Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2011 SLIM group @ The University of British Columbia.

SINBAD's research program

Felix J. Herrmann & Tristan van Leeuwen

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia

What do we do at SLIM...?

Main research areas

Randomized seismic acquisition design

- improved quality at reduced cost
- fundamental *new* insights in (simultaneous) acquisition

Robust & dimensionality-reduced full-waveform inversion

- removal of computational burden & memory imprint
- high-quality inversions from randomized subsets of data

Main research areas

Sparsity inducing imaging with surface-related multiples

- *improved* image quality by *leveraging*
 - relation between primaries and multiples
 - additional sparsity in the image domain
- efficiency via randomized dimensionality reduction

SLIM 🔶

Key technologies

Stochastic optimization & compressive sensing

sim. source acquisition, phase encoding, randomized batching etc.

Sparsifying transforms

wavelets, curvelets etc.

Large-scale (convex) optimization & robust statistics

one-norm minimization, semi-stochastic optimization, student t minimization etc.

Randomized seismic acquisition design

SLIM 🔶

Key goals

Efficient & high-quality acquisition

more information from fewer data by adapting insights from compressive sensing

Key strategy

Randomization of acquisition

- randomized source/receiver locations
- randomized time shifts in marine
- phase encoding on land or computer

Turn coherent interferences (aliases & source crosstalk) in Gaussian "noise"

SLIM 🕂

Use transform-domain (e.g. curvelets) sparsity promotion to remove the noise...

Randomized coil sampling

Hennefent, G. and Herrmann, F. J. Simply denoise: wavefield reconstruction via jittered under-sampling. Geophysics, Vol. 73, No. 3, pp. V19–V28, 2008.

Nick Moldoveanu. Random sampling: A new strategy for marine acquisition. SEG Technical Program Expanded Abstracts, 29(1):51–55, 2010.

Coil shooting

Courtesy Nick Moldoveanu

Coil center grid design

Courtesy Nick Moldoveanu

Coil center grid design

Regular center distribution

Courtesy Nick Moldoveanu

Coil center grid design

Regular center distribution

Random center distribution

Courtesy Nick Moldoveanu

Receiver spread

Courtesy Nick Moldoveanu

34 % of samples

Input data

Interpolation with 2D Curvelet

Input data

Interpolation with 2D Curvelet

Randomized marine acquisition

Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann. TR-2011-04. Simultaneous-source marine acquisition with compressive sampling matrices.

Hassan Mansour, Haneet Wason, Tim Lin and Felix J. Herrmann. A compressive sensing perspective on simultaneous marine acquisition. SBGF 2011.

Simultaneous acquisition matrix

For a seismic line with N_s sources, N_r receivers, and N_t time samples, the sampling matrix is

Bigger picture

SLIM 🐣

Sparse recovery

Solve the convex optimization problem (one-norm minimization):

Sparsity-promoting solver: $\mathbf{SPG}\ell_1$ [van den Berg and Friedlander, '08]

Recover single-source prestack data volume: $~\tilde{\mathbf{d}} = \mathbf{S}^{\mathbf{H}} \mathbf{\tilde{x}}$

Sequential vs. simultaneous sources

Sampling scheme: Random dithering

Sampling scheme: Random dithering

 $\mathbf{R}\mathbf{M}$

d

Sampling scheme: Random dithering

b

Sampling scheme: Random time-shifting

Sampling scheme: Random time-shifting

 \mathbf{RM}

d

Sampling scheme: Random time-shifting

b

Sampling scheme: Constant time-shifting

Sampling scheme: Constant time-shifting

 \mathbf{RM}

d

Sampling scheme: Constant time-shifting

b

Original data (Sequential acquisition)

1600

Sparsity-promoting recovery: Random dithering SNR = 10.5 dB

1600

Conventional recovery: Random time-shifting SNR = 5.04 dB

1600

Sparsity-promoting recovery: Random time-shifting SNR = 9.52 dB

1600

Sparsity-promoting recovery: Constant time-shifting SNR = 4.80 dB

1600

Key contributions

SLIM 🔮

Practical acquisition design & recovery

- Iand and marine acquisitions
- curvelet-domain sparsity induction
- large-scale one-norm solvers
- highly suitable for OBC

Challenge: upscale to full 3D

Robust & dimensionalityreduced full-waveform inversion

Key goals

Reduce computational burden & memory imprint

keep data in memory for each (GN) update

SLIM 🔮

Improve imaging & inversion results by

- exploiting transform-domain sparsity
- incorporating *robustness* in the formulation

Key strategies

Exploit structure and break coherences

 separable structure (randomized source superposition / selection, stochastic approximation, robust statistics)

SLIM 🕂

- multiscale structure (transform-domain sparsity & convex optimization)
- convex-composite structure (compressive sensing)

