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Data deluge
“Moore’s law” for channel count:
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N e a r - s u r f a c e  m e a s u r e m e n t s  i n  e x p l o r at i o n  g e o p h y s i c s

Advances in seismic processing technology
Finally, growth in computational capability will foster ad-
vances in seismic processing technology for the huge data vol-
umes that will become standard. Currently, for example, the 
time required to pick first arrivals for statics using the inter-
active, semi-automatic approach can consume many months 
for surveys consisting of hundreds of millions of traces. As 
the size of surveys continues to increase, fully automatic 
first-arrival picking and quality control will be required. To 
achieve this goal, at Saudi Aramco we are revisiting exist-
ing autopicking techniques, but with a new vision. We turn 
the disadvantage of large data volumes into an advantage. 
!e statistics available from large data sets, particularly for 
wide-azimuth surveys, allow us to worry less about the qual-
ity of each autopick, and instead, rely on surface-consistent 
quality control and the inversion to produce a high-quality 
near-surface velocity model. Keho and Zhu (2009) present 
examples of how a fully automatic technique reduced the 
time for picking first arrivals and building the near-surface 
model from months to days. Moreover, the full utilization of 

high-density wide-azimuth data resulted in superior quality 
images (Figure 5).

Fully automatic first-arrival picking for large 3D land 
surveys will also necessitate the development of new quality 
control methods. At Saudi Aramco, we have developed, and 
continue to improve, novel quality control attributes based 
on surface-consistent decomposition (Burnstad, 2009). !ese 
include maps indicating the location of velocity inversions. 
Rapid identification of challenging areas, which require ad-
ditional near-surface analysis or noise suppression, is critical 
for improving productivity in seismic processing.

Simultaneous joint inversion of electromagnetic, high-
precision gravity, and seismic data is an important trend in 
our business that will become more common. Figure 6 shows 
an example from the Rub Al-Khali in Saudi Arabia where 
microgravity data were used in a simultaneous joint inversion 
with seismic traveltime data to build a better near-surface ve-
locity model for processing (Colombo et al., 2008). After re-
datuming using the improved model, a much superior image 
was obtained. Similarly, electromagnetic methods may also 
be used for this purpose and for identifying shallow drilling 
hazards.

Methods other than the conventional traveltime-based 
statics will be investigated and some will become standard. 
Much active research on these topics is not being currently 
pursued in the oil and gas industry, but is motivated by hy-
drology, engineering, and environmental applications. Full-
waveform inversion (Sheng et al., 2006) has been around for 
a long time, but was never in common use due to computa-
tional expense. Advances in computer capability now make 
these methods practical for aiding determination of near-sur-
face velocity models. Figure 7 clearly shows the detail that can 
be obtained in a near-surface velocity model through the use 
of early arrival acoustic-waveform tomography. In particular, 
notice the detection of velocity reversals.

Inversion of surface-wave dispersion curves for near-sur-
face velocities (O’Neil et al., 2008) will become practical as 
source and receiver arrays are made obsolete with the advent 
of ultrahigh-channel recording. Application of surface-con-
sistent processing concepts to surface-wave inversion (Krohn, 

2010) shows promise for removing source-generat-
ed noise and for estimating near-surface velocities.

True 3D acquisition also means recording the 
full vector wavefield. Ultrahigh-channel counts 
and point receivers will create new opportunities 
in multicomponent acquisition and processing for 
addressing the near surface and for subsurface im-
aging in general.

Finer spatial sampling will allow the near sur-
face to be addressed more commonly as an imaging 
problem (Kelamis et al., 2002). In fact, this will 
become a necessity because the technologies that 
move beyond traveltimes, such as waveform inver-
sion and gravity-EM-seismic joint inversion, will 
produce complex near-surface models for which 
the traditional statics concept is not valid. Figure 8 
shows a field example of data quality improvement 

Figure 3. “Moore’s law” for seismic channel count (modified from 
Monk, 2006).

