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Time domain vs. Frequency domain

Time domain Frequency domain
Solution of wave equation explicit, easy implicit, not easy

Imaging
time history,

checkpointing, 
not trivial

all frequencies,
freq. subsampling, 

easy

Computational algorithm

paralellizable via 
domain 

decomposition 
(DD)-type 
algorithm 

embarrasingly 
parallel in frequency, 
no communication, 
DD-type can apply 

for very large 
problem (3D)

Boundary condition and 
damping layer

not trivial trivial, use complex 
velocity 

Modeling relaxation not trivial trivial, use freq. dep. 
complex velocity 



Our focus

Frequency domain

conducive to frequency subsampling and then                            
imaging using non-linear inversion ...



Migration

•                : the “update” image

•                : smooth model

•                : the migration operator  

Of interest: 
Given data      , compute δd

δm

Here:

δm = KT [m0]δd

KT [m0]

m0

m = m0 + δm

[Baysal, 1983], ..., [Plessix, Mulder, 2004], [De Roeck,  2004]



Adjoint-state method (1)

•                : the Helmholtz operator

•                : wavefield at frequency

•                : seismic source

•                          : data misfit

H[ω,m]
u ω

min
m

1
2
‖d− u‖2

2 subject to H[ω,m]u = f

f
d− u =: δd

Note: a penalty functional can be added

[Tarantola,  1984], [Pratt et al., 1998], [Pratt, 1999], Plessix [2006]



Adjoint-state method (2)

•      : back-propagated wavefield, obtained from

Gradient-based update (multi shots and freqs)

v
H∗[ω,m0]v = δd

δm = !
(

nω∑

iω=1

ns∑

is=1

uis,iωf [m0]" vis,iω [m0]

)

= ! (diag(UV∗)) ∼ KT δd

Image is computed “implicitly” via      and     .
No explicit       needed.

u v
K



Implicit migration/waveform inversion

• compute subsequently       and 

• correlate : 

• sum over shot and frequency

u v
u! v

Good facts:
- parallel over frequency and shots
- no storage needed for (de)migration operator
- conducive to freq & shot sampling (size reduction)

How to compute       and  u v



Today’s talk

• Iterative solver for computing wavefields (i.e.,     
and     ) in frequency-domain migration/
waveform inversion

• Show example from migration or first step of 
gradient update

u
v



Computational Imaging 

nfO(n9)
nsnfO(n5) nsnfniterO(n3)

3D Direct methods Iterative Methods

LU factors -
Solution

Multiple-shots (right-hand sides), multiple frequencies
    : number of shots            : number of frequenciesnf

nfO(n4)
nsnfO(n3) nsnfniterO(n2)

2D Direct methods Iterative Methods

LU factors -
Solution

ns

For similar analysis for MUMPS, see [Virieux, The Leading Edge, 2009]
IM can be competitive if                      (with, e.g., preconditioner) niter ! nd



Computational Imaging 

The previous results are only useful if the iterative 
methods converge.

For frequency-domain wave equation, convergence can 
not be guaranteed.



Why difficult for Iterative Method

• Small eigenvalues close 
to zero, large eigenvalues 
unbounded:                 
ill-conditioned

• Real parts of eigenvalues 
change signs:                     
indefinite
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One-d example: not of practical interest but tells the story

Having two properties, convergence 
is not guaranteed.

Indefiniteness the most difficult to 
handle. No iterative method for 
indefinite system

k = 2πfL/c = 50constant



First step: tackling indefiniteness (1)

Use as preconditioner the damped Helmholtz op.:

Then solve using iterative method on the system

HM−1w = f , u = M−1w

M ∧= −∇ · (∇)− (1− 1
2

ĵ)
(ω

c

)2
, ĵ =

√
−1.

(And similarly for back-propagated wavefield)
[Erlangga, Oosterlee, Vuik, 2006]

[Riyanti et al., 2006]
[Plessix et al., 2007]



First step: tackling indefiniteness (2)

• Real parts of eigenvalues have the same signs: definite!       
Iterative methods will converge easier

• To obtain            method ,            computed by one multigrid 
iteration

• Large eigenvalue bounded by one, still some small eigenvalues 
ill-conditioned
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Second step: tackling ill-condition

Multilevel operator:

Q =

shift small eigenvalues to 0︷ ︸︸ ︷
I− ZĤ−1ZT HM−1 +

shift zero eigenvalues to 1︷ ︸︸ ︷
ZĤ−1ZT ,

with

Z : sparse, interpolation operator
Ĥ = ZT HM−1Z, dimĤ! dimH

Then, solve HM−1Qy = f , u = M−1Qy
[Erlangga, Nabben, 2008]

[Erlangga, Herrmann, 2008]



Second step: tackling ill-condition

• Notice shift of eigenvalues towards one due to Q!

