Migration with Implicit Solvers for the Time-harmonic Helmholtz

Yogi A. Erlangga, Felix J. Herrmann

Seismic Laboratory for Imaging and Modeling, The University of British Columbia

{yerlangga,fherrmann}@eos.ubc.ca
Time domain vs. Frequency domain

<table>
<thead>
<tr>
<th></th>
<th>Time domain</th>
<th>Frequency domain</th>
</tr>
</thead>
<tbody>
<tr>
<td>Solution of wave equation</td>
<td>explicit, easy</td>
<td>implicit, not easy</td>
</tr>
<tr>
<td>Imaging</td>
<td>time history, checkpointing, not trivial</td>
<td>all frequencies, freq. subsampling, easy</td>
</tr>
<tr>
<td>Computational algorithm</td>
<td>parallelizable via domain decomposition (DD)-type algorithm</td>
<td>embarrassingly parallel in frequency, no communication, DD-type can apply for very large problem (3D)</td>
</tr>
<tr>
<td>Boundary condition and damping layer</td>
<td>not trivial</td>
<td>trivial, use complex velocity</td>
</tr>
<tr>
<td>Modeling relaxation</td>
<td>not trivial</td>
<td>trivial, use freq. dep. complex velocity</td>
</tr>
</tbody>
</table>
Our focus

Frequency domain

conducive to frequency subsampling and then imaging using non-linear inversion ...
Migration

Of interest:
Given data δd, compute

$$\delta m = K^T[m_0] \delta d$$

- δm: the "update" image
- m_0: smooth model
- $K^T[m_0]$: the \textit{migration} operator

Here: $m = m_0 + \delta m$

[Baysal, 1983], ..., [Plessis, Mulder, 2004], [De Roeck, 2004]
Adjoint-state method (1)

\[
\min_m \frac{1}{2} \|d - u\|_2^2 \quad \text{subject to} \quad H[\omega, m]u = f
\]

- \(H[\omega, m]\) : the Helmholtz operator
- \(u\) : wavefield at frequency \(\omega\)
- \(f\) : seismic source
- \(d - u =: \delta d\) : data misfit

Note: a penalty functional can be added

[Tarantola, 1984], [Pratt et al., 1998], [Pratt, 1999], Plessix [2006]
Adjoint-state method (2)

Gradient-based update (multi shots and freqs)

\[\delta m = \Re \left(\sum_{i_\omega = 1}^{n_\omega} \sum_{i_s = 1}^{n_s} \mathbf{u}_{i_s, i_\omega} f[\mathbf{m}_0] \odot \mathbf{v}_{i_s, i_\omega} [\mathbf{m}_0] \right) \]

\[= \Re (\text{diag}(\mathbf{UV}^*)) \sim \mathbf{K}^T \delta \mathbf{d} \]

- \(\mathbf{v} \): back-propagated wavefield, obtained from \(\mathbf{H}^*[\omega, \mathbf{m}_0] \mathbf{v} = \delta \mathbf{d} \)

Image is computed “implicitly” via \(\mathbf{u} \) and \(\mathbf{v} \). No explicit \(\mathbf{K} \) needed.
Implicit migration/waveform inversion

• compute subsequently \(u \) and \(v \)
• correlate: \(u \odot v \)
• sum over shot and frequency

Good facts:
- parallel over frequency and shots
- no storage needed for (de)migration operator
- conducive to freq & shot sampling (size reduction)

How to compute \(u \) and \(v \)
Today’s talk

- Iterative solver for computing wavefields (i.e., u and v) in frequency-domain migration/waveform inversion
- Show example from migration or first step of gradient update
Computational Imaging

Multiple-shots (right-hand sides), multiple frequencies

\[n_s : \text{number of shots} \quad n_f : \text{number of frequencies} \]

<table>
<thead>
<tr>
<th></th>
<th>2D</th>
<th></th>
<th>Iterative Methods</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct methods</td>
<td>Iterative Methods</td>
<td></td>
</tr>
<tr>
<td>LU factors</td>
<td>(n_f O(n^4))</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Solution</td>
<td>(n_s n_f O(n^3))</td>
<td>(n_s n_f n_{iter} O(n^2))</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>3D</th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Direct methods</td>
<td></td>
<td></td>
</tr>
<tr>
<td>LU factors</td>
<td>(n_f O(n^9))</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>Solution</td>
<td>(n_s n_f O(n^5))</td>
<td>(n_s n_f n_{iter} O(n^3))</td>
<td></td>
</tr>
</tbody>
</table>

IM can be competitive if \(n_{iter} \ll n^d \) (with, e.g., preconditioner)

For similar analysis for MUMPS, see [Virieux, The Leading Edge, 2009]
Computational Imaging

The previous results are only useful if the iterative methods converge.

For frequency-domain wave equation, convergence cannot be guaranteed.
Why difficult for Iterative Method

One-d example: not of practical interest but tells the story

\[
k = \frac{2\pi f L}{c} = 50
\]

- Small eigenvalues close to zero, large eigenvalues unbounded: ill-conditioned
- Real parts of eigenvalues change signs: indefinite

Having two properties, convergence is not guaranteed.