Figure 4. A cross-spread gather from simultaneous sources acquisition is shown on 
the left. !e same gather is shown on the right after application of a deblending 
algorithm. Notice that the “noise” from the other sources has been removed by 
deblending.
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Challenges
Main driver: high costs of deep-sea drilling ($250 M a pop) & 
low 1–in–10 hit rates

Push for wave-equation based inversion/full-waveform inversion 
(FWI):

‣ high costs ($20 M) of acquisition – incomplete data 

‣ high costs (>200k cores) of computations – iterative 
algorithms touching all data are prohibitively expensive 

‣ nonconvex, i.e., local minima leading to nonuniqueness



SLIM

Mathematical 
structure

Full-waveform inversion:

Parameter estimation / machine learning problem w/ PDE 
constraints...

min
m

�(m) =
KX

i=1

�i(di,qi;m)

qi = ”known” monochromatic source

di = measured monochromatic shot record

m = unknown medium properties

K = ns ⇥ nf
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Data deluge

1 shot
2500 X 401 X 401

out of 100s of 1000s
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Our contributions
Proposal to randomize acquisition

‣ random source/receiver locations

‣ jittered time dithering in (simultaneous) source marine 
acquisition

‣ recovery via curvelet-domain sparsity promotion or low-
rank promotion
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Courtesy Nick Moldoveanu (WesternGeco)
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Coil shooting

Courtesy Nick Moldoveanu (WesternGeco)
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Coil shooting

Courtesy Nick Moldoveanu (WesternGeco)
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Coil shooting
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Solve an underdetermined system of linear equations:

Compressive sensing matrix:

data
(measurements
/observations)

unknown 
coefficients

b � Cn

A � Cn�P

x0 � CP

=

Ab

x0

Problem statement

n ⌧ P

A = RMSH



SLIM

Sparsity-promoting program:

Sparsity-promoting solver: 

Recover single-source prestack data volume:

Randomization favors sparse recovery by rendering interference 
into incoherent Gaussian noise...That’s the hope in practice... 

d̃ = SHx̃

Sparse recovery

support detection data-consistent amplitude recovery

x̃ = arg min
x

�x�1 subject to Ax = b{ {
[van den Berg and Friedlander, 2008]SPG�1
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Challenge
Starting SPGl1 recovery...

 ==================================================================================
 SPGL1_SLIM v. 46  (Tue, 14 Jun 2011) based on v.1017
 ==================================================================================
 No. rows              : 103672320      No. columns           : 1459253760
 Initial tau           : 0.00e+00      Two-norm of b         : 3.92e+05
 Optimality tol        : 1.00e-04      Target objective      : 0.00e+00
 Basis pursuit tol     : 1.00e-06      Maximum iterations    :      110

  Iter      Objective   Relative Gap  Rel Error      gNorm   stepG    nnzX    nnzG            tau
     0  3.9236638e+05  0.0000000e+00   1.00e+00  6.903e+03     0.0       0       0  2.2303101e+07
     1  3.9219958e+05  1.9364118e+00   1.00e+00  6.677e+03    -0.3       2       0
     2  3.4192692e+05  2.1884194e+00   1.00e+00  5.147e+03     0.0   14452       0
     3  3.2859582e+05  4.1722491e-01   1.00e+00  1.373e+03     0.0   48295       0

   108  1.5609476e+03  1.6347854e+04   1.00e+00  7.335e+00     0.0  356264726       0
   109  1.5850938e+03  9.3198454e+04   1.00e+00  4.283e+01     0.0  346355398       0
   110  1.5641524e+03  6.9308202e+04   1.00e+00  3.104e+01     0.0  345144021       0

 ERROR EXIT -- Too many iterations

 Products with A     :     125        Total time   (secs) :  34838.7
 Products with A'    :     112        Project time (secs) :  2875.2
 Newton iterations   :      26        Mat-vec time (secs) :  25882.1
 Line search its     :      23        Subspace iterations :       0
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WAZ   vs. coil shooting comparison: the same processing sequence 
was applied on both datasetsWAZ Coil

Courtesy Nick Moldoveanu (WesternGeco)



SLIM

Challenges
Extension to 3D seismic (5-D data) exposes vulnerabilities

‣ redundancy of directional spasifying transforms

‣ cost of matvecs and # of matvecs for convex 
optimization

Explore a different kind of structure

‣ “low-rank” SVD-free matrix / tensor factorizations

‣ rank increasing incoherent sampling
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Recent work
Under certain perturbations matrizations/tensorizations

