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Outline

ll. Curvelet-based amplitude recovery & coherent-noise removal
e curvelet-domain matched filtering
e applications:
e amplitude-recovery by scaled curvelet-domain sparsity promotion
e conditioning with curvelet-domain scaling
e primary-multiple matching
Bayesian coherent signal separation by sparsity promotion

application: primary-multiple separation




Goals & challenges

Goals:

Exploit multiscale & directional transforms to conduct seismic data
processing---i.e, use “microlocal” properties of curvelets to

— correct migration amplitudes & precondition migration operators

— smoothly-varying corrections to coherent noise predictions (e.g., surface-related multiples)

Leverage curvelet-domain adaptivity & sparsity to
— estimate diagonal curvelet-domain corrections by matching
* migrated and remigrated images => approximation of the normal operator
« “true” and predicted multiples => matching of predicted multiples to “true multiples”
— stably correct migration amplitude errors
— separate matched coherent wavefield constituents by sparsity promotion

Challenges:
— multidimensionality of wavefronts set & existence of conflicting dips
— problem size & integration into existing workflows
« black-box imaging & multiple prediction code
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Example
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The forward model

Our curvelet-domain matched filtering is build on the following model:
g=VY(z,D)f
with U a zero-order pseudodifferential operator (DO) given by

(UF)(@) = [, e bl € F(€)a¢.

ie., \8?(9519(:8,5)\ < Cop(l+ \f\)m_|a| with m = 0.

We assume
— corrections by the symbol b vary smoothly as a function of space and angle

Approximate the action of W by curvelet-domain scaling

— fast evaluation

— possibility to estimate diagonal approximation though matching during which the
diagonal is computed by solving a nonlinear least-squares estimation problem




Diagonal approximation [F.J.H et. al ‘08]

Lemma 1. Suppose a is in the symbol class S?,O, then, with C’ some
constant, the following holds

H(\Ij(va) _ a($V7§V))S0V||L2(Rn) < 0/2_|V|/2,

To approximate ¥, we define the sequence u := (u,),em = a(x,,€,). Let Dy
be the diagonal matrix with entries given by u. Next we state our result on the
approximation of ¥ by C1'DyC.

Theorem 1. The following estimate for the error holds

H(\If(aj, D) - CTD\PC)S@MHB(R”) < C//2_|M|/27

where C" is a constant depending on W.




Curvelet’s parametrization

Tiling the £ space




Estimation matched filter

After discretization action of W can be approximated by
f ~ Bg with B ~ C"diag (b)C, {b}uem >0

Given f and g, the diagonal b can be estimated with a global nonlinear
least-squares estimation procedure [Symes 08, F.J.H et. al. ‘08]

N .1 :
z = arg min §Hf — Cldiag (Cg) e?|l5 + || Lee?|l3

— LC curvelet-domain sharpening operator that promotes phase-space smoothness
— guarantees the solution to be positive
— handles conflicting dips by using non-separable curvelets

fmatched — Bg with B = C*diag (GZ)C




Estimation matched filter

Solve the system

y =~
Minimize with limited-memory BFGS [Nocedal ‘89]

J(z) = 5lly — F,[2]]3
with the gradient [Vogel ‘02]

orad J(z) = diag{e?} [F§ (Fre” —y)]




Phase-space regularization

Curvelet-domain sharpening operator

T
Lo — [DlT D! DQT]

First-order differences in space and angle directions for each scale
Regularization parameter controls phase-space smoothness
Limits overfitting

Assures positivity with nonlinear least-squares ...




Phase-space regularization
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Phase-space regularization




Phase-space regularization
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Phase-space regularization

Seismic Laboratory for Imaging and Modeling



Exact PDO: cos”(6)




Application of pseudodifferential operator

® ®

Original Image
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Estimation of the diagonal
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Diagonal approximation

mage after Application of Pseudo. Op. Curvelet Scaling Result

Comparison of exact application of PsDO with estimation of
PsDO by diagonal weighting in curvelet domain.
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Amplitude recovery by scaling
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Normal equations
Forward model after linearization (Born app.) & noise:

0d(zs, xr, t) = (K[m]om)(zs, xr, t) + n(zs, zp, t)

with
od d — F|m]

m m -+ om

m smooth
Normal equation after migration & high-frequency limit
(K'd)(z) = (K'Kém)(z)+ (K'n)(z)
y(z) = (¥om)(z) + e(z)

where ¥ can be modeled by a wDO.