Indefiniteness the most difficult to handle. No iterative method for indefinite system
First step: tackling indefiniteness (1)

Use as preconditioner the damped Helmholtz op.:

\[M \triangleq -\nabla \cdot (\nabla) - (1 - \frac{1}{2} \hat{j}) \left(\frac{\omega}{c} \right)^2, \quad \hat{j} = \sqrt{-1}. \]

Then solve using iterative method on the system

\[HM^{-1}w = f, \quad u = M^{-1}w \]

(And similarly for back-propagated wavefield)

[Erlangga, Oosterlee, Vuik, 2006]
[Riyanti et al., 2006]
[Plessix et al., 2007]
First step: tackling indefiniteness (2)

- Real parts of eigenvalues have the same signs: \textit{definite}!
 Iterative methods will converge easier \(n_{\text{iter}} < n^d \)

- To obtain \(O(n^d) \) method, \(M^{-1} \) computed by one multigrid iteration

- Large eigenvalue bounded by one, still some small eigenvalues ill-conditioned
Second step: tackling ill-condition

Multilevel operator:

\[
Q = I - Z \hat{H}^{-1} Z^T H M^{-1} + Z \hat{H}^{-1} Z^T ,
\]

with

\[
\hat{H} = Z^T H M^{-1} Z , \quad \text{dim} \hat{H} \ll \text{dim} H
\]

\(Z \) : sparse, interpolation operator

Then, solve

\[
H M^{-1} Qy = f , \quad u = M^{-1} Qy
\]

[Erlangga, Nabben, 2008]
[Erlangga, Herrmann, 2008]
Second step: tackling ill-condition

- Notice shift of eigenvalues towards one due to Q!
- The spectrum of $HM^{-1}Q$ is favorable for iterative methods
More on eigenvalues (1)

1D non-constant wavenumber k, smooth model $k = (50, 100)$

- H
- HM^{-1}
- $HM^{-1}Q$

Clustering around one
More on eigenvalues (2)

1D non-constant wavenumber k, hard model $k = (50, 100)$

For constant, smooth, or hard model, one can expect the same convergence rate.

Clustering around one
Example: forward modeling (1)

Forward modeling, one shot position, hard model

- Velocity contrast: 1500 - 4000 m/s
- Convergence is less dependent of frequency

\[
\begin{align*}
\text{MG:} & \quad H M^{-1} \\
\text{MKMG:} & \quad H M^{-1} Q
\end{align*}
\]
Example: forward modeling (2)

One shot position, hard model : wavefield

Real part of u, freq = 10 Hz, 9 grid/wavelength

Real part of u, freq = 10 Hz, 18 grid/wavelength
Example: forward modeling (3)

Traces

Trace at X = 3000 m, freq = 10 Hz

Trace at X = 800 m, freq = 10 Hz
Example: imaging (1)

Computational setup:
- part of Marmousi (shown before), 6 x 1.6 km2
- computational grid: 751 x 201 (18 gridpoint/wavelength)
 Twice more than time-domain grid, possible to use less
- frequency range: 0.5 - 5.0 Hz, 11 frequencies are used
- 188 shot positions, 751 receivers
- In case of Migration: 1 step gradient-based inversion

Speed-up:
- Parallel computation in frequency - each node computes one freq. case
- Use of less gridpoint per wavelength
- No communication cost: embarrassingly parallel
 In our case, 11 freqs, 11 nodes.

Est. 1 hour of CPU time <= approximate the same as Symes’ time-domain
finite difference code with checkpointing ...
Example: imaging (2)

Target model

After first gradient-based update
\[m_1 = m_0 + \delta m \]

\(\delta m \) (not shown) is computed using data from 188 shots and 11 frequencies (0.5-5.0 Hz)
Conclusion

• Key of successful iterative methods for Helmholtz: handling indefiniteness and ill-conditioned

• In our method, both are handled by preconditioner and multilevel operator

• Computational example shows that in terms of memory and CPU time, an iterative method can be a viable alternative to direct method in frequency-domain waveform inversion or migration

• Extension general d-dimension is straightforward
Future direction

- 3D wave-modeler and inversion
 Use of domain-decomposition-type algorithm
 Iterative methods for multiple right-hand sides;
 (solve multiple shots for one frequencies)

- Waveform inversion with Gauss-Newton-Krylov methods
 Hessian is computed implicitly via forward/backward solves,
 faster convergence.
 The use of direct methods are too expensive; at every Gauss-Newton update, LU
 factors must be formed
 [Erlangga, Herrmann, SEG 2009]

- FD inversion - conducive to freq. sampling

 Alternative:
 Freq. and shot sampling & inversion using sparsity-promoting recovery
 [Herrmann, Erlangga, Lin, 2009]
 [Herrmann, SEG 2009]
Further reading

- Y A Erlangga, C W Oosterlee and C Vuik
 A novel multigrid-based preconditioner for the heterogeneous Helmholtz equation

- Y A Erlangga and R Nabben
 On a multilevel Krylov method for Helmholtz equation preconditioned by shifted Laplacian
 To appear in Electronic Transaction on Numerical Analysis
 http://slim.eos.ubc.ca/Publications/Public/Journals/erlangga08oam.pdf

- Y. Erlangga and F. J. Herrmann
 An iterative multilevel method for computing wavefields in frequency-domain seismic inversion
 http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2008/erlangga08seg.pdf
Acknowledgments

This work was carried out as part of the Collaborative Research & Development (CRD) grant DNOISE (334810-05) funded by the Natural Science and Engineering Research Council (NSERC) and matching contributions from BG, BP, Chevron, ExxonMobil and Shell. FJH would also like to thank the Technische University for their hospitality.

For other resources on frequency-domain compressive computation, visit

http://slim.eos.ubc.ca