Curvelet-based amplitude recovery \& coherent-noise removal

Felix J. Herrmann*
 fherrmann@eos.ubc.ca

*Seismic Laboratory for Imaging \& Modeling Department of Earth \& Ocean Sciences
The University of British Columbia

Outline

II. Curvelet-based amplitude recovery \& coherent-noise removal

- curvelet-domain matched filtering
- applications:
- amplitude-recovery by scaled curvelet-domain sparsity promotion
- conditioning with curvelet-domain scaling
- primary-multiple matching
- Bayesian coherent signal separation by sparsity promotion
- application: primary-multiple separation

Goals \& challenges

Goals:

Exploit multiscale \& directional transforms to conduct seismic data processing---i.e, use "microlocal" properties of curvelets to

- correct migration amplitudes \& precondition migration operators
- smoothly-varying corrections to coherent noise predictions (e.g., surface-related multiples)

Leverage curvelet-domain adaptivity \& sparsity to

- estimate diagonal curvelet-domain corrections by matching
- migrated and remigrated images => approximation of the normal operator
- "true" and predicted multiples => matching of predicted multiples to "true multiples"
- stably correct migration amplitude errors
- separate matched coherent wavefield constituents by sparsity promotion

Challenges:

- multidimensionality of wavefronts set \& existence of conflicting dips
- problem size \& integration into existing workflows
- black-box imaging \& multiple prediction code

Example

Example

Curvelet-domain matched filter

Herrmann, F. J., Moghaddam, P. and Stolk, C.
Sparsity- and continuity-promoting seismic image recovery with curvelet frames. App. \& Comp. Harm. Analys., Vol. 24, No. 2, pp. 150-173, 2008.
Herrmann, F. J., Wang, D and Verschuur, D. J. Adaptive curvelet-domain primary-multiple separation. Geophysics, Vol 73, No. 3, pp. A17-A21, 2008.

Reza Shahidi and Felix J. Herrmann, Curveletdomain matched filtering with frequency-domai regularization. SEG, 2009, Houston.

The forward model

Our curvelet-domain matched filtering is build on the following model:

$$
g=\Psi(x, D) f
$$

with Ψ a zero-order pseudodifferential operator ($\Psi \mathrm{DO}$) given by

$$
(\Psi f)(x)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} b(x, \xi) \hat{f}(\xi) \mathrm{d} \xi
$$

i.e., $\left|\partial_{\xi}^{\alpha} \partial_{x}^{\beta} b(x, \xi)\right| \leq C_{\alpha, \beta}(1+|\xi|)^{m-|\alpha|}$ with $m=0$.

We assume

- corrections by the symbol b vary smoothly as a function of space and angle

Approximate the action of Ψ by curvelet-domain scaling

- fast evaluation
- possibility to estimate diagonal approximation though matching during which the diagonal is computed by solving a nonlinear least-squares estimation problem

Diagonal approximation [F.J.H et. al '08]

Lemma 1. Suppose a is in the symbol class $S_{1,0}^{0}$, then, with C^{\prime} some constant, the following holds

$$
\left\|\left(\Psi(x, D)-a\left(x_{\nu}, \xi_{\nu}\right)\right) \varphi_{\nu}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C^{\prime} 2^{-|\nu| / 2}
$$

To approximate Ψ, we define the sequence $\mathbf{u}:=\left(u_{\mu}\right)_{\mu \in \mathcal{M}}=a\left(x_{\mu}, \xi_{\mu}\right)$. Let \mathbf{D}_{Ψ} be the diagonal matrix with entries given by \mathbf{u}. Next we state our result on the approximation of Ψ by $C^{T} \mathbf{D}_{\Psi} C$.

Theorem 1. The following estimate for the error holds

$$
\left\|\left(\Psi(x, D)-C^{T} \mathbf{D}_{\Psi} C\right) \varphi_{\mu}\right\|_{L^{2}\left(\mathbb{R}^{n}\right)} \leq C^{\prime \prime} 2^{-|\mu| / 2}
$$

where $C^{\prime \prime}$ is a constant depending on Ψ.

