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CO2 plume simulations: 

‣ draw permeability realization  
‣ inject 1.2 MT CO2 annually
‣ simulations output every 80 days

Monitoring: ‣ saturation & pressure data collected at injection & production wells
‣ time-lapse seismic images from 200 receivers (20m) & 8 sources (500m)

K ∼ p(K)
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Motivation 

Conditional Normalizing Flows (CNF)

Inference of CO2 flow patterns – a feasibility study

Dataset Simulation Results 

Conclusions

CO2 plume forecasts with fluid-flow simulations alone are uncertain

‣ can not expect precise predictions of regular & irregular flow
‣ need to condition CO2 plumes on observed monitoring data
‣ combine monitoring data w/ multiphase flow models  

Calls for principled approach using ML & data assimilation to
‣ incorporate time-lapse well & seismic data jointly ‣ assess uncertainty in CO2 plumes to inform policy decisions
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Training & inference: 
‣ CNF is trained on simulated pairs CO2 saturation  & time-lapse data 
‣  w/ seismic surface & saturation/pressure data at well

‣ At inference, CNF generates CO2 plume predictions 

x y
y = (y1, y3, y3)

x ∼ p( ⋅ ; yobs)

Observations: 
‣ conditional mean remains close to ground truth – high SSIM & low RMSE
‣ uncertainty (normalized std) is higher in geologically complex areas  

– top of the plume – fracture zone where CO2 leaks
‣ uncertainty correlates well w/ errors compared to ground truth

Inference framework:
‣ robust w.r.t to noise & uncertainties in permeability
‣ capable of predicting leakage w/ observed time-lapse data

Future work: 
‣ perform sequential Bayesian inference
‣ assimilate time-lapse observations & monitor for early leakage                                         
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