Normal equations cont’d [stoik ‘02, ten Kroode ‘97, de Hoop ‘00, ‘03]

Migrated image contains imprint of normal/Hessian operator.
Least-squares migration

1
dmrs = K'6d = arg min 7{|dd - Kém||3

based on Lanczos (e.g. Isgr) methods may be computationally prohibitive.

In high-frequency limit \IJ is a PsDO (for d=2), i.e.,

(UF)(@) = [, e " Cala &) F()de

e correct background velocity model
e pseudolocal
e singularities are preserved

Corresponds to a spatially-varying dip filter.
Can be approximated using diagonal scaling methods [Symes ‘08, FJH "08].
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® curvelets remain invariant (for angles in the range W)

® approximation improves for higher frequencies




Approximate forward model

Make modeling operator zero order by the following transformations:

K K(_A)—l/Z K N a|;|l/2K _ f*‘W|_1/2fK

m (—A)l/Zm ((=A)*HNE) = I~ - f( ).

Use the decomposition

(qj%ﬁu)(x) = (CTD‘PCSOM)(@
— (AATSDM)(@
with A := v/D¢C and A! := C*/Dy.

to define the following approximate forward model:
y(x) = (¥om)(x)+ e(x)
(AA"om) () + e(z)
AX() + e




Amplitude-recovery by sparsity promotion

Forward model:
y = Axy+ €
Sparsity-promoting program:

X = arg minx ||x||¢, subject to |y —Ax|s <o
P, :

m = (A*)Tx

Solve with iterative thresholding.




Work flow

Select a reference vector that is close to the unknown image
e migrated image after spherical spreading correction

Form the normal operator by compounding discretized
linearized modeling & migration operators K™K and apply.

Estimate the diagonal (i.e., D, ) .

Construct the matrix A = C*, /DM.

Invert A with a sparsity & continuity promotion program
e exploit curvelet-domain sparsity
e remove artifacts




Example

® SEGAA data:

— “broad-band” half-integrated wavelet [5-60 HZz]
— 324 shots, 176 receivers, shot interval of 48 m, yielding a maximal offset of 4224 m
— b s ofdata

® Modeling operator
— Reverse-time migration with optimal check pointing (Symes ‘07)
— 8000 time steps
— linearized modeling 64, and migration 294 minutes on 68 CPU'’s

® Estimation of the scaling requires 1 extra migration-demigration.




SEG AA’ Salt Model
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Smoothed SEG AA’ Salt Model
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Bandpass-filtered SEG AA’ Salt Model
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Migrated image
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Depth-corrected image = reference image
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Remigrated reference image
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Approximated remigrated reference vector
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Migrated image

Lateral (m)
2000 4000 6000 8000 10000 12000 14000

-
)
ﬁc:
oS
gAY,
-

3000

migrated 1mage

Seismic Laboratory for Imaging and Modeling



Amplitude-recovery by sparsity promotion

Forward model:
y = Axy+ €
Sparsity-promoting program:

X = arg minx ||x||¢, subject to |y —Ax|s <o
P, :

m = (A*)Tx

Solve with iterative thresholding.




Amplitude recovery by sparsity promotion
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AniSOtrOpiC diffusion [Black et. al ‘98, Fehmers et. al. ’03 and Shertzer ‘03]

Remove spurious artifacts by continuity promotion by minimizing

x = argminx J(x) subject to ||y —Ax|2 <o

m = (A*)'x

sparsity

— t
J(x) = afx|1 +3[ A2 (A7) x|).
and the anisotropic diffusion term ——

continuity

A= i 4ol




Algorithm

Result: Estimate for x
initialization;

m «— 0; X0<—O;y%KTd;
Set M, L, and ||AYy]loo > A1 > Ao > -+
while ||y — Ax|[s > ¢ and m < M do