Curvelet's parametrization

Tiling the ξ space

Estimation matched filter

After discretization action of Ψ can be approximated by

$$
\mathbf{f} \approx \mathbf{B g} \text { with } \mathbf{B} \approx \mathbf{C}^{H} \operatorname{diag}(\mathbf{b}) \mathbf{C}, \quad\{b\}_{\mu \in \mathcal{M}} \geq 0
$$

Given \mathbf{f} and \mathbf{g}, the diagonal \mathbf{b} can be estimated with a global nonlinear least-squares estimation procedure [Symes '08, F.J.H et. al. '08]

$$
\tilde{\mathbf{z}}=\arg \min _{\mathbf{Z}} \frac{1}{2}\left\|\mathbf{f}-\mathbf{C}^{T} \operatorname{diag}(\mathbf{C g}) e^{\mathbf{Z}}\right\|_{2}^{2}+\gamma\left\|\mathbf{L}_{\mathcal{C}} e^{\mathbf{Z}}\right\|_{2}^{2}
$$

- $\mathbf{L}_{\mathcal{C}}$ curvelet-domain sharpening operator that promotes phase-space smoothness
- guarantees the solution to be positive
- handles conflicting dips by using non-separable curvelets

$$
\tilde{\mathbf{f}}_{\text {matched }}=\mathbf{B g} \text { with } \mathbf{B}=\mathbf{C}^{*} \operatorname{diag}\left(e^{\tilde{\mathbf{z}}}\right) \mathbf{C}
$$

Estimation matched filter

Solve the system

$$
\left[\begin{array}{l}
\mathbf{f} \\
\mathbf{0}
\end{array}\right] \approx\left[\begin{array}{c}
\mathbf{C}^{T} \operatorname{diag}\{\mathbf{C g}\} \\
\gamma \mathbf{L}_{\mathcal{C}}
\end{array}\right] e^{\mathbf{z}}
$$

or

$$
\mathbf{y} \approx \mathcal{F}_{\gamma}[\mathbf{z}]
$$

Minimize with limited-memory BFGS [Nocedal '89]

$$
J(\mathbf{z})=\frac{1}{2}\left\|\mathbf{y}-\mathcal{F}_{\gamma}[\mathbf{z}]\right\|_{2}^{2}
$$

with the gradient [Vogel '02]

$$
\operatorname{grad} J(\mathbf{z})=\operatorname{diag}\left\{e^{\mathbf{z}}\right\}\left[\mathbf{F}_{\gamma}^{T}\left(\mathbf{F}_{\gamma} e^{\mathbf{Z}}-\mathbf{y}\right)\right]
$$

Phase-space regularization

Curvelet-domain sharpening operator

$$
\mathbf{L}_{\mathcal{C}}=\left[\begin{array}{lll}
\mathbf{D}_{1}^{T} & \mathbf{D}_{2}^{T} & \mathbf{D}_{\theta}^{T}
\end{array}\right]^{T}
$$

- First-order differences in space and angle directions for each scale
- Regularization parameter controls phase-space smoothness
- Limits overfitting
- Assures positivity with nonlinear least-squares ...

Phase-space regularization

Phase-space regularization

Phase-space regularization

Phase-space regularization

Example

Exact PDO: $\cos ^{2}(\theta)$

Application of pseudodifferential operator

Estimation of the diagonal

Diagonal approximation

Comparison of exact application of PsDO with estimation of PsDO by diagonal weighting in curvelet domain.

Application I: migrationamplitude recovery \& preconditioning

Herrmann, F. J., Moghaddam, P. and Stolk, C.
Sparsity- and continuity-promoting seismic image recovery with curvelet frames. App. \& Comp. Harm. Analys., Vol. 24, No. 2, pp. 150-173, 2008.

Amplitude recovery by scaling and sparsity promotion

Herrmann, F. J., Moghaddam, P. and Stolk, C.
Sparsity- and continuity-promoting seismic image recovery with curvelet frames. App. \& Comp. Harm. Analys., Vol. 24, No. 2, pp. 150-173, 2008.