SLIM 🔶

Separable structure

FWI:

• is linear in the sources

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \sum_{i=1}^{K} \phi_i(\mathbf{m})$$

• costs are dominated by # of PDE solves = # of sources

Stochastic optimization

[Haber, Chung, and FJH, '10] [van Leeuwen, Aravkin, FJH, '10] [Haber, Chung, and FJH, '10] [Bertsekas, '96, Nemirovsky, '08]

Exploit separable structure = linearity w.r.t. sources by

replacing deterministic FWI with sums cycling over each source & corresponding shot record (columns of D & Q):

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \frac{1}{N} \sum_{i=1}^{n_s} \frac{1}{2} \|\mathbf{d}_i - \mathcal{F}[\mathbf{m}; \mathbf{q}_i]\|_2^2$$

SLIM 🐣

Randomized source encoding

[Morton, '98, Romero, '00]

Gradient [one shot]

Sequential-source image

SLIM 🛃

Simultaneous-source image

Two strategies

Reduce interferences by averaging amongst

- (sim.) source experiments (stochastic-average approximation)
- model iterates (stochastic approximation)
- or by
 - transform-domain sparsity promotion
 (curvelet-domain one-norm minimization on updates)

SLIM 🕂

SLIM 🔶

Stochastic average approximation (SAA)

[Haber, Chung, & FJH, '10]

by a stochastic-optimization problem:

$$\begin{split} \min_{\mathbf{m}} \mathbf{E}_{\mathbf{w}} \{ \phi(\mathbf{m}, \mathbf{w}) &= \frac{1}{2} \| \mathbf{D}_{\mathbf{w}} - \mathcal{F}[\mathbf{m}; \mathbf{Q}_{\mathbf{w}}] \|_{2}^{2} \} \\ &= \min_{\mathbf{m}} \phi(\mathbf{m}) \\ &\approx \min_{\mathbf{m}} \frac{1}{K} \sum_{j=1}^{K} \frac{1}{2} \| \underline{\mathbf{d}}_{j} - \mathcal{F}[\mathbf{m}; \underline{\mathbf{q}}_{j}] \|_{2}^{2} \end{split}$$
with $\mathbf{E}_{\mathbf{w}} \{ \mathbf{w} \mathbf{w}^{H} \} = \mathbf{I}$
and $\underline{\mathbf{d}}_{j} = \mathbf{D}_{\mathbf{w}_{j}}, \, \underline{\mathbf{q}}_{j} = \mathbf{Q}_{\mathbf{w}_{j}}$

Stochastic approximation (SA)

Algorithm 1: Stochastic gradient descent

[Bertsekas, '96; Haber, Chung, and FJH, '10]

SLIM 🛃

K=1 w and w/o redraw [noise-free case]

SLIM 🛃

SLIM 🐣

Observations

Stochastic-average approximation (**SAA**):

Error due to crosstalk decays slowly with batch size K

Stochastic approximation (SA):

- Renewals improve convergence significantly
- Requires averaging to remove crosstalk & noise instability, which is detrimental to convergence

Both methods rely on *averaging* to mitigate *crosstalk*. Are there better alternatives?

SLIM 🔶

Contributions

Control of the errors by increasing the batch size

- by moving from *stochastic* to *deterministic* optimization
- works with randomized sequential or simultaneous source experiments
- Add robustness
 - by using student t misfit functional
 - works with inaccurate forward models

Hybrid stochastic-deterministic optimization

Fast FWI w/o encoding

- Work with small subset of randomly chosen shots at each iteration
- slowly increase number of shots

Fast FWI w/o encoding

• Error in the gradient determines

convergence

SLIM 🔶

Full waveform inversion

data for 141 sources, 281 receivers, 15 Hz Ricker

multi-scale frequency domain inversion: [2.5-20] Hz in 16 bands

[Bunks `95; Pratt `98]

traditional L-BFGS ~10 full evaluations per frequency band

hybrid method ~2 full evaluations per frequency band

SLIM 🤚

FWI 2

time domain data min offset 100m, max offset 3 km 320 sources at 50m, 15 Hz Ricker

FWI 2 Estimate source wavelet: $\Phi[\mathbf{m}, \mathbf{a}] = ||a_i F[\mathbf{m}] \mathbf{q}_i - \mathbf{d}_i||_2^2$ SLIM 🔶

LS solution for $\, {\bf a}$:

$$\hat{a}_i = \frac{\left(F[\mathbf{m}]\mathbf{q}_i\right)^H \mathbf{d}_i}{||\mathbf{d}_i||_2^2}$$

then: $\nabla \Phi[\mathbf{m}, \hat{\mathbf{a}}] = \left(\frac{\partial a_i F[\mathbf{m}] \mathbf{q}_i}{\partial \mathbf{m}}\right)^H (a_i F[\mathbf{m}] \mathbf{q}_i - \mathbf{d}_i)$

