

Seismic Data Interpolation

- With each 3D seismic experiment, we acquire a massive 5D data volume
 - Volumes easily have dimensions
 100 x 100 (srcx, srcy) x
 400 x 400 (recx, recy) x 1024 (time)
- Physical and budgetary constraints limit the number of available sources and receivers

Seismic Data Interpolation

- Knowledge of the low-rank structure of certain matricizations of the underlying (full) tensor allows us to recover unknown entries from the subsampled tensor
- Matrix Completion Jellyfish
- Hierarchical Tucker Tensor Completion

Matricization

- The matricization of a tensor X with dimensions $1, \ldots, d$ along the dimensions $t = (t_1, \ldots, t_r)$ is the matrix formed by placing the dimensions t along the rows and dimensions t along the columns
- Denoted $X^{(t)}$

- A dimension tree T for dimensions $\{1,\ldots,d\}$ is a non-trivial binary tree such that
 - ullet the root, $t_{
 m root}$, is has the label $\{1,\ldots,d\}$
 - each non-leaf node, t, can be written as $t=t_l\cup t_r$ where t_l is the left $t_l\cap t_r=\emptyset$ child of t, t_r is the right child of t

• A tensor X can be written in the Hierarchical Tucker format corresponding to a dimension tree T and a vector of hierarchical ranks

$$(k_t)_{t \in T}, k_{\text{root}} = 1$$
 if it can be written as

$$\operatorname{vec}(X) = (U_{t_l} \otimes U_{t_r}) B_{t_{\text{root}}}^{(1,2)} \quad t = t_{\text{root}}$$
$$U_t = (U_{t_l} \otimes U_{t_r}) B_t^{(1,2)} \quad t \text{ not a leaf}$$

$$U_t \in \mathbb{C}^{n_t \times k_t} \qquad B_t \in \mathbb{C}^{k_l \times k_r \times k_t}$$

 $X-n_1 \times n_2 \times n_3 \times n_4$ tensor

- We don't need to store the matrices U_t when t is not a leaf node
 - We only need to store U_t for the leaves, B_t for the internal nodes
 - We don't need to store the (full) tensor

- Storage $\leq dNK + (d-2)K^3 + K^2$ where $K = \max_{t \in T} k_t$, $N = \max_{i=1,...,d} n_i$
- ullet Compare to N^d storage for the full tensor
- Effectively breaking the curse of dimensionality when $K \ll N$, d>3

- Truncation from a N^d array to the Hierarchical Tucker format can be performed in $O(dN^{d+1})$ time by using SVDs + a hierarchical construction
 - More details in the hTucker toolbox
- Cannot be applied when missing entries of the tensor

[1] A. Uschmajew, B. Vandereycken. The geometry of algorithms using hierarchical tensors. 2012

Quotient Manifold Structure

- The authors in [1] study the differential geometric structure of the *non*-orthogonal HTucker format
- We go beyond their analysis with the orthogonalized HTucker format + analysis to derive a computationally efficient optimization scheme for interpolation

Quotient Manifold Structure

• When we constrain U_t, B_t to be orthogonal (except at the root), the group action

$$\theta: M \times A \to M$$

$$\theta_{\{A_t\}_{t\in T}}(U_t, B_t) = (U_t A_t, (A_{t_l}^T \otimes A_{t_r}^T) B_t A_t)$$

induces a quotient manifold structure on the parameter matrices ${\cal M}$

Optimization

- By characterizing the horizontal and vertical spaces of M induced by this action, and by our choice of orthogonality constraints, we have a *Riemannian manifold* over which we can optimize
- The Riemannian metric is the standard inner product

Singular Value Regularization

- Currently we are only trying to minimize the energy misfit between our model + the data we have (as well as choosing a rank for our underlying model)
 - Our assumption is that the underlying tensor has *quickly*-decaying singular values in different matricizations

Singular Value Regularization

• The *Gramian* matrix G_t associated to the node t is the $k_t \times k_t$ symmetric positive semidefinite matrix which satisfies

$$\lambda_i(G_t) = \sigma_i(X^{(t)})^2$$

Singular Value Regularization

 The Gramian matrices for every node can be computed recursively via

$$G_{t_{\text{root}}} = 1$$

$$G_{t_r} = (B_t^{(k,k_l)})^H (I_{k_l} \otimes G_t) B_t^{(k,k_l)}$$

$$G_{t_l} = (B_t^{(k,k_r)})^H (I_{k_r} \otimes G_t) B_t^{(k,k_r)}$$

Regularized Problem

$$\min_{x=(U_t,B_t)} ||A\phi(x) - D||_2^2 + \sum_t \alpha_t ||G_t||_*$$

$$\alpha_t \ge 0 \quad U_t^T U_t = I_{k_t}, (B^{(1,2)})^H B^{(1,2)} = I_{k_t}$$

Since G_t is spd, $\|G_t\|_* = \operatorname{tr}(G_t)$, this simplifies to

$$\min_{x=(U_t,B_t)} ||A\phi(x) - D||_2^2 + \sum_t \alpha_t \operatorname{tr}(G_t)$$

Regularization

- This objective is differentiable
 - We already worked out the derivative of the tensor expansion function previously
 - It is straightforward to derive the total derivative $\frac{\partial G_t}{\partial B_{t'}}$ and compute it efficiently

Known data (Src x, Src y) = (63,66)

Interpolated data - SNR 13.2 dB

HTuck Interpolant - Regularized

Known data (Src x, Src y) = (63,66)

Interpolated data - SNR 15 dB

Interpolated data (Src x, Src y) = (22,18)

Interpolated data (Src x, Src y) = (73,18)

Reconstruction from 200 shots -> 6400 shots

Interpolated data (Src x, Src y) = (64,51)

Interpolated data (Src x, Src y) = (13,3)

No Regularization (Src x, Src y) = (81, 51)

3 shots removed + reconstructed

True data (Src x, Src y) = (45,73)

HTucker - SNR 8.46 dB

3 shots removed + reconstructed

True data (Src x, Src y) = (45,73)

Jellyfish - SNR 3.86 dB

3 shots removed + reconstructed

True data (Src x, Src y) = (28,81)

HTucker - SNR 7.98 dB

3 shots removed + reconstructed

True data (Src x, Src y) = (28,81)

Jellyfish - SNR 3.89 dB