Normal equations

Forward model after linearization (Born app.) \& noise:

$$
\delta d\left(x_{s}, x_{r}, t\right)=(K[\bar{m}] \delta m)\left(x_{s}, x_{r}, t\right)+n\left(x_{s}, x_{r}, t\right)
$$

with

$$
\begin{aligned}
\delta d & =d-\mathcal{F}[m] \\
m & =\bar{m}+\delta m \\
\bar{m} & =\text { smooth }
\end{aligned}
$$

Normal equation after migration \& high-frequency limit

$$
\begin{aligned}
\left(K^{T} d\right)(x) & =\left(K^{T} K \delta m\right)(x)+\left(K^{T} n\right)(x) \\
y(x) & =(\mathbf{\Psi} \delta m)(x)+e(x)
\end{aligned}
$$

where Ψ can be modeled by a $\Psi D O$.

Normal equations Cont'd [Stolk '02, ten Kroode '97, de Hoop '00, '03]

Migrated image contains imprint of normal/Hessian operator.
Least-squares migration

$$
\delta m_{L S}=K^{\dagger} \delta d=\arg \min _{\delta m} \frac{1}{2}\|\delta d-K \delta m\|_{2}^{2}
$$

based on Lanczos (e.g. Isqr) methods may be computationally prohibitive.
In high-frequency limit Ψ is a PsDO (for d=2), i.e.,

$$
(\Psi f)(x)=\int_{\mathbb{R}^{d}} e^{-i x \cdot \xi} a(x, \xi) \hat{f}(\xi) \mathrm{d} \xi
$$

- correct background velocity model
- pseudolocal
- singularities are preserved

Corresponds to a spatially-varying dip filter.
Can be approximated using diagonal scaling methods [Symes '08, FJH '08].

Invariance

- curvelets remain invariant (for angles in the range Ψ)
- approximation improves for higher frequencies

Approximate forward model

Make modeling operator zero order by the following transformations:

$$
\begin{aligned}
K & \mapsto K(-\Delta)^{-1 / 2} & & K \mapsto \partial_{|t|}^{-1 / 2} K=\mathcal{F}^{*}|\omega|^{-1 / 2} \mathcal{F} K \\
m & \mapsto(-\Delta)^{1 / 2} m & & \left((-\Delta)^{\alpha} f\right)^{\wedge}(\xi)=|\xi|^{2 \alpha} \cdot \hat{f}(\xi) .
\end{aligned}
$$

Use the decomposition

$$
\begin{aligned}
\left(\Psi \varphi_{\mu}\right)(x) & \simeq\left(C^{T} \mathbf{D}_{\Psi} C \varphi_{\mu}\right)(x) \\
& =\left(A A^{T} \varphi_{\mu}\right)(x)
\end{aligned}
$$

with $A:=\sqrt{\mathbf{D}_{\Psi}} C$ and $A^{T}:=C^{T} \sqrt{\mathbf{D}_{\Psi}}$.
to define the following approximate forward model:

$$
\begin{aligned}
y(x) & =(\Psi \delta m)(x)+e(x) \\
& \approx\left(A A^{*} \delta m\right)(x)+e(x) \\
& =A \mathbf{x}_{0}+e
\end{aligned}
$$

Amplitude-recovery by sparsity promotion

Forward model:

$$
\mathbf{y}=\mathbf{A} \mathbf{x}_{0}+\boldsymbol{\epsilon}
$$

Sparsity-promoting program:
$\mathbf{P}_{\sigma}:\left\{\begin{array}{l}\tilde{\mathbf{x}}=\arg \min _{\mathbf{X}}\|\mathbf{x}\|_{\ell_{1}} \quad \text { subject to }\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2} \leq \sigma \\ \tilde{\mathbf{m}}=\left(\mathbf{A}^{*}\right)^{\dagger} \tilde{\mathbf{x}}\end{array}\right.$

Solve with iterative thresholding.

Work flow

Select a reference vector that is close to the unknown image

- migrated image after spherical spreading correction

Form the normal operator by compounding discretized linearized modeling \& migration operators $\mathbf{K}^{*} \mathbf{K}$ and apply.

Estimate the diagonal (i.e., \mathbf{D}_{μ}).
Construct the matrix $\mathbf{A}=\mathbf{C}^{*} \sqrt{\mathbf{D}_{\mu}}$.

Invert A with a sparsity \& continuity promotion program

- exploit curvelet-domain sparsity
- remove artifacts

Example

- SEGAA' data:
- "broad-band" half-integrated wavelet [5-60 Hz]
- 324 shots, 176 receivers, shot interval of 48 m , yielding a maximal offset of 4224 m
- 5 s of data
- Modeling operator
- Reverse-time migration with optimal check pointing (Symes '07)
- 8000 time steps
- linearized modeling 64, and migration 294 minutes on 68 CPU's
- Estimation of the scaling requires 1 extra migration-demigration.

