SLIM (+) ML4Seismic

Inference of CO₂ flow patterns – a feasibility study

Abhinav Prakash Gahlot¹, Huseyin Tuna Erdinc¹, Rafael Orozco¹, Ziyi Yin¹, Felix J. Herrmann¹ ¹Georgia Institute of Technology Email: agahlot8@gatech.edu, herdinc3@gatech.edu

Motivation CO₂ saturation $p(\mathbf{K})$ CO₂ plume forecasts with fluid-flow simulations alone are uncertain Permeability can not expect precise predictions of regular & irregular flow ▶ need to *condition* CO₂ plumes on observed *monitoring* data combine monitoring data w/ multiphase flow models Calls for *principled* approach using ML & data assimilation to ► incorporate time-lapse well & seismic data jointly ► assess *uncertainty* in CO₂ plumes to *inform* policy decisions **Conditional Normalizing Flows (CNF)** fluid-flow physics 👌 Jutul $\mathscr{G}_{\mathbf{w}}^{-1}(\mathbf{x})$ **JutulDarcy** CO₂ plume simulations: Training: • draw permeability realization $\mathbf{K} \sim p(\mathbf{K})$ ▶ inject 1.2 MT CO₂ annually simulations output every 80 days $\mathbf{x} \sim p_X(\mathbf{x})$ $\mathbf{z} \sim p_Z(\mathbf{z})$ Monitoring: $\mathcal{G}_{\mathbf{w}}(\mathbf{z})$ $\mathbf{K}^{\mathbf{i}} \sim p(\mathbf{K})$ $y^{i} = (y_{1}^{i}, y_{2}^{i}, y_{3}^{i})$ Sampling: Seismic image & Wells Permeability Saturation \mathbf{K}^{1} $\mathbf{x} \sim p_X(\mathbf{x})$ $\mathbf{z} \sim p_Z(\mathbf{z})$ Train CNF on *N* training pairs $\{\mathbf{x}^{(n)}, \mathbf{y}^{(n)}\}_{n=1}^{N}$ with $\hat{\theta} = \arg\min_{\alpha} \frac{1}{N} \sum_{\alpha} \left(\|f_{\theta}(\mathbf{x}^{(n)}; \mathbf{y}^{(n)})\|_{2}^{2} - \log \left| \det \mathbf{J}_{f_{\theta}} \right|$ Trained *invertible* network $p_{\hat{\theta}}(\mathbf{x} | \mathbf{y}) \approx p(\mathbf{x} | \mathbf{y})$ and turn, conditioned on any y, KN XN ► samples of **x** into noise – i.e., $f_{\hat{\theta}}(\mathbf{x}; \mathbf{y}) \sim N(0, I)$ ► noise samples $\mathbf{z} \sim N(0,I)$ into samples $\mathbf{x} \sim p_{\hat{\theta}}(\mathbf{x} \ \mathbf{y}^{\text{obs}})$ where $\mathbf{x} = f_{\hat{\theta}}^{-1}(\mathbf{z}; \mathbf{y}^{\text{obs}})$ **Training & inference:** → → ~ p(X

Georgia Tech

NEURAL INFORMATION PROCESSING SYSTEMS

 y_1^1

 y_{1}^{2}

 $\mathbf{y_1^N}$

 \mathcal{M} – dynamics operator \mathcal{H} – observation operator K– permeability model \mathbf{y}^{obs} – time-lapse observations

► CNF is trained on simulated pairs CO₂ saturation x & time-lapse data y ▶ $\mathbf{y} = (\mathbf{y}_1, \mathbf{y}_3, \mathbf{y}_3)$ w/ seismic surface & saturation/pressure data at well • At inference, CNF generates CO₂ plume predictions $\mathbf{x} \sim p(\cdot; \mathbf{y}^{\text{obs}})$

Observations:

- robust w.r.t to noise & uncertainties in permeability
- capable of predicting leakage w/ observed time-lapse data

Future work:

- perform sequential Bayesian inference
- assimilate time-lapse observations & monitor for early leakage

F. J. Herrmann. President's page: Digital twins in the era of generative AI. The Leading Edge, 42(11):730–732, 2023. . Ardizzone, et. al. Guided image generation with conditional invertible neural networks. CoRR, abs/1907.02392, 2019. M. Louboutin, et. al., slimgroup/judi.jl: v3.2.3, Mar. 2023. URL https://doi.org/10.5281/zenodo.7785440 Z. Yin, et. al., slimgroup/jutuldarcyrules.jl: v0.2.5, Apr. 2023. URL https://doi.org/10.5281/zenodo.7863970 Edge, 42(1):69-76, 2023.

