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Outline
II. Curvelet-based amplitude recovery & coherent-noise removal

• curvelet-domain matched filtering
• applications:

• amplitude-recovery by scaled curvelet-domain sparsity promotion
• conditioning with curvelet-domain scaling
• primary-multiple matching

• Bayesian coherent signal separation by sparsity promotion
• application: primary-multiple separation
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Goals & challenges
Goals:
Exploit multiscale & directional transforms to conduct seismic data 
processing---i.e, use “microlocal” properties of curvelets to  

– correct migration amplitudes & precondition migration operators
– smoothly-varying corrections to coherent noise predictions (e.g., surface-related multiples)

Leverage curvelet-domain adaptivity & sparsity to
– estimate diagonal curvelet-domain corrections by matching

• migrated and remigrated images => approximation of the normal operator
• “true” and predicted multiples => matching of predicted multiples to “true multiples”

– stably correct migration amplitude errors
– separate matched coherent wavefield constituents by sparsity promotion

Challenges:
– multidimensionality of wavefronts set & existence of conflicting dips
– problem size & integration into existing workflows

• black-box imaging & multiple prediction code
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Example

Total data Single-term SRME multiples
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Example

Single-term SRME multiples matched multiples
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The forward model
Our curvelet-domain matched filtering is build on the following model:

We assume
– corrections by the symbol b vary smoothly as a function of space and angle

Approximate the action of Ψ by curvelet-domain scaling
– fast evaluation 
– possibility to estimate diagonal approximation though matching during which the 

diagonal is computed by solving a nonlinear least-squares estimation problem

g = Ψ(x,D)f

with Ψ a zero-order pseudodifferential operator (ΨDO) given by

(
Ψf

)
(x) =

∫

Rd
e−ix·ξb(x, ξ)f̂(ξ)dξ,

i.e., |∂α
ξ ∂β

x b(x, ξ)| ≤ Cα,β

(
1 + |ξ|

)m−|α| with m = 0.
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Diagonal approximation [F.J.H et. al ‘08] 

Lemma 1. Suppose a is in the symbol class S0
1,0, then, with C ′ some

constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2.

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ

be the diagonal matrix with entries given by u. Next we state our result on the
approximation of Ψ by CT DΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CT DΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2,

where C ′′ is a constant depending on Ψ.
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Tiling the ξ space

~ 2

~ 2

j

j/2

µ!

In red, the essential frequency support of a curvelet φµ.
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Curvelet’s parametrization



Seismic Laboratory for Imaging and Modeling

Estimation matched filter
After discretization action of Ψ can be approximated by 

Given f and g, the diagonal b can be estimated with a global nonlinear 
least-squares estimation procedure [Symes ’08, F.J.H et. al. ‘08]

–          curvelet-domain sharpening operator that promotes phase-space smoothness
– guarantees the solution to be positive
– handles conflicting dips by using non-separable curvelets

LC

f ≈ Bg with B ≈ CHdiag (b)C, {b}µ∈M ≥ 0

z̃ = arg minz
1
2
‖f −CT diag (Cg) ez‖2

2 + γ‖LCe
z‖2

2

f̃matched = Bg with B = C∗diag
(
ez̃

)
C
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Estimation matched filter
Solve the system

or

Minimize with limited-memory BFGS [Nocedal ‘89]

with the  gradient [Vogel ‘02]                                               

[
f
0

]
≈

[
CT diag{Cg}

γLC

]
ez

y ≈ Fγ [z]

J(z) = 1
2‖y −Fγ [z]‖2

2

gradJ(z) = diag{ez}
[
FT

γ

(
Fγez − y

)]
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Phase-space regularization
Curvelet-domain sharpening operator

– First-order differences in space and angle directions for each scale
– Regularization parameter controls phase-space smoothness
– Limits overfitting
– Assures positivity with nonlinear least-squares ...