SEG AA' Salt Model

Smoothed SEG AA' Salt Model

smoothed velocity model
$1000 \begin{array}{llllllll}1500 & 2000 & 2500 & 3000 & 3500 & 4000 & 4500 & 5000\end{array}$

Bandpass-filtered SEG AA' Salt Model

bandpass-filtered reflectivity

Migrated image

migrated image

Depth-corrected image $=$ reference image

Remigrated reference image

imaged reference vector

Approximated remigrated reference vector

Seismic Laboratory for Imaging and Modeling

Migrated image

migrated image

Amplitude-recovery by sparsity promotion

Forward model:

$$
\mathbf{y}=\mathbf{A} \mathbf{x}_{0}+\boldsymbol{\epsilon}
$$

Sparsity-promoting program:
$\mathbf{P}_{\sigma}:\left\{\begin{array}{l}\tilde{\mathbf{x}}=\arg \min _{\mathbf{X}}\|\mathbf{x}\|_{\ell_{1}} \quad \text { subject to }\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2} \leq \sigma \\ \tilde{\mathbf{m}}=\left(\mathbf{A}^{*}\right)^{\dagger} \tilde{\mathbf{x}}\end{array}\right.$

Solve with iterative thresholding.

Amplitude recovery by sparsity promotion

Anisotropic diffusion [Black et. al '98, Fehmers et. al. '03 and Shertzer '03]

Remove spurious artifacts by continuity promotion by minimizing

$$
\mathbf{P}_{\sigma}:\left\{\begin{array}{l}
\tilde{\mathbf{x}}=\arg \min _{\mathbf{x}} J(\mathbf{x}) \quad \text { subject to } \quad\|\mathbf{y}-\mathbf{A} \mathbf{x}\|_{2} \leq \sigma \\
\tilde{\mathbf{m}}=\left(\mathbf{A}^{*}\right)^{\dagger} \tilde{\mathbf{x}}
\end{array}\right.
$$ with

$$
J(\mathbf{x})=\overbrace{\alpha\|\mathbf{x}\|_{1}}^{\text {sparsity }}+\beta \underbrace{\left\|\mathbf{\Lambda}^{1 / 2}\left(\mathbf{A}^{H}\right)^{\dagger} \mathbf{x}\right\|_{2}}_{\text {continuity }} .
$$

$$
\boldsymbol{\Lambda}[\mathbf{r}]=\frac{1}{\|\nabla \mathbf{r}\|_{2}^{2}+2 v}\left\{\binom{+\mathbf{D}_{2} \mathbf{r}}{-\mathbf{D}_{1} \mathbf{r}}\left(\begin{array}{cc}
\text { continuity } \\
+\mathbf{D}_{2} \mathbf{r} & -\mathbf{D}_{1} \mathbf{r}
\end{array}\right)+v \mathbf{I} \mathbf{d}\right\}
$$

Algorithm

Result: Estimate for \mathbf{x}

1 initialization;

$$
2 m \leftarrow 0 ; \mathbf{x}^{0} \leftarrow \mathbf{0} ; \mathbf{y} \leftarrow \mathbf{K}^{T} \mathbf{d}
$$

$\mathbf{3}$ Set M, L, and $\left\|\mathbf{A}^{T} \mathbf{y}\right\|_{\infty}>\lambda_{1}>\lambda_{2}>\cdots$;
4 while $\|\mathbf{y}-\mathbf{A} \tilde{\mathbf{x}}\|_{2}>\epsilon$ and $m<M$ do

$\mathbf{5}$	$m=m+1 ; \mathbf{x}^{m}=\mathbf{x}^{m-1} ;$
$\mathbf{6}$	for $l=1$ to L do