1

2

3

4

5 m=m+1; x™ =x""1
6

7

8

9

for [ =1 to L do
Iterative thresholding;:

XM «— Sy (Xm + AT (y — Xm))
end
10 Anisotropic descent update;

11 x" = x" — BV xm J.(x") width

VxJo(x™) =2ATV - (AV ((AT)T xm>);




Gradient of the reference vector
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Amplitude recovery by sparsity promotion
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Recovery by sparsity & continuity promotion
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Curvelet-based migration
preconditioning and scaling
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Our Problem

® Inverting this is not so trivial because of the size:

- 1
X7,¢ = arg min §||b — AXH%

X

® \Ve want to condition this as well as possible.

® \With accurate background velocity the normal operator is near
unitary

— iterative solution is known to converge.
— sheer size of the problem however makes this a very time consuming problem.

® A reduction in the number of iterations will be necessary!




Our Solution

® \We propose to do this by replacing our initial system with a
series of preconditioning levels:

M;'AM;'u ~ M;'b,

® This involves a series of right and left preconditioning matrices.
— matrix free

® The cost for applying these preconditioners correspond to a
matrix-free matrix-vector multiplies with a complexity of at most
O(nlogn) opposed to a cost of for the evaluation of the
normal operator, which is O(n*) in dimension two.




Levels of Preconditioning

® |[n data space, we apply a multiplication in the temporal Fourier
domain.

® This can be thought as a left preconditioning through fractional
integration:

_ —1/2 * _
Mp' =, = Frlw|7V2F

® Makes the normal operator zero order.
— normal operators will act as a zero-order pseudo-differential operator

— approximated by curvelet-domain scaling




Levels of Preconditioning

® Right preconditioning by scaling in the physical domain:

M;zl =D, := diag (z)%

® Reflected waves travel from the source at the surface down to
the reflector and back.

® This gives a quadratic depth dependence.




Levels of Preconditioning

® Right preconditioning by scaling in the curvelet domain:

—~

Ur ~ C*D{,Cr, Dy := diag (e*)

M:'=D.C*Dy’

® Estimation of the diagonal in the curvelet domain, i.e.,
1
z = argmin _ || ¥r - C' diag (Cr) e*2||3 + v||Lce??||3

— solved with I-BFGS [Nocedal ‘95]

® The cost to compute this diagonal is one migration and one

remigration.
— This is equivalent to one iteration of LSQR.

® “True-amplitude” correction.




SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity
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SEG AA’ Model w/ Smooth Velocity - LSQR Results
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SEG AA’ Model w/ Smooth Velocity - LSQR Results
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SEG AA’ Model w/ Smooth Velocity

® Signal-to-Noise Ratio (SNR) to original reflectivity.

® Defined as follows, with L2 values normalized to one:

SNR = 20log ||xs||2/]|1%n — xs||2

One iteration
SNR

LSQR results*
SNR

No Preconditioning

-1.9803

-0.9939

Level |

-1.4147

0.3312

Level |l

0.4030

3.2690

Level lll

1.3122

3.3230

*LSQR to 10 iterations




SEG AA’ Model w/ Smooth Velocity

® Residual decay for the data-space and model-space residuals.

® Even after our first few iterations of level lll preconditioning, we
quickly improve upon the other levels in each figure.

® The red line has already seen one migration-remigration due
to the curvelet diagonal estimation process.
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= Level |
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Application ll: primary-multiple
separation
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Adaptive curvelet-domain primary-multiple
separation. Geophysics, Vol 73, No. 3, pp.- A17-A21,

2008.
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Motivation

® /ransform-domain matched-filtering forms the basis of

— adaptive subtraction during surface-related multiple elimination [Verschuur ‘97]

— idem during surface-wave removal with interferometry [Vasconcelos ‘08,
Wapenaar ‘08]

scaling during migration “preconditioning” based on migrated-remigrated image
matching [Symes '08,F.J.H. et. al, ‘08]

® Fourier-based matching
— accounts for amplitude-spectra mismatches & global kinematic errors
— fails for errors that vary spatially & as function of the local dip

® Spatial & windowed Fourier matching
— run risk of over fitting (loss of primary energy)

