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Today’s challenges

Aside from spurious local minima seismic waveform
inversion is difficult because of

= lack of control on the image amplitudes
® missing data and noise
= computational cost to form the operators

Today’s agenda is to leverage recent insights from
applied harmonic analysis and information theory to

" restore amplitudes => affordable g-Newton updates
= stably reconstruct wavefields
= compress wavefield-extrapolation operators




Motivation

Exploit two aspects of curvelets, namely their
® parsimoniousness
® jnvariance under certain operators

Formulate
® data-adaptive scaling algorithms
®= non-adaptive wavefield reconstruction algorithms

Applications
®= nonlinear migration-amplitude recovery
®= nonlinear sampling for wavefields
®= nonlinear sampling for operators




loday'’s topics

Sparsity-promoting seismic-image amplitude
recovery
= curvelet-domain diagonal approximation of PsDQO'’s

= stable sparsity-promoting inversion

Directional frame-based wavefield reconstruction by
sparsity promotion

= curvelet parsimoniousness
= jitter sampling

Compression of FIO’s through compressive sampling
" measurement basis diagonalizes operator




The problem

Minimization:
¢ = argmin ||d — F|[c]||3
C

After linearization (Born app.) forward model with noise:

d(xs, T, 1) = (K[E]m) (s, T, t) + n(xs, 0, 1)
Conventional imaging:
(K'd)(z) = (K'"Km)(z)+ (K'n)(z)
y(z) = (¥Tm)(z)+e(z)

\|/ is prohibitively expensive to invert

evaluation of K |c| involves expensive wavefield
extrapolators




2-D curvelets

-0.4 -0.2

curvelets are strictly localized
in frequency

X-t f-K
Oscillatory in one direction and smooth in the others!
Obey parabolic scaling relation length ~ width?
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Coefficients Amplitude Decay In
Transform Domains
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Partial Reconstruction
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Partial Reconstruction
Curvelets (1% largest coefficients)
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3-D curvelets

Curvelets are oscillatory in one direction and smooth in the others. @su M
Seismic La%o&ﬁéggi;cg




Peyman Moghaddam

Mathematics Department,
Twente University, the Netherlands

“Sparsity— and continuity-promoting seismic imaging
with curvelet frames” to appear in ACHA




Related work

Wavelet-Vaguelette/Quasi-SVD methods based on

" homogeneous operators
®= absorb “square-root” of the Gramm matrix in WVD's

= Wavelets/curvelets near diagonalize the operator and

are sparse on the model

Nonlinear solution of linear inverse problems by wavelet-vaguelette
decomposition (Donoho '95)

Recovering Edges in Ill-posed Problems: Optimality of curvelet
Frames (Candes & Donoho '00)

Scaling methods based on a diagonal approximation
of I, assuming

= smoothness on the symbol and conormality reflectors
Illumination-based normalization (Rickett ‘02)
Amplitude preserved migration (Plessix & Mulder '04)
Amplitude corrections (Guitton '04)
Amplitude scaling (Symes '07)




Hessian/Normal operator

[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares migration.
In high-frequency limit I is a pseudo-differential operator

(Uf)(2) = (KTKf)(z) = / e, €) f(€)de

= composition of two Fourier integral operators

= pseudolocal (near unitary)

® singularities are preserved

" symbol is smooth for smooth velocity models ¢

Corresponds to a spatially-varying dip filter after
appropriate preconditioning (=> zero-order PsDO).




Approximation

So let ¥ = W(x, D) be a pseudodifferential operator of order 0, with homo-
geneous principal symbol a(x, &).

Substitutions:
Ko K(-AY  or K0, ’K

m i (=A)2m  With  (=A)*)NE) = €2 - f(£).

Lemma 1. With C' some constant, the following holds

|(¥(z, D) - a2y, &) pull ey < C'271/2. (14)

To approximate ¥, we define the sequence u := (u,)cm = a(zy,§,). Let Dy be the
diagonal matrix with entries given by u. Next we state our result on the approximation of

U by C'DyC.







Scaling

Theorem 1. The following estimate for the error holds

|(¥(z, D) = C"DyC)py o gy < C"27 M2,

)

where C" is a constant depending on W.

Allows for decomposition of the normal operator

(\PSOM)(x) (CTDq,Cng)(x)
(AATgpM) ()

with A := v/DygC and A' := C*'\/Dy.



Matching procedure

Compute reference vector <=> defines g
" migrate data
= apply spherical-divergence correction

Create “data” <=> defines f
" demigrate
" migrate

Estimate scaling by inversion procedure

Define scaled curvelet transform

Recover migration amplitudes by sparsity promotion.