LC =
[
DT

1 DT
2 DT

θ

]T
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Phase-space regularization

East 
quadrants

West 
quadrants

North 
quadrants

South 
quadrants

16 angles/quad

8 angles/quad

x1

x2

θ

Fine 
scales

coarser
scales

D1

D2

Dθ



Seismic Laboratory for Imaging and Modeling

Phase-space regularization
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Example
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Application of pseudodifferential operator
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Estimation of the diagonal
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Diagonal approximation

Comparison of exact application of PsDO with estimation of 
PsDO by diagonal weighting in curvelet domain.



Herrmann, F. J., Moghaddam, P. and Stolk, C. 
Sparsity- and continuity-promoting seismic image 
recovery with curvelet frames. App. & Comp. Harm. 
Analys., Vol. 24, No. 2, pp. 150-173, 2008.

PIMS Summer School
Seattle, August 10-14, 2009

Application I: migration-
amplitude recovery & 
preconditioning
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Normal equations
Forward model after linearization (Born app.) & noise:

with

Normal equation after migration & high-frequency limit

where Ψ  can be modeled by a ΨDO.

δd(xs, xr, t) =
(
K[m̄]δm

)
(xs, xr, t) + n(xs, xr, t)

(
KT d

)
(x) =

(
KT Kδm

)
(x) +

(
KT n

)
(x)

y(x) =
(
Ψδm

)
(x) + e(x)

δd = d− F [m]
m = m̄ + δm

m̄ = smooth
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Normal equations cont’d [Stolk ‘02, ten Kroode ‘97, de Hoop ‘00, ‘03]

Migrated image contains imprint of normal/Hessian operator.
Least-squares migration

based on Lanczos (e.g. lsqr) methods may be computationally prohibitive.

In high-frequency limit        is a PsDO (for d=2), i.e.,

• correct background velocity model
• pseudolocal
• singularities are preserved

Corresponds to a spatially-varying dip filter.
Can be approximated using diagonal scaling methods [Symes ’08, FJH ‘08].

δmLS = K†δd = arg min
δm

1
2
‖δd−Kδm‖2

2

Ψ
(
Ψf

)
(x) =

∫

Rd
e−ix·ξa(x, ξ)f̂(ξ)dξ



• curvelets remain invariant (for angles in the range    )

• approximation improves for higher frequencies

(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Invariance of curvelets under the discretized normal operator Ψ for a smoothly

varying background model (a so-called lens model see Fig. 4(a)). Three coarse-scale

curvelets in the physical domain before (a) and after application of the normal opera-

tor (b) in the physical (a-b) and Fourier domain (e-f). The results for three fine-scale

curvelets are plotted in (c-d) for the physical domain and in (g-h) for the Fourier domain.

Remark: The curvelets remain close to invariant under the normal operator, a statement

which becomes more accurate for finer scale which is consistent with Theorem 1. The ex-

ample also shows that this statement only holds for curvelets that are in the support of the

imaging operator excluding steeply dipping curvelets.
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Approximate forward model
Make modeling operator zero order by the following transformations:

Use the decomposition 

to define the following approximate forward model: 

leading behavior for their composition, the normal operator Ψ, corresponds to that of an

order-one invertible elliptic PsDO .

To make this PsDOamenable to an approximation by curvelets, the following sub-

stitutions are made for the scattering operator and the model: K !→ K (−∆)−1/2 and

m !→ (−∆)1/2 m with ((−∆)αf)∧(ξ) = |ξ|2α · f̂(ξ). Alternatively, these operators can be

made zero-order by composing the data side with a 1/2-order fractional integration along

the time coordinate, i.e., K !→ ∂−1/2
t K (see e.g. 3). After these substitutions, the normal

operator Ψ becomes zero-order. Remark that these subsitutions are similar to the substi-

tution made in the WVD methods, where vaguelettes are introduced according the same

mappings. Before detailing the approximate diagonalization of the normal operator, we

first discuss the properties of continuous curvelets under this operator.

