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Today’s challenges
Aside from spurious local minima seismic waveform 
inversion is difficult because of

 lack of control on the image amplitudes
 missing data and noise
 computational cost to form the operators

Today’s agenda is to leverage recent insights from 
applied harmonic analysis and information theory to

 restore amplitudes => affordable q-Newton updates
 stably reconstruct wavefields 
 compress wavefield-extrapolation operators 



Motivation
Exploit two aspects of curvelets, namely their

 parsimoniousness
 invariance under certain operators

Formulate
 data-adaptive scaling algorithms 
 non-adaptive wavefield reconstruction algorithms

Applications
 nonlinear migration-amplitude recovery
 nonlinear sampling for wavefields
 nonlinear sampling for operators



Today’s topics

Sparsity-promoting seismic-image amplitude 
recovery

 curvelet-domain diagonal approximation of PsDO’s
 stable sparsity-promoting inversion

Directional frame-based wavefield reconstruction by 
sparsity promotion

 curvelet parsimoniousness
 jitter sampling

Compression of FIO’s through compressive sampling
 measurement basis diagonalizes operator



The problem
Minimization:

After linearization (Born app.) forward model with noise:

Conventional imaging:

    is prohibitively expensive to invert
evaluation of         involves expensive wavefield 
extrapolators
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2-D curvelets

curvelets are of rapid decay 
in space

curvelets are strictly localized 
in frequency

x-t f-k
Oscillatory in one direction and smooth in the others!
Obey parabolic scaling relation length ≈ width2



Coefficients Amplitude Decay In 
Transform Domains

Fourier
Wavelets

Curvelets



Partial Reconstruction
Fourier (1% largest coefficients)

SNR = 2.1 dB



Partial Reconstruction
Curvelets (1% largest coefficients)

SNR = 6.0 dB



Curvelets are oscillatory in one direction and smooth in the others.

3-D curvelets



Approximate linearized 
inversion by curvelet scaling 

& sparsity promotion

Joint work with Chris Stolk* and 
Peyman Moghaddam

Mathematics Department, 
Twente University, the Netherlands

“Sparsity- and continuity-promoting seismic imaging 
with  curvelet frames” to appear in ACHA



Related work
Wavelet-Vaguelette/Quasi-SVD methods based on

 homogeneous operators
 absorb “square-root” of the Gramm matrix in WVD’s
 Wavelets/curvelets near diagonalize the operator and 

are sparse on the model
 Nonlinear solution of linear inverse problems by wavelet-vaguelette 

decomposition (Donoho ‘95)
 Recovering Edges in Ill-posed Problems: Optimality of curvelet 

Frames (Candes & Donoho ‘00)

Scaling methods based on a diagonal approximation 
of    , assuming

 smoothness on the symbol and conormality reflectors
 Illumination-based normalization (Rickett ‘02)
 Amplitude preserved migration (Plessix & Mulder ‘04)
 Amplitude corrections (Guitton ‘04)
 Amplitude scaling (Symes ‘07)

Ψ



Hessian/Normal operator
[Stolk 2002, ten Kroode 1997, de Hoop 2000, 2003]

Alternative to expensive least-squares migration.
In high-frequency limit     is a pseudo-differential operator

 composition of two Fourier integral operators
 pseudolocal (near unitary)
 singularities are preserved
 symbol is smooth for smooth velocity models

Corresponds to a spatially-varying dip filter after 
appropriate preconditioning (=> zero-order PsDO).
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• Substitutions:

So let Ψ = Ψ(x,D) be a pseudodifferential operator of order 0, with homo-
geneous principal symbol a(x, ξ).

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We

15

leading behavior for their composition, the normal operator Ψ, corresponds to that of an

order-one invertible elliptic PsDO .