Key idea

Estimation curvelet-domain scaling
® inversion of an underdetermined system
= over fitting
= positivity and reasonable scaling

Solution:
= use smoothness of the symbol
= formulate nonlinear estimation problem that minimizes

1
J’Y(Z) — §Hd — FWGZH%,

eradJ(z) = diag{e?} [FT (Fe* —d)]

= solve with I-BFGS [Noccedal, Symes '07]



Key idea
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Key idea

Impose smoothness via following system of equations

f = C'diag{Cglw
0 = ~Lw

T
L — [D{ DI Dﬂ

first-order differences in space and angle directions for
each scale. Equivalent to

- 1
% = argmin b — Plw][3 + 7| Lw]3

P = C' diag{Cg)




Smoothness penalty

iIncreasing smoothness

" reduces overfitting
= scaling is positive and reasonable




Smoothness penalty

L \SLIM
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Smoothness penalty

L\SLIM
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Our approach

“Forward” model:
y = K/'Km+e
AX() + &

migrated data

C'T

K'Kr

the demigration operator
migrated noise.

®= diagonal approximation of the demigration-migration
operator

= costs one demigration-migration to estimate the
diagonal weighting




Solution

ming J(x) subject to |y — Ax|ls <e
m = (AH)Tx

sparsity

/_/\ﬁ -‘-
J(x) = aflx|1 +5 (1A (A7) x|,
—/_/

continuity
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Imaging example

Lateral (m) Lateral (m)
15000 0

2000

Gl
e
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)
A

Migrated data Amplitude-corrected & denoised migrated
data
= two-way reverse time wave-equation migration with
checkpointing [Symes '07]

= adjoint state method with 8000 time steps
= evaluation K' takes 6 h on 60 CPU’s

L\SLIM
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Observations

Curvelet-domain scaling

® handles conflicting dips (conormality assumption)
= exploits invariance under the PsDO

Diagonal approximation

= exploits smoothness of the symbol

= uses "neighbor” structure of curvelets
Results on the SEG AA’ show

®= recovery of amplitudes beneath the Salt

= successful recovery from clutter

= improvement of the continuity

®" robust w.r.t. noise

Curvelet-domain matched filter ...







Compressive sensing

[Candes, Romberg & Tao, Donoho, many others]

Three key ingredients

= existence of a sparsifying transform
handle wavefronts & reflectors with conflicting dips

= existence of a sub-Nyquist sampling strategy that
reduces coherent aliases

incoherence
random sampling scheme

= existence of a large-scale (norm-one) solver
sparsity promotion by iterative thresholding and cooling

\ v Seismic Laborato ry for
Imaging and Modeling



Simple example

3-fold under-sampling

Fourier |
—_—— S

transform .

oA

Fourier ¢

—
transform

5 6 7 8

Fourier
>

transform

Amplitude
4

«

0 1 2

few significant
coefficients

significant
coefficients detected

ambiguity




Forward problem

restriction
operator

l

with A -— RF?

T

Fourier
transform

X0

Fourier coetficients
(sparse)




Naive sparsity-promoting recovery

detection

Inverse
Fourier
transform

»f/”\w

detection +
data-consistent

Fourier
transform

amplitude recovery

A,

Ez

i

data-consistent
1 amplitude recovery

AT

r




Undersampling “noise”

® "noise’
— due to APA #1
— defined by AHAXo-axo = Afy-axo

1 out of 2 1 out of 4 1 out of 6 I out of §

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

o

0 J
—

pop—_—




Sparsity-promoting wavefield reconstruction

restriction operator

l

T

sparsifying transform
for seismic data

acquired
data

X
complete wavetield
(transform domain)

Interpolated data given by f = SHx with

X = a’rg e | |X‘ ‘1 S‘t‘ y — A'X [Sacchi et al ‘98
X [Xu et al ‘05

]
]
[Zwartjes and Sacchi ‘07]
[Herrmann and Hennenfent ‘07]



Observations

® Dlabla
® generalized to A=RMS"H
® depends on solver, sampling strategy and sparsity transform




joint work with Deli Wang (visitor
from Jilin university) and Gilles
Hennenfent ey

“Curvelet-based seismic data processing: a multiscale and nonlinear approach”
& to appear in Geophysics, "Non-parametric seismic data recovery with curvelet
frames” and “"Simply denoise: wavefield reconstruction via

jittered undersampling”



General form compressive
sampling

Solution of

st. JAx —yll2 <e

restriction matrix
measurement matrix

sparsity synthesis matrix
RM{

recovers the function f.




The problem

1950

0 2000 0 2000
Total data 85 % traces missing




Requirements

Sparsifying transform (S)
® curvelet
® focussed curvelets

Sampling scheme (RM)
® random sampling
®" random jittered sampling => control largest gaps

Sparsity promoting solver (P)

= [terative thresholding (Landweber + soft
threshold)




Discrete random jittered undersampling

Typical spatial Averaged spatial
Sampling scheme convolution kernel convolution kernel
(amplitudes) (amplitudes)
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Curvelet-based recovery

Solution of
st JAx —yll2 <e

jitter sampling
Dirac basis

curvelet synthesis

Rf

recovers the wavefield f.




