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Motivation

CO:2 plume forecasts with fluid-flow simulations alone are uncertain
> can not expect precise predictions of regular & irregular flow
» need to condition CO2 plumes on observed monitoring data
» combine monitoring data w/ multiphase flow models

Calls for principled approach using ML & data assimilation to
> incorporate time-lapse well & seismic data jointly
> assess uncertainty in CO2 plumes to inform policy decisions

Conditional Normalizing Flows (CNF)
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Z ~ p,(Z) X ~ py(X)
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Trained invertible networl’z_pgé(x y) = p(X y) and turn,
conditioned on any y,
» samples of X into noise —i.e., f3(X;y) ~ N(0,])
» noise samples z ~ N(0,/) into samples
X ~ py(x y°P%) where x = fé‘l(z; yobs)
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CO2 plume simulations:
» draw permeability realization K ~ p(K)
» inject 1.2 MT CO2 annually
» simulations output every 80 days
Monitoring:
» saturation & pressure data collected at injection & production wells
» time-lapse seismic images from 200 receivers (20m) & 8 sources (500m)
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Conditional Normalizing
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M — dynamics operator ~ # - observation operator K- permeability model 'y bs _ time-lapse observations

Training & inference:
» CNF is trained on simulated pairs CO:2 saturation X & time-lapse data y

» Y = (¥, Y3, Y3) W/ seismic surface & saturation/pressure data at well
» At inference, CNF generates CO2 plume predictions X ~ p( - ; y°®)
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Results
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Observations:
> conditional mean remains close to ground truth — high SSIM & low RMSE

> uncertainty (normalized std) is higher in geologically complex areas
— top of the plume — fracture zone where CO: leaks
> uncertainty correlates well w/ errors compared to ground truth

Conclusions
Inference framework:

» robust w.r.t to noise & uncertainties in permeability
» capable of predicting leakage w/ observed time-lapse data

Future work:
» perform sequential Bayesian inference

» assimilate time-lapse observations & monitor for early leakage
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