$7 \quad$ Iterative thresholding;
$\mathbf{x}^{m} \leftarrow S_{\lambda_{m}}\left(\mathbf{x}^{m}+\mathbf{A}^{T}\left(\mathbf{y}-\mathbf{x}^{m}\right)\right)$
end
Anisotropic descent update;

$$
\mathbf{x}^{m}=\mathbf{x}^{m}-\beta \nabla_{\mathbf{x}^{m}} J_{c}\left(\mathbf{x}^{m}\right) \text { width }
$$

$$
\nabla_{\mathbf{x}} J_{c}\left(\mathbf{x}^{m}\right)=2 \mathbf{A}^{\dagger} \boldsymbol{\nabla} \cdot\left(\boldsymbol{\Lambda} \boldsymbol{\nabla}\left(\left(\mathbf{A}^{T}\right)^{\dagger} \mathbf{x}^{m}\right)\right)
$$

12 end
$13 \tilde{\mathbf{x}} \leftarrow \mathbf{x}_{m}$;
$14 \tilde{\mathbf{m}}=\left(\mathbf{A}^{*}\right)^{\dagger} \tilde{\mathbf{x}}$.

Gradient of the reference vector

Amplitude recovery by sparsity promotion

Recovery by sparsity \& continuity promotion

Curvelet-based migration preconditioning and scaling

Felix J. Herrmann, Cody R. Brown, Yogi A. Erlangga, Peyman P. Moghaddam. Curvelet-based migration preconditioning and scaling. Geophysics, 74, pp. A41, 2009.

Our Problem

- Inverting this is not so trivial because of the size:

$$
\widetilde{\mathbf{x}}_{L S}=\underset{\mathbf{x}}{\arg \min } \frac{1}{2}\|\mathbf{b}-\mathbf{A} \mathbf{x}\|_{2}^{2}
$$

- We want to condition this as well as possible.
- With accurate background velocity the normal operator is near unitary
- iterative solution is known to converge.
- sheer size of the problem however makes this a very time consuming problem.
- A reduction in the number of iterations will be necessary!

Our Solution

- We propose to do this by replacing our initial system with a series of preconditioning levels:

$$
\mathbf{M}_{L}^{-1} \mathbf{A} \mathbf{M}_{R}^{-1} \mathbf{u} \approx \mathbf{M}_{L}^{-1} \mathbf{b}, \quad \mathbf{x}:=\mathbf{M}_{R}^{-1} \mathbf{u}
$$

- This involves a series of right and left preconditioning matrices.
- matrix free
- The cost for applying these preconditioners correspond to a matrix-free matrix-vector multiplies with a complexity of at most $\mathcal{O}(n \log n)$ opposed to a cost of for the evaluation of the normal operator, which is $\mathcal{O}\left(n^{4}\right)$ in dimension two.

Levels of Preconditioning

- In data space, we apply a multiplication in the temporal Fourier domain.
- This can be thought as a left preconditioning through fractional integration:

$$
\mathbf{M}_{L}^{-1}:=\partial_{|t|}^{-1 / 2} \cdot=\mathcal{F}^{*}|\omega|^{-1 / 2} \mathcal{F}
$$

- Makes the normal operator zero order.
- normal operators will act as a zero-order pseudo-differential operator
- approximated by curvelet-domain scaling

Levels of Preconditioning

- Right preconditioning by scaling in the physical domain:

$$
\mathbf{M}_{R}^{-1}=\mathbf{D}_{z}:=\operatorname{diag}(\mathbf{z})^{\frac{1}{2}}
$$

- Reflected waves travel from the source at the surface down to the reflector and back.
- This gives a quadratic depth dependence.

Levels of Preconditioning

- Right preconditioning by scaling in the curvelet domain:

$$
\begin{aligned}
& \Psi \mathbf{r} \approx \mathbf{C}^{*} \mathbf{D}_{\Psi}^{2} \mathbf{C r}, \quad \mathbf{D}_{\Psi}^{2}:=\operatorname{diag}\left(e^{2 \widetilde{\mathbf{z}}}\right) \\
& \mathbf{M}_{R}^{-1}=\mathbf{D}_{z} \mathbf{C}^{*} \mathbf{D}_{\Psi}^{-1}
\end{aligned}
$$

- Estimation of the diagonal in the curvelet domain, i.e.,

$$
\tilde{\mathbf{z}}=\arg \min _{\mathbf{Z}} \frac{1}{2}\left\|\Psi \mathbf{r}-\mathbf{C}^{T} \operatorname{diag}(\mathbf{C r}) e^{2 \mathbf{Z}}\right\|_{2}^{2}+\gamma\left\|\mathbf{L}_{\mathcal{C}} e^{2 \mathbf{Z}}\right\|_{2}^{2}
$$

- solved with I-BFGS [Nocedal ‘95]
- The cost to compute this diagonal is one migration and one remigration.
- This is equivalent to one iteration of LSQR.
- "True-amplitude" correction.