APPROXIMATION OF THE NORMAL OPERATOR

In this section, a diagonal approximation of the normal operator in the curvelet domain is

presented. Invariance properties of curvelets under the normal operator (see also Fig. 2)

are used. The approximation leads to a SVD-like decomposition of the normal operator

and makes large-scale seismic image recovery amenable to optimization. To understand our

approximation, we first list the important properties of continuous curvelets. An upper

bound for the L2-error of the diagonal approximation is discussed next, followed by the

diagonal decomposition of the normal operator and a method to numerically estimate the

diagonal from discrete implementations of the normal operator. We conclude this section

by discussing the empirical performance of the approximation on a synthetic data set.
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or
with

K !→ ∂−1/2
|t| K = F∗|ω|−1/2FK

(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.

y(x) =
(
Ψδm

)
(x) + e(x)

≈
(
AA∗δm

)
(x) + e(x)

= Ax0 + e
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Amplitude-recovery by sparsity promotion
Forward model:

Sparsity-promoting program:

Solve with iterative thresholding.

y = Ax0 + ε

Pσ :






x̃ = arg minx ‖x‖"1 subject to ‖y −Ax‖2 ≤ σ

m̃ = (A∗)†x̃
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Work flow
Select a reference vector that is close to the unknown image
• migrated image after spherical spreading correction

Form the normal operator by compounding discretized 
linearized modeling & migration operators          and apply.     

Estimate the diagonal                     . 

Construct  the matrix                          .

Invert A with a sparsity & continuity promotion program
• exploit curvelet-domain sparsity
• remove artifacts 

(i.e.,Dµ)

K∗K

A = C∗√Dµ
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Example
 SEGAA’ data:

– “broad-band” half-integrated wavelet [5-60 Hz]
– 324 shots, 176 receivers, shot interval of 48 m, yielding a maximal offset of 4224 m
– 5 s of data

 Modeling operator
– Reverse-time migration with optimal check pointing (Symes ‘07)
– 8000 time steps
– linearized modeling 64, and migration 294 minutes on 68 CPU’s

 Estimation of the scaling requires 1 extra migration-demigration.
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SEG AA’ Salt Model
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Smoothed SEG AA’ Salt Model
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Bandpass-filtered SEG AA’ Salt Model
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Migrated image
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Depth-corrected image = reference image
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Remigrated reference image
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Approximated remigrated reference vector
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Migrated image
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Amplitude-recovery by sparsity promotion
Forward model:

Sparsity-promoting program:

Solve with iterative thresholding.

y = Ax0 + ε

Pσ :






x̃ = arg minx ‖x‖"1 subject to ‖y −Ax‖2 ≤ σ

m̃ = (A∗)†x̃
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Amplitude recovery by sparsity promotion
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Anisotropic diffusion [Black et. al ’98, Fehmers et. al. ’03 and Shertzer ‘03]

Remove spurious artifacts by continuity promotion by minimizing

with

and the anisotropic diffusion term

The anisotropic-diffusion penalty term (see e.g. 24) is given by

Jc(m) = ‖Λ1/2∇m‖22 (28)

with ∇ the discretized gradient matrix defined as ∇ =
[
DT

1 DT
2

]T . The block-diagonal

matrix Λ is location dependent (see Fig. 10, which plots the gradients) and rotates the

gradient towards the tangents of the reflecting surfaces. This rotation matrix is given by

Λ[r] =
1

‖∇r‖22 + 2υ









+D2r

−D1r





(
+D2r −D1r

)
+ υId





(29)

with Di the discretized derivative in the ith coordinate direction and υ a parameter that

controls the fluctuations for regions where the gradient is small. Following (3), this control

parameter is set proportional to the median of |∇r| with | | the length of each gradient

vector (white arrows in Fig. 10). Similar to the diagonal approximation, a reference vector

derived from the migrated image (cf. Eq. 24) is used to calculate the tangential directions

of the reflecting surfaces.

By combining the two different penalty terms that promote sparsity and continuity, we

finally arrive at our approximate formulation for the seismic-amplitude recovery problem

Pε :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ =
(
AT

)† x

(30)

in which the composite penalty term J(x) is given by

J(x) = αJs(x) + βJc(x), (31)

with α, β ≥ 0 and α + β = 1. The Js(x) = ‖x‖1 is the %1-norm. The second term in the

penalty term is given by Jc(x) = ‖Λ1/2∇
(
AT

)† x‖22. Because the optimization is carried

out over x and not over the model vector m, this expression includes a pseudo-inverse that

is calculated with a few iterations of the LSQR algorithm (35).