To make this PsDOamenable to an approximation by curvelets, the following sub-

stitutions are made for the scattering operator and the model: K !→ K (−∆)−1/2 and

m !→ (−∆)1/2 m with ((−∆)αf)∧(ξ) = |ξ|2α · f̂(ξ). Alternatively, these operators can be

made zero-order by composing the data side with a 1/2-order fractional integration along

the time coordinate, i.e., K !→ ∂−1/2
t K (see e.g. 3). After these substitutions, the normal

operator Ψ becomes zero-order. Remark that these subsitutions are similar to the substi-

tution made in the WVD methods, where vaguelettes are introduced according the same

mappings. Before detailing the approximate diagonalization of the normal operator, we

first discuss the properties of continuous curvelets under this operator.

APPROXIMATION OF THE NORMAL OPERATOR

In this section, a diagonal approximation of the normal operator in the curvelet domain is

presented. Invariance properties of curvelets under the normal operator (see also Fig. 2)

are used. The approximation leads to a SVD-like decomposition of the normal operator

and makes large-scale seismic image recovery amenable to optimization. To understand our

approximation, we first list the important properties of continuous curvelets. An upper

bound for the L2-error of the diagonal approximation is discussed next, followed by the

diagonal decomposition of the normal operator and a method to numerically estimate the

diagonal from discrete implementations of the normal operator. We conclude this section

by discussing the empirical performance of the approximation on a synthetic data set.
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Tiling the ξ space
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In red, the essential frequency support of a curvelet φµ.
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Allows for decomposition of the normal operator

in Rd.

Lemma 1. With C ′ some constant, the following holds

‖(Ψ(x,D)− a(xν , ξν))ϕν‖L2(Rn
) ≤ C ′2−|ν|/2. (14)

To approximate Ψ, we define the sequence u := (uµ)µ∈M = a(xµ, ξµ). Let DΨ be the

diagonal matrix with entries given by u. Next we state our result on the approximation of

Ψ by CTDΨC.

Theorem 1. The following estimate for the error holds

‖(Ψ(x,D)− CTDΨC)ϕµ‖L2(Rn
) ≤ C ′′2−|µ|/2, (15)

where C ′′ is a constant depending on Ψ.

This main result proved in Appendix A shows that the approximation error for the

diagonal approximation goes to zero for increasingly finer scales. The approximation derives

from the property that the symbol is slowly varying over the support of a curvelet, an

approximation that becomes more accurate as the scale increases.

Decomposition of the normal operator

By virtue of Theorem 1, the normal operator can be factorized

(
Ψϕµ

)
(x) $

(
CTDΨCϕµ

)
(x) (16)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ. Because the seismic reflectivity can be written as a

superposition of curvelets, we can replace ϕµ in the above equation with the model m. We
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(
Ψϕµ

)
(x) !

(
CT DΨCϕµ

)
(x)

=
(
AAT ϕµ

)
(x)

with A :=
√

DΨC and AT := CT
√

DΨ.

Scaling



Matching procedure
Compute reference vector <=> defines g

 migrate data 
 apply spherical-divergence correction

Create “data” <=> defines f
 demigrate
 migrate

Estimate scaling by inversion procedure

Define scaled curvelet transform

Recover migration amplitudes by sparsity promotion.



Key idea
Estimation curvelet-domain scaling

 inversion of an underdetermined system
 over fitting
 positivity and reasonable scaling

Solution:
 use smoothness of the symbol 
 formulate nonlinear estimation problem that minimizes

with

 solve with l-BFGS [Noccedal, Symes ‘07]

Jγ(z) =
1
2
‖d− Fγez‖2

2,

gradJ(z) = diag{ez}
[
FT (

Fez − d
)]



Key idea

East 
quadrants

West 
quadrants

North 
quadrants

South 
quadrants

16 angles/
quad

8 angles/
quad

x1

x2

θ

Fine 
scales

coarser
scales

D1

D2

Dθ



Key idea
Impose smoothness via following system of equations

with

first-order differences in space and angle directions for 
each scale. Equivalent to

with

f = CT diag{Cg}w
0 = γLw

L =
[
DT

1 DT
2 DT

θ

]T

w̃ = arg minw
1
2
‖b−P[w]‖2

2 + γ2‖Lw‖2
2

P = CT diag{Cg}



Smoothness penalty

increasing smoothness

 reduces overfitting
 scaling is positive and reasonable



Smoothness penalty
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Smoothness penalty
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Our approach
“Forward” model:

 diagonal approximation of the demigration-migration 
operator

 costs one demigration-migration to estimate the 
diagonal weighting

with
y = migrated data
A := CT Γ

AAT r ≈ KT Kr
K = the demigration operator
ε = migrated noise.