Model
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Regular 3-fold undersampling
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CRSI from regular 3-fold undersampling

Offset (m)
—2000 0] 2000

SNR = 6.92 dB

Wavenumber (1/m)
0

0

Frequency (Hz)
50

|model||2

SNR = 20 X loglo .
Seismic Laboratory for Imaging and Modeling |reconstruction error||




Random 3-fold undersampling
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CRSI from random 3-fold undersampling
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Optimally-jittered 3-fold undersampling
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CRSI from opt.-jittered 3-fold undersampling
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Regular 3-fold undersampling
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SNR = 12.98 dB
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Regular 3-fold undersampling
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Optimally-jittered 3-fold undersampling

Offset (m) Offset (m)
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SNR = 15.22 dB
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Optimally-jittered 3-fold undersampling
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Focussed recovery

Solution of

st |Ax —yll2 < e

RAPC"
maln primaries

Rf

recovers the wavefield f.




Seismic Laboratory for
Imaging and Modeling

v

e A RS HO AR R A KPR R BT AN

VS
_E
o
S'S
ze

Y

o

—




Focused curvelet
recovery

A = RAPC?

Lateral (m) L \SLIM
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Imaging and Modeling
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Original data
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Observations

Regular subsampling is unfavorable
® random sampling favorable but suffers from gaps
= jitter sampling favorable and controls gaps

Focal transform
® is reminiscent of an imaging operator
® improves recovery <=> additional compression

Solver

= solves norm one problem for 200-300 matrix-vector
multiplications for 23° unknowns ...

Outlook

= Migration-based wavefield reconstruction
sparsity on the image
focussing of the image (extra constraint)
®= or a more “"blue sky” approach of compressive one-
way wavefield extrapolation




“"Compressed wavefield extrapolation” in Geophysics




Motivation

Synthesis of the discretized operators form bottle
neck of imaging

Operators have to be applied to multiple right-hand
sides

Explicit operators are feasible in 2-D and lead to an
order-of-magnitude performance increase

Extension towards 3-D problematic
= storage of the explicit operators
= convergence of implicit time-harmonic approaches

First go at the problem using CS techniques to
compress the operator ...




Related work

Curvelet-domain diagonalization of FIO’s

The Curvelet Representation of Wave Propagators is Optimally
Sparse (Candes & Demanet '05)

Seismic imaging in the curvelet domain and its implications for the
curvelet design (Chauris '06)

Leading-order seismic imaging using curvelets (Douma & de Hoop
‘06)

Explicit time harmonic methods

Modal expansion of one-way operators in laterally varying media
(Grimbergen et. al. '98)

A new iterative solver for the time-harmonic wave equation (Riyanti
‘06)

Fourier restriction

How to choose a subset of frequencies in frequency-domain finite-
difference migration (Mulder & Plessix ‘04)

\ | Seismic Laborato ry for
Imaging and Modeling



Compressed Sensing

I \‘”“” “ '”\ ]

signal in space domain incomplete signal in Fourier signal in space domain
domain

Compressed Processing

|

T

l

signal in space domain incomplete and shifted signal

. . . shifted signal in space domain
in Fourier domain f 8 P

\ v Seismic Laboratory for
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Inspiration

Suppose we want to shift a sparse spike train, i.e.,

u = T v

—7D

€ V

Le_jTﬂLHV

D LOLA

. = The Fourier Transform

" Eigen modes <=> Fourier transform.

®= Can this operation be compressed by compressive
sampling?




Operators on spikes

[Candes et. al, Donohoj
Calculate instead

y' = Rel Fyv
A =RF

~

u = argming||ully st. Au=y’

ake compressed measurements in Fourier space.
Recover with sparsity promotion
Shift operator is compressed by the restriction

R c R™N with m <« N

vielding compressed rectangular operators.
Extend this idea to wavefield extrapolation?




Representation for seismic data
[Berkhout]




Different representations

diagonalization | parsimony
operator wavefield

SVD/Lanczos/ |V X
modal

curvelets




Different representations

diagonalization
operator

parsimony
wavefield

SVD/Lanczos/
modal

X

curvelets

If incoherent this may actually work ....