• The spectrum of                  is favorable for iterative methods
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More on eigenvalues (1)

H HM−1 HM−1Q

Clustering around one

1D non-constant wavenumber k, smooth model k = (50, 100)



More on eigenvalues (2)

H HM−1 HM−1Q

Clustering around one

1D non-constant wavenumber k, hard model

For constant, smooth, or hard 
model, one can expect the same 
convergence rate

k = (50, 100)



Example: forward modeling (1)

• Velocity contrast: 1500 - 4000 m/s

• Convergence is less dependent of 
frequency
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Example: forward modeling (2)
One shot position, hard model : wavefield
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Example: forward modeling (3)
Traces
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Example: imaging (1)

Computational setup:
- part of Marmousi (shown before), 6 x 1.6 km2
- computational grid: 751 x 201 (18 gridpoint/wavelength)
    Twice more than time-domain grid, possible to use less 

- frequency range: 0.5 - 5.0 Hz, 11 frequencies are used
- 188 shot positions, 751 receivers
- In case of Migration: 1 step gradient-based inversion

Speed-up:
- Parallel computation in frequency - each node computes one freq. case
- Use of less gridpoint per wavelength
- No communication cost: embarrassingly parallel
  In our case, 11 freqs, 11 nodes. 

Est. 1 hour of CPU time <=> approximately the same as Symes’ time-domain 
finite difference code with checkpointing ...

  



Example: imaging (2)
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After first gradient-based update
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Target model
m1 = m0 + δm

δm (not shown) is computed using data from 188 shots and 11 frequencies 
(0.5-5.0 Hz)



Conclusion

• Key of successful iterative methods for Helmholtz:    
handling indefiniteness and ill-conditioned 

• In our method, both are handled by preconditioner 
and multilevel operator

• Computational example shows that in terms of 
memory and CPU time, an iterative method can be 
a viable alternative to direct method in frequency-
domain waveform inversion or migration

• Extension general d-dimension is straightforward



Future direction
- 3D wave-modeler and inversion
  Use of domain-decomposition-type algorithm
   Iterative methods for multiple right-hand sides; 
   (solve multiple shots for one frequencies)

- Waveform inversion with Gauss-Newton-Krylov methods
  Hessian is computed implicitly via forward/backward solves, 
   faster convergence.
   The use of direct methods are too expensive; at every Gauss-Newton update, LU 
   factors must be formed                                              

  [Erlangga, Herrmann, SEG 2009]

- FD inversion - conducive to freq. sampling
[Mulder, Plessix, 2004, Sirgue, Pratt, 2009]

   
   Alternative: 
   Freq. and shot sampling & inversion using sparsity-promoting recovery

[Herrmann, Erlangga, Lin, 2009]
[Herrmann, SEG 2009]
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  http://slim.eos.ubc.ca/Publications/Public/Journals/erlangga08oam.pdf

- Y. Erlangga and F. J. Herrmann
   An iterative multilevel method for computing wavefields in frequency-domain seismic
   inversion
   SEG Technical Program Expanded Abstracts, SEG, 2008. 
   http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2008/erlangga08seg.pdf

http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2008/erlangga08seg.pdf
http://slim.eos.ubc.ca/Publications/Public/Conferences/SEG/2008/erlangga08seg.pdf


Acknowledgments

This work was carried out as part of the Collaborative Research 
& Development (CRD) grant DNOISE (334810-05) funded by 
the Natural Science and Engineering Research Council 
(NSERC) and matching contributions from BG, BP, Chevron, 
ExxonMobil and Shell. FJH would also like to thank the 
Technische University for their hospitality.

For other resources on frequency-domain compressive computation, visit

http://slim.eos.ubc.ca

http://slim.eos.ubc.ca
http://slim.eos.ubc.ca