‣ low-frequency frequency slices become low-rank

‣ randomized samplings induce high-rank

Conducive to rank-minimization

‣ SVD-free nuclear norm-minimization (w/ Ben Recht)

‣ SVD-free hierarchical Tucker w/ manifold optimization



3D Acquisition
[Regular sampled data]
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3D Acquisition
[Regular sampled data - “Transform” domain]
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3D Acquisition
[Irregular sampled data]
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[Irregular sampled data - “Transform” domain]
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Hierarchical Tucker Interpolant

Known	
  data
(Src	
  x,	
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  y)	
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  (63,66)

Interpolated	
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HTuck Interpolant - Regularized
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Acquisition costs reduced by randomization sampling

‣ e.g. via multiple randomly dithered sources

Cost reduction at cost of large-scale sparsity-promoting program

‣ dominated by sparsifying transform, which is

‣ or by factorization 

We win because processing costs << acquisition costs

‣ in 3D redundancy & processing turn-around times become 
main issues

O(n log n)

Observations

O(dNd+1)



Subsalt imaging improvements from 2005 to 2010: 
GSMP, FWI, RTM

2005 technologies
NAZ/SRME/WEM

2010 technologies
WAZ/GSMP/FWI/RTM

Courtesy Nick Moldoveanu (WesternGeco)



Subsalt imaging improvements from 2005 to 2010: 
GSMP, FWI, RTM

2005 technologies
NAZ/SRME/WEM

2010 technologies
WAZ/GSMP/FWI/RTM

Salt 
flank 

Subsalt structures

Base salt

Courtesy Nick Moldoveanu (WesternGeco)
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Big data
“We are drowning in data but starving for understanding” USGS 
director Marcia McNutt 

“Got data now what” Carlsson & Ghrist SIAM

http://bigdatablog.emc.com/wp-­‐content/uploads/2012/03/gotbigdata.png

http://www.newschool.edu/uploadedImages/events/lang/Data%20Deluge%20compressed(2).jpg

http://bigdatablog.emc.com/wp-content/uploads/2012/03/gotbigdata.png
http://bigdatablog.emc.com/wp-content/uploads/2012/03/gotbigdata.png
http://www.newschool.edu/uploadedImages/events/lang/Data%20Deluge%20compressed(2).jpg
http://www.newschool.edu/uploadedImages/events/lang/Data%20Deluge%20compressed(2).jpg
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Wave-equation 
based inversion

Industry has difficulty replenishing produced resources

‣ basically are no longer finding oil & gas

Big drive for transformative wave-equation based technology

‣ PDE constrained optimization or full-waveform 
inversion (FWI)
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We	
  model	
  the	
  data	
  in	
  the	
  acoustic	
  
approximation

Full-waveform inversion

d = Puq

�
!2m+r2

�
u = q

1/soundspeed2m =



H(m)Hvi = PT
i (di � Piui)

Formulation

non-­‐linear	
  least-­‐squares	
  problem:

gradient:

where:

min
m

�(m) =
MX

i=1

||di � Piui||22

@�

@mk
=

MX

i=1

uH
i

✓
@H(m)

@mk

◆H

vi

H(m)ui = qi



H(m)Hvi = PT
i (di � Piui)

Formulation

non-­‐linear	
  least-­‐squares	
  problem:

gradient:

where:

min
m

�(m) =
MX

i=1

||di � Piui||22

Inversion of very large 
sparse linear systems

@�

@mk
=

MX

i=1

uH
i

✓
@H(m)

@mk

◆H

vi

H(m)ui = qi
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Quasi-­‐Newton	
  approach

But:	
  evaluation	
  of	
  full	
  misfit	
  and	
  
gradient	
  is	
  very	
  expensive.