SLIM 🔶

FWI 2

2 passes through the data for each freq. band

FWI 2

x [km]

SLIM 🐣

FWI 2

SLIM 🛃

Fast FWI

 work with small subsets of data at each iteration SLIM 🔮

 makes more sophisticated approaches feasible

Robust FWI

 LS approach very sensitive to noise or unexplained artifacts in the data SLIM 🔮

Use `robust' penalty

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

Fast robust FWI

From the Statistics to the Optimization

• Begin with assumptions on the model error

$$\mathbf{D} ~=~ \mathcal{F}[\mathbf{x};\mathbf{Q}] + oldsymbol{\epsilon}$$

- $\epsilon~\sim~$ Heavy Tailed Distribution with density p
- Compute the Maximum a Posteriori (MAP) estimate for **p**:

$$\min_{\mathbf{x}} \phi(\mathbf{x}) := -\log \left[\mathbf{p} \left(\mathbf{D} - \mathcal{F}[\mathbf{x}; \mathbf{Q}] \right) \right]$$

• Note if you start with Gaussian errors, you get LS formulation.

Seismic Laboratory for Imaging and Modeling

Densities and Penalties

Seismic Laboratory for Imaging and Modeling

Speedup: Semistochastic vs. Direct

Synthetic Example II: Missing Data

Seismic Laboratory for Imaging and Modeling

Inversion Results

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Seismic Laboratory for Imaging and Modeling

Key contributions

Practical & easy to implement extensions of FWI

- control of the error related to the randomized batches
- control over unmodelled events in the data

Challenge: upscale to *full 3D* but collaboration with Mike will take care of that...

Experiment I

[Demanet et. al.] [FJH et. al., 2008-]

Multiscale structure [model]

Multiscale & multidirectional structure of the Earth & wavefields

compressibility w.r.t. curvelet frames

Invariance of curvelets under action wave-equation Hessian

FWI is amenable to sparsity promotion:

- remove source crosstalk & restore leaked energy
- fill in the *nullspace* of the Hessian
- regularize Gauss-Newton updates

Dirac

curvelet synthesis

SLIM 🛃

20

40

Percentage of coefficients

60

80

100

80

60

40

20

0

0

Percentage of energy

Dirac

curvelet synthesis

Dirac

curvelet synthesis

Dirac

curvelet analysis

curvelet synthesis

Dirac

curvelet synthesis

Convex composite structure [Burke & Ferris, '95.]

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \| \mathbf{D} - \mathbf{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] \|_{F}^{2}$$

SLIM 🔮

• exploit convexity by linearizing within

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \|\mathbf{D} - \boldsymbol{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] - \boldsymbol{\nabla} \boldsymbol{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] \boldsymbol{\delta} \mathbf{m}\|_{F}^{2}$$

• control the norm of the updates to guarantee convergence

FWI:

Convex composite structure [Burke & Ferris, '95.] smooth

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \| \mathbf{D} - \mathbf{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] \|_{F}^{2}$$

SLIM 🔮

• exploit convexity by linearizing within

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \| \mathbf{\underline{D}} - \mathcal{F}[\mathbf{m}; \mathbf{\underline{Q}}] - \nabla \mathcal{F}[\mathbf{m}; \mathbf{\underline{Q}}] \boldsymbol{\delta} \mathbf{m} \|_{F}^{2}$$

• control the norm of the updates to guarantee convergence

FWI:

SLIM 🐣

Example BG Compass model

SLIM 🛃

FWI results

FWI results

Time-harmonic Helmholtz:

- 205 X 701 with mesh size of 10m
- 9 point stencil [C. Jo et. al., '96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver

FWI results

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20m
- 701 receivers with sampling interval 10m
- maximal offset 7km (3.5 X depth of model)
- Ricker wavelet with central frequency of I2Hz

SLIM 🛃

• Recording time for each shot is 3.6s

FWI results

FWI:

- I0 overlapping frequency bands with I0 frequencies (2.9Hz-25Hz)
- I0 Gauss-Newton steps for each frequency band (solved with max 20 spectral-projected gradient iterations)

SLIM 🐣

4000

3000 Velocity (m/s)

2000

Results

True model

SLIM 🐣

4000

3000 Velocity (m/s)

2000

Results

Initial model

Modified GN 7 sim. shots

SLIM 🛃

4000

3000 Velocity (m/s)

2000

25 times speedup compared to full GN

Modified GN 7 sim. shots with renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000

25 times speedup compared to full GN

SLIM 🐣

4000

3000 Velocity (m/s)

2000

Results

quasi-Newton (I-BFGS)