® Curvelet-domain matching in phase space
— corrects for amplitude errors that vary smoothly as a function of position & dip




History

® [ourier-based matched filtering was built on the premise that

Mirye ~ FINpedicted With F = F H diag (f ) F

® Estimated during a global least-squares estimation procedure

. 1 .
f = argmm§|| gm redlctedHQ _I_)‘HL]:gHZ

)

— L]—" Fourier-space sharpening operator that promotes smoothness
— for each offset separately

® Estimated primaries:

f) =d — Fmpredicted




Workflow

iInput data

conservative
Fourier matching

curvelet-domain
matching

Bayesian
separation

P :

Myedicted (Multi-D convolution)

mgy = Fmg edicted with F = F Hdjag (f) F

b2 — Bm()
C' diag (¢?) Cmq
Fp(z, k) Fmg

with B =

I
Y

~

|Axo — bo|3

§1 — Ail and

X = argminy A1||X1]

1| A(x1

1w, T A X2, w,+

x2) — b3

So = AXo.
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Synthetic-data example
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Synthetic-data example
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Velocity model used in the synthetic data examples




Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example
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Synthetic-data example

Offset (m) Offset (m)
—2000 —-1000 0 1000 2000 —-2000 —-1000 0 1000 2000

0
0

AV a
o o
) )
© ©
o o
o0 o0
o o

1
1

Time (s)
1.4 1.2

Time (s)
1.4 1.2

1.6

1.8

SRME primaries ‘ground-truth’ primaries

Seismic Laboratory for Imaging and Modeling



Synthetic-data example
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Synthetic-data example
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SNRs

® Comparison with “ground truth”

SRME 9.82

Bayesian [.25
separation

Curvele- 11.22
domain

matching &
Bayesuan
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Real-data example
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Real-data example
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Real-data example
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Real-data example

Shot location (m) Shot location (m)
2000 4000 6000 8000 2000 4000 6000 8000

Not scaled Bayesian Predicted multiples
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Real-data example

Shot location (m) Shot location (m)
2000 4000 6000 8000 2000 4000 6000

Scaled Bayesian Difference between SRME and
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Real-data example

Shot location (m) Shot location (m)
2000 4000 6000 8000 2000 4000 6000 8000

SRME primaries Scaled + Bayesian
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Real-data example

Shot location (m) Shot location (m)
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Frequency domain smoothness

® |t can be shown as in [Symes, Demanet] that symbol is also
smooth in frequency variable”

a(n,¢) = > aa,395(¢)
o, 3

Here gﬁ(C) IS a smooth spline function, and thus the Fourigr
transform of the symbol with respéct to the spatial variable is
smooth in the frequency variable

This fact can be leveraged in the curvelet matching problem by
adding an extra term promoting smoothness in frequency of the
spatial Fourier transform of the PsDO symbol.




Frequency domain smoothness regularization

® Solve the following optimization problem:
2 2

° 1 . A )\ VA lu Z
arg min §HCTd1ag(Cf)e — gHg + ?HLe Hg + 7”MCRFX€ H%

® R : Restriction operator (only keep positive frequencies, since we
know the symbol is real, and so the Fourier transform will be even).

® M. : Sharpening operator in C (derivative with respect to angle).

® k', : Fourier transform operator in X (Fourier transform wedge-by-
wedge).




Results on Synthetic Pseudodifferential Operator

Estimated Symbol from Estimated Symbol from
Matched Filter (no freq. Matched Filter (with frequency
regularization, 50 1terations) regularization, 20 iterations)




Application to Primary-Multiple Separation

Offset (m) Offset (m)
—2000 —1000 0 1000 2000 —2000 —1000 0 1000 2000

Total Data Ground truth Primaries
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Application to Primary-Multiple Separation

Offset (m) Offset (m)
—2000 —1000 0 1000 2000 —2000 —1000 0 1000 2000
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Results with and without new regularization

Offset (m) Offset (m)
—2000 —1000 0 1000 2000 —2000 —-1000 0 1000 2000

Matched Filtering (1=0) Matched Filtering (1=1)
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Further reading

® http://slim.eos.ubc.ca



http://dsp.rice.edu/cs
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