SEG AA' Model w/ Smooth Velocity

- SEG AA' salt model.
- 324 shots.
- Each shot 176 traces of 6.4 s with a trace interval of 24 m .
- Maximum offset of the data is 4224 m .

SEG AA' Model w/ Smooth Velocity

No Preconditioning

SEG AA' Model w/ Smooth Velocity

Level III

SEG AA' Model w/ Smooth Velocity

Level III

SEG AA' Model w/ Smooth Velocity - LSQR Results

LSQR 10 iterations - No Preconditioning

SEG AA' Model w/ Smooth Velocity - LSQR Results

LSQR 10 iterations - Level III

SEG AA' Model w/ Smooth Velocity

- Signal-to-Noise Ratio (SNR) to original reflectivity.
- Defined as follows, with L2 values normalized to one:

$$
S N R=20 \log \left\|\mathbf{x}_{s}\right\|_{2} /\left\|\mathbf{x}_{n}-\mathbf{x}_{s}\right\|_{2}
$$

	One iteration SNR	LSQR results* SNR
No Preconditioning	-1.9803	-0.9939
Level I	-1.4147	0.3312
Level II	0.4030	3.2690
Level III	1.3122	3.3230

*LSQR to 10 iterations

SEG AA' Model w/ Smooth Velocity

- Residual decay for the data-space and model-space residuals.
- Even after our first few iterations of level III preconditioning, we quickly improve upon the other levels in each figure.
- The red line has already seen one migration-remigration due to the curvelet diagonal estimation process.

Application II: primary-multiple separation

Herrmann, F. J., Wang, D and Verschuur, D. J. Adaptive curvelet-domain primary-multiple separation. Geophysics, Vol 73, No. 3, pp. A17-A21, 2008.

Motivation

- Transform-domain matched-filtering forms the basis of
- adaptive subtraction during surface-related multiple elimination [Verschuur ‘97]
- idem during surface-wave removal with interferometry [Vasconcelos '08, Wapenaar '08]
- scaling during migration "preconditioning" based on migrated-remigrated image matching [Symes '08,F.J.H. et. al, '08]
- Fourier-based matching
- accounts for amplitude-spectra mismatches \& global kinematic errors
- fails for errors that vary spatially \& as function of the local dip
- Spatial \& windowed Fourier matching
- run risk of over fitting (loss of primary energy)
- Curvelet-domain matching in phase space
- corrects for amplitude errors that vary smoothly as a function of position \& dip

History

- Fourier-based matched filtering was built on the premise that

$$
\mathbf{m}_{\text {true }} \approx \mathbf{F} \mathbf{m}_{\text {predicted }} \text { with } \mathbf{F}=\mathcal{F}^{H} \operatorname{diag}(\hat{\mathbf{f}}) \mathcal{F}
$$

- Estimated during a global least-squares estimation procedure

$$
\hat{\mathbf{f}}=\arg \min _{\hat{\mathbf{g}}} \frac{1}{2}\left\|\hat{\mathbf{d}}-\hat{\mathbf{g}} \hat{\mathbf{m}}_{\text {predicted }}\right\|_{2}^{2}+\lambda\left\|\mathbf{L}_{\mathcal{F}} \hat{\mathbf{g}}\right\|_{2}^{2}
$$

_ $\mathbf{L}_{\mathcal{F}}$ Fourier-space sharpening operator that promotes smoothness