Batched optimization

mk+1 = mk + �ksk

sk = �Bkr�[mk]

min
m

�[m] =
1

K

KX

i=1

�i[m]
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The	
  gradient	
  is	
  the	
  average

which	
  we	
  can	
  approximate	
  by

Batched optimization

r� =
1

K

KX

i=1

r�i

r� ⇡ re� =
1

|I|
X

i2I
r�i
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Grow	
  the	
  sample	
  by	
  adding	
  
elements
• in	
  a	
  pre-­‐scribed	
  order
• chosen	
  at	
  random	
  without	
  
replacement

• chosen	
  at	
  random	
  with	
  
replacement

Optimization
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Error	
  in	
  the	
  gradient

Optimization
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling

x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

x [km]

z 
[k

m
]

0 0.5 1 1.5 2 2.5 3

0

0.5

1

1.5

2

10 of 39 passes

12 / 24



full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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full gradient incremental gradient gradient sampling
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Optimization
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Observations
Our batching strategy controls sampling and/or simulation errors

‣ by growing the batch size in accordance w/ convergence rate 

‣ best of both worlds: stochastic versus deterministic

‣ removes noise sensitivity of stochastic gradients

Can we exploit sparse structure of gradient updates

‣ Dimensionality reduction w/ Compressive Sensing 

‣  Acceleration w/ Approximate Message Passing
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Convex composite
structure[Burke & Ferris, ’95.]

FWI:

• exploit convexity by linearizing within

• control the norm of the updates to guarantee convergence

minm �(m) :=
1
2
�

smooth� �� �
D�F [m;Q] �2

F
� �� �

convex

min
�m

�(�m) :=
1

2
kD�F [m;Q]�rF [m;Q]�mk2F
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Randomized
source aggregates

D D = DWW
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�x = Sparse curvelet-coe�cient vector

S

⇤
= Curvelet synthesis

Q = Simultaneous sources

�d = Super shots

Linearized inversion with randomized supershots:

Convex optimization
[p=2 or p=1]

� em = S

⇤
argmin

�x
k�xk`p subject to k �d|{z}

b

�
lin. modellingz }| {
rF [m

0

;Q]S

⇤

| {z }
A

�xk
2

 �
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Fast Gauss-Newton step
[via stochastic optimization]

Exploit multi-experiment redundancy of seismic data volumes 
by rerandomized sampling

‣ regularly draw independent subsets of shot aggregates 

‣ cancels crosstalk/interference by rerandomization

Heuristic of current phase-encoding/dimensionality reduction 
for imaging/FWI
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Fast Gauss-Newton step
[     w/o rerandomization 3 super shots]`2



SLIM

Fast Gauss-Newton step
[     w/ rerandomization 3 super shots]`2



SLIM

Fast Gauss-Newton step
[via compressive sensing]

Randomized sampling turns coherent source crosstalk/
interferences into non-sparse incoherent noise

Exploits transform-domain structure exhibited within GN updates

‣ leverage curvelet-domain sparsity promotion

‣ map “noisy” crosstalk/interferences to coherent reflectors



SLIM

Fast Gauss-Newton step
[     3 super shots]`2



SLIM

Fast Gauss-Newton step
[     3 super shots ]`1



SLIM

Observations
[w/ reasonable PDE solve budget]

Rerandomization and curvelet-domain sparsity promotion:

‣ partly eliminate “noisy” crosstalk

‣ fail to remove “small” incoherent crosstalk

Can we somehow combine these two methods?

‣ continuation method for large-scale convex optimization

‣ use insights from approximate message passing
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Supercooling
Break correlations between the model iterate and matrix A 
by rerandomization

‣ draw new independent               after each subproblem 
is solved

‣ brings in “extra” information without growing the 
system

‣ minimal extra computational & memory cost

Progress one-norm solvers no longer stalled...