y = KT Km + ε

≈ Ax0 + ε



Solution
Solve

P :






minx J(x) subject to ‖y −Ax‖2 ≤ ε

m̃ = (AH)†x̃

with

J(x) =

sparsity︷ ︸︸ ︷
α‖x‖1 +β ‖Λ1/2

(
AH

)†
x‖p

︸ ︷︷ ︸
continuity

.









Migrated data Amplitude-corrected & denoised migrated 
data

Imaging example

 two-way reverse time wave-equation migration with 
checkpointing [Symes ‘07]

 adjoint state method with 8000 time steps
 evaluation       takes 6 h on 60 CPU’sKT



Observations
Curvelet-domain scaling

 handles conflicting dips (conormality assumption)
 exploits invariance under the PsDO

Diagonal approximation
 exploits smoothness of the symbol
 uses “neighbor” structure of curvelets

Results on the SEG AA’ show
 recovery of amplitudes beneath the Salt
 successful recovery from clutter
 improvement of the continuity 
 robust w.r.t. noise

Curvelet-domain matched filter ...



A primer on compressive 
sampling



Compressive sensing
[Candes, Romberg & Tao, Donoho, many others]

Three key ingredients

 existence of a sparsifying transform
 handle wavefronts & reflectors with conflicting dips

 existence of a sub-Nyquist sampling strategy that 
reduces coherent aliases

 incoherence 
 random sampling scheme

 existence of a large-scale (norm-one) solver
 sparsity promotion by iterative thresholding and cooling



Seismic Laboratory for Imaging and Modeling

Simple example

Fourier
transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier
transform

Fourier
transform



Seismic Laboratory for Imaging and Modeling

Forward problem

x0

A

A := RFH

y
=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal



Seismic Laboratory for Imaging and Modeling

Naive sparsity-promoting recovery

inverse
Fourier

transform

detection +
data-consistent

amplitude recovery

Fourier
transform

y

A
H

=

A

y
=

detection
Ar

data-consistent 
amplitude recovery

y

A
†
r

=

x0



Seismic Laboratory for Imaging and Modeling

 “noise”
– due to AHA ≠ I
– defined by AHAx0-αx0 = AHy-αx0

Undersampling “noise”

less acquired data

3 detectable Fourier modes 2 detectable Fourier modes

1 out of 2 1 out of 4 1 out of 6 1 out of 8



Seismic Laboratory for Imaging and Modeling

Sparsity-promoting wavefield reconstruction

x0

Ay
= with

sparsifying transform
for seismic data

restriction operator

A := RS
H

[Sacchi et al ‘98]
[Xu et al ‘05]

[Zwartjes and Sacchi ‘07]
[Herrmann and Hennenfent ‘07]

complete wavefield
 (transform domain)

acquired
data

Interpolated data given by                 withf̃ = S
H
x̃

x̃ = arg min
x

||x||1 s.t. y = Ax



Seismic Laboratory for Imaging and Modeling

Observations

 bla bla
 generalized to A=RMS^H
 depends on solver, sampling strategy and sparsity transform



Compressive sampling 
of wavefields

joint work with Deli Wang (visitor 
from Jilin university) and Gilles 

Hennenfent

“Curvelet-based seismic data processing: a multiscale and nonlinear approach” 
& to appear in Geophysics, “Non-parametric seismic data recovery with curvelet 

frames” and “Simply denoise: wavefield reconstruction via 

jittered undersampling”



Solution of

recovers the function f. 

