavefield inversion (CWI)

with                                        (temporal Fourier transform)

Linear system is
– conducive to curvelet-based wavefield inversion with sparsity promotion
– versatile
– conducive to compressive subsampling (e.g. simultaneous acquisition)

Ft = (I⊗ I⊗ F)

A︷ ︸︸ ︷



(
Û

∗
1 ⊗ I

)

. . . (
Û

∗
nf
⊗ I

)




Ft

x︷ ︸︸ ︷


vec (G1)

...
vec (Gnt)



 ≈

b︷ ︸︸ ︷



vec
(
V̂1

)

...
vec

(
V̂nf

)




.



Seismic Laboratory for Imaging and Modeling

Estimation of primaries by sparse inversion (EPSI)

 Forward model:

P total upgoing data
Q the source function

• Randomized simultaneous acquisition:

upgoing wavefield︷︸︸︷
P̂i ≈ Ĝi︸︷︷︸

surface-free impulse response

downgoing wavefield︷ ︸︸ ︷[
Q̂i − P̂i

]

RM =

sub sampler︷ ︸︸ ︷[
RΣ ⊗ I⊗ I

]
random phase encoder︷ ︸︸ ︷(

F∗
sdiag

(
eîθ

)
Fs ⊗ I⊗ I

)
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 Linearly ramping seismic sweep, 5 to 110 Hz
 Simultaneous source at all positions, each randomly phase encoded

Randomized simultaneous sweep signals
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total data
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Total data recovered 

from randomized
data
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Predicted primaries from

recovered total data



Seismic Laboratory for Imaging and Modeling

 
Recovered total data 

from randomized
compressive data
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Implication

Multiexperiment PDE-constrained optimization problem: 

min
G∈G,m∈M

1
2
‖vec

(
P

)
−Avec

(
DG

)
‖2
2 subject to H[m]G = I

P = Total multi-source and multi-frequency upgoing data volume
A = Matrix operator representation of downgoing wavefield
D = Detection operator
G = Solution of the surface-free Helmholtz equation
H = Discretized multi-frequency Helmholtz system
I = Delta Dirac

m = Unknown model, e.g. c−2(x)
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Challenges: there are many ...
Helmholtz system is indefinite & ill conditioned => lack of convergence 
indirect Krylov solvers

Multiexperiment setup with multiple right-hand-sides is computationally 
prohibitive as part of iterative Newton methods

Inversion problem can be both over- and underdetermined [Symes, ‘09]
• data cannot be explained fully
• the source function is unknown & surface causes large nonlinearity
• there are local minima, many velocity models may explain data within some error

Proposed ideas to tackle multimodality by extensions & focusing make 
the situation worse by additional degrees of freedom

✓
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System-size reduction
 Apply CS to reduce cost of wavefield simulation with Helmholtz 

– use simultaneous sources instead of separated sources
– leverage transform-domain sparsity & randomized subsampling by one-norm 

sparsity promotion
– reduce size Helmholtz system

• sources (number of right-hand sides)
• angular frequencies (number of blocks)

 Apply CS to reduce cost of computing image volumes by multi-
dimensional correlations via explicit matrix-matrix multiplies

– randomize and subsample wavefields in model space
– leverage transform-domain sparsity and focusing in the model space by joint 

sparsity promotion with mixed (1,2) norms
– reduce costs of storage and explicit matrix-matrix multiplies

• sources (right-hand sides), receivers, depth
• angular frequencies (blocks)
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Tools
 Compressive sensing based on Johnson-Lindenstrauss embeddings

– Compressive sensing [Donoho, 06‘, Candes, Romberg, Tao, ‘06]

 Fast matrix computations based on Johnson-Lindenstrauss embeddings
– Improved Approximation Algorithms for Large Matrices via Random Projections by Tamás 

Sarlós, ’08

 Joint sparsity-promotion with mixed (1,2) norm minimization
– Joint-sparse recovery from multiple measurements by E. van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

b = RMx
x̃ = arg min

x
‖x‖1 subject to ‖RMx− b‖2 ≤ σ

x̃ ≈ x

[randomized subsampling]

AB ≈ A (RM)∗ (RM)B
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Differential semblance
 Invoke physical principle of focusing [Claerbout & many others] <=> 

mathematical principle of extensions [Symes ‘09]

 Motivated by Symes’ differential semblance principle [Symes ‘09]: 
“Amongst all possible quadratic forms in the data, parameterized by 
velocity, of the form

only differential semblance is smooth jointly as function of smooth 
perturbations in velocity and finite energy perturbations in data [Stolk 
& Symes, ’03]”

 Forms the basis of nonlinear migration velocity analysis on 
linearized data [Symes, ‘09].

with

annihilator︷ ︸︸ ︷
Ph· = h·,

redundant coordinate

minm ‖(Ph

image volume︷ ︸︸ ︷
δI(·, h;m, δd)) ‖2
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Image volume
Compute multi-D cross-correlations on multiexperiment solutions of 
the forward- and reverse-time Helmholtz systems--i.e,

with

and

where    
    

                                                                           
High dimensional and highly redundant ...