26

Pσ :






x̃ = arg minx J(x) subject to ‖y −Ax‖2 ≤ σ

m̃ = (A∗)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖2

︸ ︷︷ ︸
continuity

.
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Algorithm
Result: Estimate for x
initialization;1

m ← 0; x0 ← 0; y ← KT d;2

Set M , L, and ‖AT y‖∞ > λ1 > λ2 > · · · ;3

while ‖y −Ax̃‖2 > ε and m < M do4

m = m + 1; xm = xm−1;5

for l = 1 to L do6

Iterative thresholding;7

xm ← Sλm

(
xm + AT (y − xm)

)
8

end9

Anisotropic descent update;10

xm = xm − β∇xm Jc(xm) width11

∇xJc(xm) = 2A†∇ ·
(
Λ∇

((
AT

)†
xm

))
;

end12

x̃← xm;13

m̃ = (A∗)† x̃.14
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Amplitude recovery by sparsity promotion
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Recovery by sparsity & continuity promotion
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Our Problem

 Inverting this is not so trivial because of the size:

 We want to condition this as well as possible.

 With accurate background velocity the normal operator is near 
unitary

– iterative solution is known to converge.
– sheer size of the problem however makes this a very time consuming problem.

 A reduction in the number of iterations will be necessary!

[Paige and Saunders, 1982]

x̃LS = arg min
x

1
2
‖b−Ax‖2

2
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Our Solution

 We propose to do this by replacing our initial system with a 
series of preconditioning levels:

 This involves a series of right and left preconditioning matrices.
– matrix free

 The cost for applying these preconditioners correspond to a 
matrix-free matrix-vector multiplies with a complexity of at most                                        
                     opposed to a cost of for the evaluation of the 
normal operator, which is              in dimension two. 

M−1
L AM−1

R u ≈M−1
L b, x := M−1

R u

O(n log n)
O(n4)
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Levels of Preconditioning

 In data space, we apply a multiplication in the temporal Fourier 
domain. 

 This can be thought as a left preconditioning through fractional 
integration:

 Makes the normal operator zero order.
– normal operators will act as a zero-order pseudo-differential operator
– approximated by curvelet-domain scaling

L2 L3L1L1

M−1
L := ∂−1/2

|t| · = F∗|ω|−1/2F·
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Levels of Preconditioning

 Right preconditioning by scaling in the physical domain:

 Reflected waves travel from the source at the surface down to 
the reflector and back.

 This gives a quadratic depth dependence.

L2 L3L1 L2

M−1
R = Dz := diag

(
z
) 1

2
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L3L3Levels of Preconditioning

 Right preconditioning by scaling in the curvelet domain:

 Estimation of the diagonal in the curvelet domain, i.e.,

– solved with l-BFGS [Nocedal ‘95]

 The cost to compute this diagonal is one migration and one 
remigration.

– This is equivalent to one iteration of LSQR.

 “True-amplitude” correction.

L2L1

[Herrmann et al., 2008]

M−1
R = DzC∗D−1

Ψ

z̃ = arg minz
1
2
‖Ψr−CT diag (Cr) e2z‖2

2 + γ‖LCe
2z‖2

2

Ψr ≈ C∗D2
ΨCr, D2

Ψ := diag
(
e2ez)



SEG AA’ Model w/ Smooth Velocity

 SEG AA’ salt model.

 324 shots.

 Each shot 176 traces of 
6.4s with a trace interval of 
24m.

 Maximum offset of the data 
is 4224m.



SEG AA’ Model w/ Smooth Velocity

No Preconditioning



SEG AA’ Model w/ Smooth Velocity

Level III



SEG AA’ Model w/ Smooth Velocity

Level III



SEG AA’ Model w/ Smooth Velocity - LSQR Results

LSQR 10 iterations - No Preconditioning



SEG AA’ Model w/ Smooth Velocity - LSQR Results

LSQR 10 iterations - Level III



SEG AA’ Model w/ Smooth Velocity

 Signal-to-Noise Ratio (SNR) to original reflectivity.