General form compressive 
sampling

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
with

A = RMST

R = restriction matrix
M = measurement matrix
ST = sparsity synthesis matrix
y = RMf



The problem

Total data 85 % traces missing



Requirements
Sparsifying transform (S)

 curvelet
 focussed curvelets 

Sampling scheme (RM)
 random sampling
 random jittered sampling => control largest gaps

Sparsity promoting solver (P)
 Iterative thresholding (Landweber + soft 

threshold)



Seismic Laboratory for Imaging and Modeling

Discrete random jittered undersampling

receiver
positions

receiver
positions

PDF

receiver
positions

PDF

receiver
positions

PDF

[Hennenfent and Herrmann ‘07]

Typical spatial 
convolution kernel

(amplitudes)

Averaged spatial 
convolution kernel

(amplitudes)
Sampling schemeType

po
or
ly

jit
te
re
d
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tim
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Solution of

recovers the wavefield f. 

Curvelet-based recovery

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
with

A = RICT

R = jitter sampling
I = Dirac basis

CT = curvelet synthesis
y = Rf



Seismic Laboratory for Imaging and Modeling

Model



Seismic Laboratory for Imaging and Modeling

Regular 3-fold undersampling



Seismic Laboratory for Imaging and Modeling

CRSI from regular 3-fold undersampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 6.92 dB



Seismic Laboratory for Imaging and Modeling

Random 3-fold undersampling



Seismic Laboratory for Imaging and Modeling

CRSI from random 3-fold undersampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 9.72 dB



Seismic Laboratory for Imaging and Modeling

Optimally-jittered 3-fold undersampling



Seismic Laboratory for Imaging and Modeling

CRSI from opt.-jittered 3-fold undersampling

SNR = 10.42 dB



Seismic Laboratory for Imaging and Modeling

Model



Seismic Laboratory for Imaging and Modeling

Regular 3-fold undersampling

SNR = 12.98 dB



Seismic Laboratory for Imaging and Modeling

SNR = 12.98 dB

Regular 3-fold undersampling



Seismic Laboratory for Imaging and Modeling

Optimally-jittered 3-fold undersampling

SNR = 15.22 dB



Seismic Laboratory for Imaging and Modeling

Optimally-jittered 3-fold undersampling

SNR = 15.22 dB



Solution of

recovers the wavefield f. 

Focussed recovery

with
A = R∆PCT

∆P = main primaries
y = Rf

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ∆PCT x̃



80 % missing



Focused curvelet 
recovery

Curvelet-based processing 3

SPARSITY-PROMOTING INVERSION

Our solution strategy is built on the premise that seismic
data and images have a sparse representation, x0, in the
curvelet domain. To exploit this property, our forward
model reads

y = Ax0 + n (1)

with y a vector with noisy and possibly incomplete mea-
surements; A the modeling matrix that includes CT ; and
n, a zero-centered white Gaussian noise. Because of the
redundancy of C and/or the incompleteness of the data,
the matrix A can not readily be inverted. However, as
long as the data, y, permits a sparse vector, x0, the ma-
trix, A, can be inverted by a sparsity-promoting program
(Candès et al., 2006b; Donoho, 2006) of the following type:

Pε :

{
x̃ = arg minx ‖x‖1 s.t. ‖Ax− y‖2 ≤ ε

f̃ = ST x̃
(2)

in which ε is a noise-dependent tolerance level, ST the
inverse transform and f̃ the solution calculated from the
vector x̃ (the symbol ˜ denotes a vector obtained by non-
linear optimization) that minimizes Pε.

Nonlinear programs such as Pε are not new to seismic
data processing and imaging. Refer, for instance, to the
extensive literature on spiky deconvolution (Taylor et al.,
1979) and transform-based interpolation techniques such
as Fourier-based reconstruction (Sacchi and Ulrych, 1996).
By virtue of curvelets’ high compression rates, the non-
linear program Pε can be expected to perform well when
CT is included in the modeling operator. Despite its large-
scale and nonlinearity, the solution of the convex problem
Pε can effectively be approximated with a limited (< 250)
number of iterations of a threshold-based cooling method
derived from work by Figueiredo and Nowak (2003) and
Elad et al. (2005). Each step involves a descent projection,
followed by a soft thresholding.