Uf =
[
u1 · · · unf

]
and Vf =

[
v1 · · · vnf

]

m =
1
2
(xs + xr) and h =

1
2
(xs − xr)

δI(m,h, t) =
(
Ū ∗ VT

)

(
Ū ∗ VT

)
:= T(xs,xr,ω) !→(m,h,t)




Ū1

. . .
Ūnf








VT

1
...

VT
nf




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Imaging condition 
Claerbout’s imaging principle:

 implicit in adjoint state method

 Image volume 
– very large because of additional degree of freedom
– expensive to store

δm = δI(·, h = 0, t = 0)
= K∗δd
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System-size reduction by CS
For each angular frequency, subsample with CS matrix

with 

Model-space CS subsampling along subsurface source, receiver, 
and depth coordinates yielding an approximate extended image

RM :=

sub sampler︷ ︸︸ ︷



Rσ
1 ⊗Rρ

1 ⊗Rζ
1

...
Rσ

n′
f
⊗Rρ

n′
f
⊗Rζ

n′
f





random phase encoder︷ ︸︸ ︷(
F∗

3

(
eîθ

))
F3 ,

n′
f × n′

σ × n′
ρ × n′

ζ " nf × ns × nr × nz

δI(m,h, t) ≈
(
Ū

(
RM

)∗ ∗RMVT
)
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Example
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Example: matched filter

Recovery from 64-fold subsampling ...
• Noisy
• Not focused

migrated CS image

20 40 60 80 100 120

20

40
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100

120

migrated CS cigs
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80

100

120

δI(·, h = 0, t = 0) δI([m1, m2, m3], h, t = 0)
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Tools
 Compressive sensing based on Johnson-Lindenstrauss embeddings

– Compressive sensing [Donoho, 06‘, Candes, Romberg, Tao, ‘06]

 Fast matrix computations based on Johnson-Lindenstrauss embeddings
– Improved Approximation Algorithms for Large Matrices via Random Projections by Tamás 

Sarlós, ’08

 Joint sparsity-promotion with mixed (1,2) norm minimization
– Joint-sparse recovery from multiple measurements by E. van den Berg and M. Friedlander, ‘09

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

b = RMx
x̃ = arg min

x
‖x‖1 subject to ‖RMx− b‖2 ≤ σ

x̃ ≈ x

[randomized subsampling]

AB ≈ A (RM)∗ (RM)B
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Extended Born & focusing
Define extended linearized forward model [Symes, ’09]:

– multiexperiment form amenable for joint sparsity promotion
– introduce penalty term that penalizes defocusing

Form augmented system with focusing:

with                   annihilator that increasingly penalizes non-zero offsets.

Solution involves multi-D “deconvolution” (adjoint of cross correlation):
  

data fit
focusing

K̄δI ≈ δD
λ2PhδI ≈ 0

Ph· = h·

(U∗ ! δI) ≈ VT

K̄[m,Q]δI ≈ δD



Seismic Laboratory for Imaging and Modeling

Compressed linearized inversion
Compressively sample augmented system that includes sparsity 
synthesis operator--i.e, 
                                                  

                                                             

with the sparsifying transform S for each offset h given by the curvelet 
or wavelet transform

Recover focused solution by mixed (1,2)-norm minimization.

Promote sparsity amongst images though one-norm on columns

Penalize energy amongst rows => focusing

AX ≈ B
RM (U∗ ! S∗X) ≈ RMVT

PhX ≈ 0
or
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Joint-sparsity promotion [van den berg & Friedlander, ‘09]

Recover focused solution by mixed (1,2)-norm minimization:

with 

and

Solved with SPGL1.

X̃ = arg min
X

‖X‖1,2 subject to ‖AX−B‖2,2 ≤ σ,

‖X‖1,2 :=
∑

i∈rows(X)

‖rowi(X)∗‖2

‖X‖2,2 :=




∑

i∈rows(X)

‖rowi(X)∗‖2
2





1
2

.
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Example
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Example

Recovery from 64-fold subsampling ...

migrated CS image
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Example
migrated CS cigs
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Common-image gathers are focussed.
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Implications
 Model-space CS leads to a significant reduction of

– simulation costs (reduction of the number of right-hand sides & frequencies)
– storage costs
– matrix-matrix multiply costs

 Opens enticing perspective to solve Symes’ nonlocal extension, i.e.
– map model variables to a functional
– solve inverse problem with extra constraint:

 Open problem
– size functionals is prohibitive => need CS techniques to compress

m(x) !→M(x, x′)

min
U∈U ,X∈X

1
2
‖P−DU

∥∥2

2
subject to

{
H[S∗X]U = Q
PhX = 0

∧ ‖X‖1, 2 ≤ τ



Why we are doing this
Invariance & Sparsity

 Compressing operators using an alternative notion 
of invariance

 NOT going for invariance of support in a certain 
basis (Diagonalization)

 Instead going for sparsity invariance under a 
sparsifying transform (Compressive Sensing)

diagonalization compressive sensing
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Observations & outlook
 CS allows for a compression of data volumes without significant 

loss of information yielding a reduction in computational costs

 CS has direct implications for seismic acquisition--from sequential 
to simultaneous acquisition

 Joint sparsity promotion allows for focusing

 Speculation: Proposed approach may be suitable to handle 
Symes’s proposal to add a degree of freedom yielding a nonlocal 
forward model in tandem with an inverse problem that penalizes 
nonlocality  through focusing ...
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