Sparsity promoting formulation

Buys us stability w.r.t. missing data

= provided measurement and sparsity representations
are mutually incoherent

" sufficient mixing <=> random restriction

Different strategy:
= | et the physics define the measurement basis

= Use the modal domain (domain of eigenfunctions) to
define the measurement basis

= See what you can recover

Study eigenfunctions:
= mutual coherence with sparsity representation
® modal spectrum on the to-be-extrapolated wavefield




One-Way Wave Operatot

Structure of 4 confounds the meaning of its
exponentiation, due to it being an operator

(Simon & Reed; Dessing ‘97; Grimbergen ‘98)

wp

Wave Operator

H> contains information about medium velocity




One-Way Wave Operatot

Solution of the one-way wave equation
W(w3;x3) = exp(—j(z3 — z3)H1)

After discretization solve eigenproblem on H,

. i . ,
| 0 ()
® Helmholtz operator is Hermitian

] monOCh romat|c (Claerbout, 1971; Wapenaar and Berkhout, 1989)
= velocity C varies laterally




Modal transform

Solve eigenproblem & take square root

H, = LAY?LY
L is orthonormal & defines the modal transform that
diagonalizes one-way wavefield extrapolation

Eigenvalues play role of vertical wavenumbers
Extrapolation operator is diagonalized




Compressed wavetield extrapolation

A 1/2
u = Le_JA AzsT Hy

Offset (km)
4 5 6 7 8 9 10

Offset (km)

Original events
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Compressed wavetield extrapolation

y = RL"u
RejAl/QAC”’SLH

= arg miny (|x||1 s.t. Ax =Yy

~o

= X
Randomly subsample & phase rotate in Modal domain
Recover by norm-one minimization

Capitalize on

= the incoherence modal functions and point
scatterers

" reduced explicit matrix size
= constant velocity <=> Fourier recovery




Compressed wavetield extrapolation

Recorded Data Reconstructed events

Only 1 % of original modes were used ...




Observations

0

Despite the existence of AN BN SN SR
evanescent (exponentially
decaying) waves modes
recovery is successful

If you are looking for point-
scatterers, we have a proof of
concept that is fast

Earth is more complex ...

0.8 0.6 0.4 0.2

1

120 100 80 60 40 20 0

L \SLIM
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Compressed wavetield extrapolation

Offset (m)
200 400 600 800 1000

Extend to general
wavefields

Use curvelets as the
sparsity representation

Use the full &
compressed forward
operator operator

Compressively
extrapolate back 600m
to the source

1600 1800 2000

velocity (m/s)

1400

1200




Restriction & sparsity strategies

= Forward extrapolation:
y' = Re/A“AsapH
A .= RLYFC!

Wl .
arg miny ||x||; st. Ax=y

e
a=C'x,

= Inverse extrapolation:
y = RL” Fu
A = RejAl/QAangHcH

= argminy ||x|1 st. A'x=y
v=C'x.

Fli




Forward Extrapolation

Offset (m) Offset (m)
200 400 600 800 1000 400 600

Offset (m) Offset (m)
200 400 600 800 1000 400 600 800 1000

2 (a) is Full extrapolation

2 (b)-(d) is compressed extrapolation, (b) p = 0.04, (c)

4

= Q. = 0. L \sSLIM
p = 0.16, (d) p = 0.24 O
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Inverse Extrapolation

Offset (m) Offset (m)
400 600 800 400 600 800

Offset (m)
400 600 800

0.04
0.16, (c) pf=0.4, px=0.4

Seismic Laboratory for
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Evanescent Recovery

Offset (km) Offset (km)

(©)
2 (a) is downward extrapolated wavefield
2 (b) is matched filter

2 (c) is "compressed” inverse extrapolation




Velocity model
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Compressed inverse extrapolation
Overthrust exploding reflector Full forward extrapolation

Offset (km) Offset (km)
400 402 404 406 408 41C 4 5 6 7 8 9 10

Matched filter Recovered from p=0.25

Offset (km) Offset (km)
9} 6 7 8 9 10 6

 \SLIM
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Multiscale and angular compressed
wavefield extrapolation

Propose a scheme motivated by extensions of CS

(Tsaig and Donoho ‘06)

yj/: RJMJI/I 1

F | )

with j = {,(} the scale and angle.

= adapt discretization & restriction
= parallel implementation




Conclusions

Curvelets sparsity on the model and near
diagonalization yields stable inversion Gramm matrix

Jittered sampling and focussing in combination with
curvelets leads to wavefield recovery

Compressed wavefield extrapolation
reduction in synthesis cost
inverse extrapolation works well when focussed
mutual coherence curvelets and modes
performance of horm-one solver
keep the constants under control ...

Double-role CS matrix is cool ... upscaling to “real-
life” is a challenge ....




Open problems

What deeper insights can CS give?
® inversion near unitary operators

= coherency generalized to frames to study

cols modeling operator <=> curvelets
radiation vs guided modes <=> curvelets

Norm-one solver for reduced system as fast a LSQR
on the full system

Fast random eigenvalue solver does not exist yet ...

Extension of CS to waveform inversion & to
compressed computations ...

Many more ... a2

Imaging and Modeling
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