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-
sampled data with missing traces is a setting where a
curvelet-based method will perform well (see e.g. Herr-
mann, 2005; Hennenfent and Herrmann, 2006a, 2007). As
with other transform-based methods, sparsity is used to
reconstruct the wavefield by solving Pε. It is also shown
that the recovery performance can be increased when in-
formation on the major primary arrivals is included in the
modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete
data corresponds to the inversion of the picking operator
R. This operator models missing data by inserting zero
traces at source-receiver locations where the data is miss-
ing. The task of the recovery is to undo this operation
by filling in the zero traces. Since seismic data is sparse

in the curvelet domain, the missing data can be recovered
by compounding the picking operator with the curvelet
modeling operator, i.e., A := RCT . With this defini-
tion for the modeling operator, solving Pε corresponds to
seeking the sparsest curvelet vector whose inverse curvelet
transform, followed by the picking, matches the data at
the nonzero traces. Applying the inverse transform (with
S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in
Figure 1, where a real 3-D seismic data volume is recov-
ered from data with 80% traces missing (see Figure 1(b)).
The missing traces are selected at random according to a
discrete distribution, which favors recovery (see e.g. Hen-
nenfent and Herrmann, 2007), and corresponds to an av-
erage sampling interval of 125 m . Comparing the ’ground
truth’ in Figure 1(a) with the recovered data in Figure 1(c)
shows a successful recovery in case the high-frequencies
are removed (compare the time slices in Figure 1(a) and
1(c)). Aside from sparsity in the curvelet domain, no prior
information was used during the recovery, which is quite
remarkable. Part of the explanation lies in the curvelet’s
ability to locally exploit the 3-D structure of the data
and this suggests why curvelets are successful for complex
datasets where other methods may fail.

Focused recovery

In practice, additional information on the to-be-recovered
wavefield is often available. For instance, one may have
access to the predominant primary arrivals or to the ve-
locity model. In that case, the recently introduced focal
transform (Berkhout and Verschuur, 2006), which ’decon-
volves’ the data with the primaries, incorporates this addi-
tional information into the recovery process. Application
of this primary operator, ∆P, adds a wavefield interaction
with the surface, mapping primaries to first-order surface-
related multiples (see e.g. Verschuur and Berkhout, 1997;
Herrmann, 2007). Inversion of this operator, strips the
data off one interaction with the surface, focusing pri-
maries to (directional) sources, which leads to a sparser
curvelet representation.

By compounding the non-adaptive curvelet transform
with the data-adaptive focal transform, i.e., A := R∆PCT ,
the recovery can be improved by solving Pε. The solution
of Pε now entails the inversion of ∆P, yielding the spars-
est set of curvelet coefficients that matches the incomplete
data when ’convolved’ with the primaries. Applying the
inverse curvelet transform, followed by ’convolution’ with
∆P yields the interpolation, i.e. ST := ∆PCT. Compar-
ing the curvelet recovery with the focused curvelet recov-
ery (Fig ?? and ??) shows an overall improvement in the
recovered details.

SEISMIC SIGNAL SEPARATION

Predictive multiple suppression involves two steps, namely
multiple prediction and the primary-multiple separation.
In practice, the second step appears difficult and adap-



Curvelet 
recovery

SEISMIC DATA RECOVERY

The reconstruction of seismic wavefields from regularly-sampled data with missing traces

is a setting where a curvelet-based method will perform well (see e.g. Herrmann, 2005;

Hennenfent and Herrmann, 2006a, 2007). As with other transform-based methods, sparsity

is used to reconstruct the wavefield by solving Pε. It is also shown that the recovery

performance can be increased when information on the major primary arrivals is included

in the modeling operator.

Curvelet-based recovery

The reconstruction of seismic wavefields from incomplete data corresponds to the inversion

of the picking operator R. This operator models missing data by inserting zero traces at

source-receiver locations where the data is missing. The task of the recovery is to undo this

operation by filling in the zero traces. Since seismic data is sparse in the curvelet domain,

the missing data can be recovered by compounding the picking operator with the curvelet

modeling operator, i.e., A := RCT . With this definition for the modeling operator, solving

Pε corresponds to seeking the sparsest curvelet vector whose inverse curvelet transform,

followed by the picking, matches the data at the nonzero traces. Applying the inverse

transform (with S := C in Pε) gives the interpolated data.