 Defined as follows, with L2 values normalized to one:

One iteration
SNR

LSQR results*
SNR

No Preconditioning -1.9803 -0.9939

Level I -1.4147 0.3312

Level II 0.4030 3.2690

Level III 1.3122 3.3230

*LSQR to 10 iterations

SNR = 20 log ‖xs‖2/‖xn − xs‖2



SEG AA’ Model w/ Smooth Velocity

 Residual decay for the data-space and model-space residuals.
 Even after our first few iterations of level III preconditioning, we 

quickly improve upon the other levels in each figure.

 The red line has already seen one migration-remigration due 
to the curvelet diagonal estimation process.

[De Roeck, 2002]
µk = 20 log ‖Auk − b‖2/‖b‖2 νk = 20 log ‖A∗(Auk − b

)
‖2/‖A∗b‖2



Herrmann, F. J., Wang, D and Verschuur, D. J. 
Adaptive curvelet-domain primary-multiple 
separation. Geophysics, Vol 73, No. 3, pp. A17-A21, 
2008.
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Application II: primary-multiple 
separation
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Motivation
 Transform-domain matched-filtering forms the basis of

– adaptive subtraction during surface-related multiple elimination [Verschuur ‘97]
– idem during surface-wave removal with interferometry [Vasconcelos ’08, 

Wapenaar ‘08]
– scaling during migration “preconditioning” based on migrated-remigrated image 

matching [Symes ’08,F.J.H. et. al, ‘08]

 Fourier-based matching
– accounts for amplitude-spectra mismatches & global kinematic errors
– fails for errors that vary spatially & as function of the local dip

 Spatial & windowed Fourier matching 
– run risk of over fitting (loss of primary energy)

 Curvelet-domain matching in phase space
– corrects for amplitude errors that vary smoothly as a function of position & dip



Seismic Laboratory for Imaging and Modeling

History
 Fourier-based matched filtering was built on the premise that 

 Estimated during a global least-squares estimation procedure

–          Fourier-space sharpening operator that promotes smoothness
– for each offset separately

 Estimated primaries:

mtrue ≈ Fmpredicted with F = FHdiag
(
f̂
)
F

f̂ = arg min
ĝ

1
2
‖d̂− ĝm̂predicted‖2

2 + λ‖LF ĝ‖2
2

LF

p̃ = d− Fmpredicted



Seismic Laboratory for Imaging and Modeling

Workflow

input data

conservative 
Fourier matching

curvelet-domain 
matching

Bayesian 
separation

m0 = Fmpredicted with F = FHdiag
(
f̂
)
F

with B = CT diag
(
ez

)
Cm0

≈ FHb(x, k)Fm0

Pw :






x̃ = arg minx λ1‖x1‖1,w1 + λ2‖x2‖1,w2+
‖Ax2 − b2‖2

2 + η‖A(x1 + x2)− b‖2
2

s̃1 = Ax̃1 and s̃2 = Ax̃2.

b2 = Bm0

mpredicted (multi-D convolution)
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Synthetic-data example
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Data are modeled in a fixed-spread configuration, with sources and
receivers positioned between x = 0 and x = 5400 m, with a step size
of 15 m. This results in a prestack data set of 361 ! 361 traces. For
this example, the data matrix P is far from Toeplitz !see Figure
A-2b"; hence, the least-squares inverse of "P was computed with the
aid of equations 8b and 8c. Note that each column of matrix "P rep-

resents one frequency component of a shot record with 361 traces.
To make the example more realistic, the band-limited version of a
measured air-gun signature with a visible bubble was used for the
source wavelet !see Figure 9". This information is contained in the
source matrix S. Figure 10 displays three shot records. The source
locations are at x = 750 m, x = 1500 m, and x = 2250 m, respec-
tively, the 2250-m value being located close to the top of the salt

Figure 6. Multiple removal for the data in Figure 4a. !a" Input data
with multiples. !b" Focal transform of input data, using the primary
estimate of SRME1. !c" SRME2 output in the focal domain by adap-
tive subtraction in x–t. !d" Input data in #− p. !e" Focal transform of
input data in the #− p domain. !e" SRME2 output in the focal domain
by adaptive subtraction in #− p.