{bt,At}
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA1x� b1k2 s.t kxk�1  �1

[van den Berg & Friedlander, ’08]

[Hennefent et. al., ’08]

[Lin & FJH, ’09-]
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Supercooled
spectral-projected gradients
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA2x� b2k2 s.t kxk�1  �2
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Supercooled
spectral-projected gradients
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(c) Pareto curve and solution path

Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA3x� b3k2 s.t kxk�1  �3
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Supercooled
spectral-projected gradients
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

Lasso problem
1

2

3

4

min
x

kA4x� b4k2 s.t kxk�1  �4
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Fast Gauss-Newton step
[     w/o rerandomization 3 super shots]`1



SLIM

Fast Gauss-Newton step
[     w/ rerandomization 3 super shots]`1
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Fast Gauss-Newton step
[     w/ rerandomization 3 super shots]`1

cost of 1/2 gradient update w/ all data
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Fast Gauss-Newton step
[true update]
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Add a term to iterative soft thresholding, i.e.,

Holds for

‣ normalized Gaussian matrices

‣ large-scale limit and for specific thresholding strategy

x

t+1 = ⌘t
�
A

⇤
r

t + x

t
�

r

t = b�Ax

t+
kxt+1k0

n
r

t�1

Approximate 
message passing

[Donoho et. al, ’09-’12; Montanari, ’10-’12, Rangan, ’11]

Aij 2 n�1/2N(0, 1)

“message term”



SLIM

Statistically equivalent to

by drawing new independent pairs              for each iteration

Changes the story completely

‣ breaks correlation buildup

‣ faster convergence

x

t+1 = ⌘t
�
A

⇤
t r

t + x

t
�

r

t = bt �Atx
t

Approximate 
message passing

[Montanari, ’12]

{bt,At}
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Iteration t=2
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Iteration t=3
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Iteration t=4
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Blind case study

Synthetic data for unknown earth model was 
generated by a team from Chevron, 
ExxonMobil, and Schlumberger

Several contractor companies worked w/ large 
teams for weeks/months to get results w/ a lot 
of “hand holding”

We did not do too bad but do not really now...
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Algorithm
modified Gauss-Newton

Result: Output estimate for the model m
k  � 0; mk  �m01

while not converged do2

{Dk,Qk} � {DW

k,QW

k} with W

k ⇢ [e1, · · · , ens ]3

�Dk  � D

k �F [m

k
;Q

k
] ⌧k  � k�DkkF / kC2rF⇤
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k
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]�Dkk1

�x argmin||x||1⌧k
k�Dk �rF [m
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]C

H
2 xk2F4
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k
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H
2 �x5
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end7

Algorithm 1: modified Gauss Newton with sparsity promotion



Input Model 
[ray-based tomography + NMO]

Velocity (m/s)



Input Model 
[ray-based tomography + NMO]

Velocity (m/s)

after	
  hand	
  picking	
  of	
  first	
  breaks	
  in	
  600k	
  traces



Final result
[Quasi-Newton]

Velocity (m/s)



Final result
[Quasi-Newton]

Velocity (m/s)

got	
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�(V )/VRelative update



Final result
[w/ modified Gauss-Newton]

Velocity (m/s)



Final result
[w/ modified Gauss-Newton]

Velocity (m/s)

230400	
  PDE	
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Final result
[w/ modified Gauss-Newton]

Velocity (m/s)



Final result
[w/ modified Gauss-Newton]

Velocity (m/s)

7682400	
  X	
  2815407



Relative update �(V )/V



Final result
[w/ denoising]



Final result
[w/ denoising]



Final result
[w/ denoising]



Final result
[w/ denoising]
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Many seismic 
exploration 
t echn iques 
rely on the 
collection of 

massive data volumes that are 
mined for information during 
processing. This approach has 
been extremely successful, but 
current efforts toward higher-
resolution images in increas-
ingly complicated regions of 
Earth continue to reveal fun-
damental shortcomings in our 
typical workflows. The “curse 
of dimensionality” is the main 
roadblock and is exemplified by 
Nyquist’s sampling criteri-
on, which disproportionately 
strains current acquisition and processing systems as the size 
and desired resolution of our survey areas continues to 
increase. 

We offer an alternative sampling strategy that leverages 
recent insights from compressive sensing (CS) towards seismic 
acquisition and processing for data that are traditionally con-
sidered to be undersampled. The main outcome of this 
approach is a new technology where acquisition and processing 
related costs are no longer determined by overly stringent sam-
pling criteria.