An example of curvelet based recovery is presented in Figure 1, where a real 3-D seismic

data volume is recovered from data with 80 % traces missing (see Figure 1(b)). The missing

traces are selected at random according to a discrete distribution, which favors recovery (see

e.g. Hennenfent and Herrmann, 2007), and corresponds to an average sampling interval of

125 m . Comparing the ’ground truth’ in Figure 1(a) with the recovered data in Figure 1(c)

5



Original data



Observations
Regular subsampling is unfavorable

 random sampling favorable but suffers from gaps
 jitter sampling favorable and controls gaps

Focal transform 
 is reminiscent of an imaging operator
 improves recovery <=> additional compression

Solver
 solves norm one problem for 200-300 matrix-vector 

multiplications for 230 unknowns ...

Outlook
 Migration-based wavefield reconstruction

 sparsity on the image
 focussing of the image (extra constraint)

 or a more “blue sky” approach of compressive one-
way wavefield extrapolation



Compressed wavefield 
extrapolation
joint work with Tim Lin

“Compressed wavefield extrapolation” in Geophysics



Motivation
Synthesis of the discretized operators form bottle 
neck of imaging
Operators have to be applied to multiple right-hand 
sides
Explicit operators are feasible in 2-D and lead to an 
order-of-magnitude performance increase
Extension towards 3-D problematic

 storage of the explicit operators
 convergence of implicit time-harmonic approaches

First go at the problem using CS techniques to 
compress the operator ...



Related work
Curvelet-domain diagonalization of FIO’s

 The Curvelet Representation of Wave Propagators is Optimally 
Sparse (Candes & Demanet ‘05)

 Seismic imaging in the curvelet domain and its implications for the 
curvelet design (Chauris ‘06)

 Leading-order seismic imaging using curvelets (Douma & de Hoop 
‘06)

Explicit time harmonic methods
 Modal expansion of one-way operators in laterally varying media 

(Grimbergen et. al. ‘98)
 A new iterative solver for the time-harmonic wave equation (Riyanti 

‘06) 

Fourier restriction
 How to choose a subset of frequencies in frequency-domain finite-

difference migration (Mulder & Plessix ‘04)



signal in space domain

signal in space domain

F R L1

L1

incomplete signal in Fourier 
domain

incomplete and shifted signal 
in Fourier domain

shifted signal in space domain

signal in space domain

Compressed Sensing

Compressed Processing

e−j ∆x
2π Λe−j ∆x
2π ΛRF



Suppose we want to shift a sparse spike train, i.e.,

 Eigen modes <=> Fourier transform.
 Can this operation be compressed by compressive 

sampling?

Inspiration

u = Tτv

= e−τDv
= Le−jτΩLHv

where
D = LΩLH

L = The Fourier Transform



Calculate instead

 Take compressed measurements in Fourier space.
 Recover with sparsity promotion
 Shift operator is compressed by the restriction

yielding compressed rectangular operators.
 Extend this idea to wavefield extrapolation?

Operators on spikes
[Candes et. al, Donoho]






y′ = RejΩτFv
A = RF
ũ = arg minu ‖u‖1 s.t. Au = y′

R ∈ Rm×N with m" N



Representation for seismic data
[Berkhout]

s+

W-

R+

W+

p-



Different representations

diagonalization
operator

parsimony
wavefield

SVD/Lanczos/
modal

✓ ✕

curvelets ✕ ✓



Different representations

diagonalization
operator

parsimony
wavefield

SVD/Lanczos/
modal

✓ ✕

curvelets ✕ ✓

If incoherent this may actually work ....