- for each offset separately
- Estimated primaries:

$$
\tilde{\mathbf{p}}=\mathbf{d}-\mathbf{F} \mathbf{m}_{\text {predicted }}
$$

Workflow

input data

conservative

 Fourier matching

$$
\mathbf{m}_{\text {predicted }}(\text { multi-D convolution) }
$$

$$
\mathbf{m}_{0}=\mathbf{F} \mathbf{m}_{\text {predicted }} \text { with } \mathbf{F}=\mathcal{F}^{H} \operatorname{diag}(\hat{\mathbf{f}}) \mathcal{F}
$$

$$
\mathbf{b}_{2}=\mathbf{B m}_{0}
$$

$$
\text { with } \mathbf{B}=\mathbf{C}^{T} \operatorname{diag}\left(e^{\mathbf{z}}\right) \mathbf{C m}_{0}
$$

$$
\approx \mathcal{F}^{H} b(x, k) \mathcal{F} \mathbf{m}_{0}
$$

Bayesian
 separation

$$
\mathbf{P}_{\mathbf{w}}: \quad\left\{\begin{array}{l}
\tilde{\mathbf{x}}=\arg \min _{\mathbf{x}} \lambda_{1}\left\|\mathbf{x}_{1}\right\|_{1, \mathbf{w}_{1}}+\lambda_{2}\left\|\mathbf{x}_{2}\right\|_{1, \mathbf{w}_{2}}+ \\
\left\|\mathbf{A} \mathbf{x}_{2}-\mathbf{b}_{2}\right\|_{2}^{2}+\eta\left\|\mathbf{A}\left(\mathbf{x}_{1}+\mathbf{x}_{2}\right)-\mathbf{b}\right\|_{2}^{2}
\end{array}\right.
$$

Synthetic-data example

PIMS Summer School
Seattle, August 10-14, 2009

Synthetic-data example

Velocity model used in the synthetic data examples

Synthetic-data example

Synthetic-data example

SRME primaries

'ground-truth' primaries

Synthetic-data example

Synthetic-data example

Synthetic-data example

SRME primaries

'ground-truth' primaries

Synthetic-data example

Over matched multiples

Correctly matched multiples

Synthetic-data example

[^0]
SNRs

- Comparison with "ground truth"

$$
\begin{array}{ll}
\text { SRME } & 9.82
\end{array}
$$

$$
\text { Bayesian } \quad 7.25
$$

separation

Curvele- 11.22
domain
matching \&
Bayesuan

PIMS Summer School
Seattle, August 10-14, 2009

Real-data example

Recent developments

Frequency domain smoothness

- It can be shown as in [Symes, Demanet] that symbol is also smooth in frequency variable"

$$
\hat{a}(\eta, \zeta)=\sum_{\alpha, \beta} a_{\alpha, \beta} g_{\beta}(\zeta)
$$

- Here $g_{\beta}(\zeta)$ is a smooth spline function, and thus the Fourier transform of the symbol with respect to the spatial variable is smooth in the frequency variable
- This fact can be leveraged in the curvelet matching problem by adding an extra term promoting smoothness in frequency of the spatial Fourier transform of the PsDO symbol.

Frequency domain smoothness regularization

- Solve the following optimization problem:
$\underset{\mathbf{z}}{\arg \min } \frac{1}{2}\left\|\mathbf{C}^{\mathbf{T}} \operatorname{diag}(\mathbf{C f}) e^{\mathbf{z}}-\mathbf{g}\right\|_{2}^{2}+\frac{\lambda^{2}}{2}\left\|\mathbf{L} e^{\mathbf{z}}\right\|_{2}^{2}+\frac{\mu^{2}}{2}\left\|\mathbf{M}_{\zeta} \mathbf{R} \mathbf{F}_{\mathbf{x}} e^{\mathbf{z}}\right\|_{2}^{2}$.
- \mathbf{R} : Restriction operator (only keep positive frequencies, since we know the symbol is real, and so the Fourier transform will be even).
- \mathbf{M}_{ζ} : Sharpening operator in ζ (derivative with respect to angle).
- $\mathbf{F}_{\mathbf{x}}$: Fourier transform operator in \mathbf{x} (Fourier transform wedge-bywedge).

Results on Synthetic Pseudodifferential Operator

Estimated Symbol from Matched Filter (no freq. regularization, 50 iterations)

Estimated Symbol from Matched Filter (with frequency regularization, 20 iterations)

Application to Primary-Multiple Separation

Ground truth Primaries

Application to Primary-Multiple Separation

Ground truth Primaries

Ground truth Primaries

Results with and without new regularization

Matched Filtering $(\mu=0)$

Matched Filtering $(\mu=1)$

Further reading

- http://slim.eos.ubc.ca

[^0]: Seismic Laboratory for Imaging and Modeling