Figure 7. Multiple removal for the data in Figure 4a. !a" Modeled pri-
maries. !b" Primaries obtained using three iterations of SRME1
+ SRME2. !c" Difference between !a" and !b". Note the very small
subtraction leakage compared to Figure 5f.

Figure 8. Subsurface model that contains a high-velocity salt layer
that overlies the target area with a fault structure.

Figure 9. Band-limited version of a measured air-gun signature that
was used in the data simulation. !a" Time-domain representation. !b"
Amplitude spectrum.

Figure 10. Three shot records — including all types of multiples —
that were modeled in the subsurface model of Figure 8 and using the
air-gun wavelet of Figure 9. Note the artificial reflection that comes
from the bubble !see the arrows".

SI214 Berkhout and Verschuur

Velocity model used in the synthetic data examples

Synthetic-data example
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Total data Single-term SRME multiples

Synthetic-data example
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SRME primaries ‘ground-truth’ primaries

Synthetic-data example
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No matching Bayesian

Synthetic-data example

‘ground-truth’ primaries
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Matched + Bayesian

Synthetic-data example

‘ground-truth’ primaries
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SRME primaries

Synthetic-data example

‘ground-truth’ primaries
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Over matched multiples Correctly matched multiples

Synthetic-data example
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Difference between SRME and 
curvelet matching 

Estimate for the primaries with 
over matched multiples

Synthetic-data example
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SNRs
 Comparison with “ground truth”

SRME 9.82

Bayesian
separation

7.25

Curvele-
domain 
matching & 
Bayesuan

11.22
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Real-data example



Seismic Laboratory for Imaging and Modeling

Total data Predicted multiples

Real-data example
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SRME primaries Predicted multiples

Real-data example
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Not scaled Bayesian Predicted multiples

Real-data example
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Difference between SRME and 
scaled Bayesian 

Scaled Bayesian

Real-data example
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SRME primaries Scaled + Bayesian

Real-data example
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Predicted multiplesData

Real-data example
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Recent developments
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Frequency domain smoothness
 It can be shown as in [Symes, Demanet] that symbol is also 

smooth in frequency variable”

 Here            is a smooth spline function, and thus the Fourier 
transform of the symbol with respect to the spatial variable    is 
smooth in the frequency variable   .

 This fact can be leveraged in the curvelet matching problem by 
adding an extra term promoting smoothness in frequency of the 
spatial Fourier transform of the PsDO symbol.  

gβ(ζ) x
ζ

â(η, ζ) =
∑

α,β

aα,βgβ(ζ)
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Frequency domain smoothness regularization
 Solve the following optimization problem:

     : Restriction operator (only keep positive frequencies, since we                     
know the symbol is real, and so the Fourier transform will be even).

       :  Sharpening operator in    (derivative with respect to angle).
      :  Fourier transform operator in    (Fourier transform wedge-by-

wedge).

argmin
z

1
2

||CTdiag(Cf)ez − g||22 +
λ2

2
||Lez||22 +

µ2

2
||MζRFxez||22.

R

Mζ ζ
Fx x
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Results on Synthetic Pseudodifferential Operator

Estimated Symbol from
Matched Filter (no freq. 
regularization, 50 iterations)

Estimated Symbol from
Matched Filter (with frequency
regularization, 20 iterations)
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Application to Primary-Multiple Separation

Total DataText Ground truth PrimariesText
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Application to Primary-Multiple Separation

Ground truth PrimariesTextGround truth PrimariesText
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Results with and without new regularization

Matched Filtering (   =0)Textµ Matched Filtering (   =1) Textµ
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Further reading
 http://slim.eos.ubc.ca

http://dsp.rice.edu/cs
http://dsp.rice.edu/cs