Sparsity promoting formulation

Buys us stability w.r.t. missing data
 provided measurement and sparsity representations 

are mutually incoherent
 sufficient mixing <=> random restriction

Different strategy:
 Let the physics define the measurement basis
 Use the modal domain (domain of eigenfunctions) to 

define the measurement basis
 See what you can recover

Study eigenfunctions:
 mutual coherence with sparsity representation
 modal spectrum on the to-be-extrapolated wavefield



One-Way Wave Operator
 Structure of     confounds the meaning of its 

exponentiation, due to it being an operator

    contains information about medium velocity

A =
(

0 ωρ
1

ωρ1/2 (H2ρ−1/2) 0

)

Two-way
Wave Operator

A

H2 = k2(x,ω) + ∂µ∂µ

(Simon & Reed; Dessing ‘97; Grimbergen ‘98)

H2



One-Way Wave Operator
 Solution of the one-way wave equation

 After discretization solve eigenproblem on 

 Helmholtz operator is Hermitian
 monochromatic
 velocity   varies laterally

H2

(Claerbout, 1971; Wapenaar and Berkhout, 1989)

W(x3;x′
3) = exp(−j(x3 − x′

3)H1)

H2 =





(
ω
c̄1

)2
0 · · · 0

0
(

ω
c̄2

)2
· · · 0

...
...

. . .
...

0 0 · · ·
(

ω
c̄n1

)2





+ D2

c̄



Modal transform
 Solve eigenproblem & take square root

    is orthonormal & defines the modal transform that 
diagonalizes one-way wavefield extrapolation

 Eigenvalues play role of vertical wavenumbers
 Extrapolation operator is diagonalized

H1 = LΛ1/2LH

L

W = FHLe−jΛ1/2
(x3−x′

3)LHF



Compressed wavefield extrapolation

Recorded DataOriginal events

Forward model

Reconstruct point scatterers  from recorded data ....

u = Le−jΛ1/2
∆x3LHv



Compressed wavefield extrapolation

 Randomly subsample & phase rotate in Modal domain
 Recover by norm-one minimization
 Capitalize on 

 the incoherence modal functions and point 
scatterers

 reduced explicit matrix size
 constant velocity <=> Fourier recovery






y = RLHu

A = RejΛ1/2
∆x3LH

x̃ = arg minx ‖x‖1 s.t. Ax = y
ṽ = x̃



Compressed wavefield extrapolation

Recorded Data Reconstructed events

Reconstruction

Only 1 % of original modes were used ...



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 2: Illustration of the dip limitation during inverse extrapolation. (a) a bandwidth-

limited impulsive source. (b) the forward extrapolated wavefield (cf. Eq. (24)). (c) The

refocused pulse through inverse extrapolation with matched filtering (cf. Eq. (31)). (d)

the same but with least-squares inverse extrapolation (cf. Eq. (32)); (e-h) The time-spatial

spectra of (a-d). Notice the lack of spatial frequencies corresponding to steep dips in (f-h).

56

 Despite the existence of 
evanescent (exponentially 
decaying) waves modes 
recovery is successful

 If you are looking for point-
scatterers, we have a proof of 
concept that is fast

 Earth is more complex ...

Observations



Compressed wavefield extrapolation

(a)

(b)

Figure 10: Initial wavefields used for the stylized extrapolation examples. (a) A chain of

horizonally-oriented fine-scale curvelets playing the role of a “plane wave”. (b) A fan of

fine-scale curvelets with different angle.

Herrmann et.al. –

64

 Extend to general 
wavefields

 Use curvelets as the 
sparsity representation

 Use the full & 
compressed forward 
operator operator

 Compressively 
extrapolate back 600m 
to the source

(a)

(b)

Figure 8: Lateral velocity profiles with background velocity 2000 ms−1. (a) Profile with

velocity low of 1200ms−1. (b) Profile with velocity high of 3500ms−1. Spatial sampling

interval of the profiles is set to 4m with 256 samples, while the sigma of both Gaussian

functions are set to 80 m.

Herrmann et.al. –

62



Restriction & sparsity strategies
 Forward extrapolation:

 Inverse extrapolation:

W1 :






y′ = RejΛ1/2
∆x3LH

A := RLHFCT

x̃ = arg minx ‖x‖1 s.t. Ax = y′

ũ = CT x̃,

F1 :






y = RLHFu

A′ = RejΛ1/2
∆x3LHCH

x̃ = arg minx ‖x‖1 s.t. A′x = y
ṽ = CT x̃.