Compressive sensing is a novel nonlinear sampling para-
digm, effective for acquiring signals that have a sparse repre-

sentation in some transform 
domain. We review basic facts 
about this new sampling para-
digm that revolutionized vari-
ous areas of signal processing 
and illustrate how it can be 
successfully exploited in vari-
ous problems in seismic explo-
ration to effectively fight the 
curse of dimensionality.

THE CURSE OF 
DIMENSIONALITY 
IN SEISMIC EXPLORATION
Modern-day seismic-data pro-
cessing, imaging, and inversion 
increasingly rely on computa-
tionally and data-intensive tech-
niques to meet society’s 

continued demand for hydrocarbons. This approach is problemat-
ic because it leads to exponentially increasing costs as the size of 
the area of interest increases. Motivated by recent findings from 
CS and earlier work in seismic data regularization [1] and phase 
encoding [2], we confront the challenge of the “curse of dimen-
sionality” with a randomized dimensionality-reduction approach 
that decreases the cost of acquisition and subsequent processing 
significantly. Before we discuss possible solutions to the curse of 
dimensionality in exploration seismology, we first discuss how 
sampling is typically conducted in exploration seismology. 

CLASSICAL APPROACHES
During seismic data acquisition, data volumes are collected that 
represent dicretizations of analog finite-energy wave fields in up 
to five dimensions including time. So, we are  concerned with the  Date of publication: 9 April 2012

1053-5888/12/$31.00©2012IEEE

[Felix J. Herrmann, Michael P. Friedlander, and Özgür Yılmaz]

[Compressive sensing in exploration seismology]

IMAGE COURTESY OF U.S. DEPARTMENT OF 
COMMERCE/NOAA/NESDIS/NATIONAL GEOPHYSICAL DATA CENTER



Further reading
Simultaneous, continuous, and random acquisition:

– A new look at simultaneous sources by Beasley et. al., ’98.

– Changing the mindset in seismic data acquisition by Berkhout ’08.

– Random Sampling: A New Strategy for Marine Acquisition, Moldoveanu, ’10

Simultaneous simulations, imaging, and full-wave inversion:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.

– Phase encoding of shot records in prestack migration by Romero et. al., ’00.
– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10 

– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09
– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, 

Matthias Chung, and Felix J. Herrmann. ’10

– Seismic waveform inversion by stochastic optimization. Tristan van Leeuwen, Aleksandr Aravkin and FJH, 
2010. 

– Efficient least-squares imaging with sparsity promotion and compressive sensing by FJH & Li, ’12

– Fast randomized full-waveform inversion with compressive sensing by Xiang Li et. al., ’12

– Accelerated large-scale inversion with message passing by FJH, ’12

https://www.slim.eos.ubc.ca/biblio/view/6663
https://www.slim.eos.ubc.ca/biblio/view/6663
https://www.slim.eos.ubc.ca/biblio/view/6684
https://www.slim.eos.ubc.ca/biblio/view/6684


Further reading
l Compressive sensing in seismic acquisition

– Non-parametric seismic data recovery with curvelet frames FJH & Hennenfent ’08

– Simply denoise: wavefield reconstruction via jittered undersampling” Hennenfent & FJH ’08

– Non-uniform optimal sampling for seismic survey design Mosher et. al. ’12
– Simultaneous seismic data denoising and reconstruction via multichannel singular spectrum analysis by 

Oropeza, V., and M. Sacchi, ‘11,

– Parallel Stochastic Gradient Algorithms for Large-Scale Matrix Completion by Recht, B., and C. Re ́, ’11
– Randomized marine acquisition with compressive sampling matrices, Mansour et. al., ’12

– Fast Methods for Rank Minimization with Applications to Seismic-Data Interpolation, R. Kumar et. al., ’12
– Only dither: efficient simultaneous marine acquisition by Wason et. al., ’12

l Compressive sensing, sparse solvers, and weighting
– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by 

Candes, 06.

– Compressed Sensing by D. Donoho, ’06
– Probing the Pareto frontier for basis pursuit solutions by E. van den Berg and M. Friedlander, ’08
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Further reading
Message passing

– Message passing algorithms for compressed sensing by David Donoho et. al., 2009

– Graphical Models Concepts in Compressed Sensing by Andrea Montanari, ‘2012
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