Forward Extrapolation

(a) (b)

(c) (d)

Figure 11: Compressed forward extrapolation according to W1 (cf. Eq. (42)) for different

restrictions. The velocity model corresponds to the velocity low and is plotted in Fig. 8(a).

The initial source wavefield v is plotted in Fig. 10(a). (a) The full extrapolated wavefield

u = Wv is included for reference; (b) The compressed forward propagated wavefield with

pf = 0.2 and pµ = 0.0.2; (c) The same as (b) but with pf = 0.4 and pµ = 0.4; (d) The same

as (b) but with pf = 0.6 and pµ = 0.4. Observe that the forward propagated wavefield is

largely recovered for the restriction in (c).

Herrmann et.al. –

65

 (a) is Full extrapolation
 (b)-(d) is compressed extrapolation, (b) p = 0.04, (c) 

p = 0.16, (d) p = 0.24



Inverse Extrapolation

(a) (b)

(c) (d)

(e) (f)

Figure 13: Compressed inverse extrapolation according F1 (cf. Eq. (45)) for different re-

strictions. For (a-c) the velocity model is given by the Gaussian low (Fig. 8(a)) and in (d-f)

by the Gaussian high (Fig. 8(b)). The initial source wavefield v is plotted in Fig. 10(a).

(a) Inverse extrapolated wavefield for pf = 0.2 and pµ = 0.2; (b) The same as (a) but with

pf = 0.4 and pµ = 0.4;(c) The same as (a) but with pf = 0.6 and pµ = 0.4; (d-f) the same

as (a-c) but for the velocity high. Observe that the recovery for the velocity high is slightly

better.

Herrmann et.al. –

67

 (a) p = 0.04
 (b) p = 0.16, (c) pf=0.4, px=0.4



Evanescent Recovery

(a) (b)

(c)

Figure 14: Inversion of the evanescent wavemodes according ṽm = WTu or ṽ = F1[u]

(cf. Eq. 45). The velocity model is constant at 2000ms−1. The initial source wavefield, v, is

defined in terms of a the curvelet fan plotted in Fig. 10(b). (a) The full forward propgated

wavefield u = Wv; (b) The matched filter; (c) The !1 recovery. Observe that the steep

evanescent angles are fully recovered.

Herrmann et.al. –

68

 (a) is downward extrapolated wavefield
 (b) is matched filter
 (c) is “compressed” inverse extrapolation



Velocity model

Figure 13: Lateral velocity profile for the overthrust examples.Herrmann et.al. –

68



Compressed inverse extrapolation
Overthrust exploding reflector Full forward extrapolation 

Matched filter Recovered from p=0.25



Multiscale and angular compressed 
wavefield extrapolation
 Propose a scheme motivated by extensions of CS 

 adapt discretization & restriction
 parallel implementation

Fj
1 :






yj = RjMju
A′

j := RjM
′
jC

T
j

x̃j = arg minxj
‖xj‖1 s.t. A′

jxj = yj
ṽ =

∑
j C

T
j x̃j,

with j = {j, l} the scale and angle.

(Tsaig and Donoho ‘06)



Conclusions
 Curvelets sparsity on the model and near 

diagonalization yields stable inversion Gramm matrix
 Jittered sampling and focussing in combination with 

curvelets leads to wavefield recovery
 Compressed wavefield extrapolation

 reduction in synthesis cost
 inverse extrapolation works well when focussed
 mutual coherence curvelets and modes
 performance of norm-one solver
 keep the constants under control ...

 Double-role CS matrix is cool ... upscaling to “real-
life” is a challenge ....



Open problems
 What deeper insights can CS give?

 inversion near unitary operators
 coherency generalized to frames to study

 cols modeling operator <=> curvelets
 radiation vs guided modes <=> curvelets

 Norm-one solver for reduced system as fast a LSQR 
on the full system

 Fast random eigenvalue solver does not exist yet ...

 Extension of CS to waveform inversion & to 
compressed computations ...

 Many more ...
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