Modified GN 7 sim. shots with renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000

25 times speedup compared to full GN

Modified GN 7 sequential shots with renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000

Modified GN 7 sequential shots w/o renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000

Migration results

Time-harmonic Helmholtz:

- 409 X 1401 with mesh size of 5m
- 9 point stencil [C. Jo et. al., '96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength

SLIM 🔮

• solve wavefields on the fly with direct solver

Migration results

SLIM 🛃

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20m
- 701 receivers with sampling interval 10m
- maximal offset 7km (3.5 X depth of model)
- Ricker wavelet with central frequency of 30Hz
- Recording time for each shot is 3.6s

Migration results

Migration:

- I0 random frequencies (20Hz-50Hz)
- I7 simultaneous shots (versus 350 sequential shots)
- LASSO problems determined by SPGL1

Migration results imaged perturbation with renewals Lateral distance (m) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 500 0 500 Depth (m) 00 1000 500 2000

Thursday, November 17, 2011

SLIM 🔶

Key contributions

More challenging to implement extensions of FWI

- works with randomized sequential or simultaneous source experiments
- control of the error related to the randomized batches by sparsity promotion & batch size
- control over null space of the wave-equation Hessian

Challenge: upscale to *full 3D* but careful coordination with Mike will take care of that...

Sparsity inducing imaging with surface-related multiples

Key goals

Use information in surface-related multiples

SLIM 🛃

- estimate the source function
- "fill in" missing data

Improve imaging results by

- exploiting transform-domain sparsity
- incorporating *physics* in the formulation

SLIM 🔶

Key strategies

Use sparsity promotion to stabilize wavefield inversion Combine with sparsity promoting imaging Use randomized dimensionality reduction

EPSI Model

Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

SLIM

recorded data predicted data from primary IR $\mathbf{P} = \mathbf{G}(\mathbf{Q} + \mathbf{R}\mathbf{P})$

- ${f P}$ total recorded up-going wavefield
- **Q** source signature (incl. src ghosts)
- **R** reflectivity of free surface (assume -1)
- G primary impulse response

(all monochromatic data matrix, implicit ω)

EPSI Inversion

Estimation of Primaries by Sparse Inversion (van Groenestijn and Verschuur, 2009)

SLIM 🛃

recorded data predicted data from primary IR $\mathbf{P} = \mathbf{G}(\mathbf{Q} + \mathbf{R}\mathbf{P})$

Inversion objective:

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} \|\mathbf{P} - \mathbf{G}(\mathbf{Q} + \mathbf{RP})\|_2^2$$

+ Sparse inversion

Convolution model

Convolution Model

Up-going Primary
$$= \mathbf{G}\mathbf{Q}$$

EPSI Model

Up-going Primary + Multiples = $\mathbf{GQ} + \mathbf{GRP}$

additional info on G

- P total recorded up-going wavefield
- **Q** source signature (incl. src ghosts)
- **R** reflectivity of free surface (assume -1)
- G primary impulse response

(all monochromatic data matrix, implicit ω)

Pluto15 data Elastic FD Modeling muted no deghosting

Pluto15 REPSI Primary IR (G) no transform used 80 iters

F-K Spectrum of data

F-K Spectrum of REPSI Primary IR

k Q k -0.02 0-____ 0.01 -0.01 0.02 -0.02 -0.01 0.01 0.02 0 0 frequency (Hz) frequency (Hz) 5-5-10-10-F-K Spectrum of data F-K Spectrum of REPSI Primary IR

Gulf of Suez data

SLIM 🛃

shot gather interpolated, muted reciprocity no deghosting

Gulf of Suez REPSI Primary IR (G) shot gather 80 SPG grad. iterations

F-K Spectrum of data

F-K Spectrum of REPSI+Transform Primary IR

Gulf of Suez REPSI Primary IR (G) shot gather 80 SPG grad. iterations

Gulf of Suez REPSI + Transform

SLIM 🛃

Primary IR (G) shot gather 2D Curvelet (Src-Rcv) Spline a=3.0 DWT (Time) 90 SPG grad. iterations

F-K Spectrum of REPSI+Transform Primary IR

Sparse inversion of data with multiples

Sparse inversion of data with multiples with EPSI

EPSI problem

recorded data

predicted data

SLIM 🛃

$$\hat{\mathbf{P}} = \hat{\mathbf{G}}(\hat{\mathbf{Q}} - \hat{\mathbf{P}})$$

- "low-rank" approximation (known)
- $\hat{\mathbf{Q}}$ full-rank diagonal matrix (known)
- $\hat{\mathbf{R}}$ assume $-\mathbf{I}$
- $\hat{\mathbf{G}}$ unknown

 $\hat{\mathbf{P}}$

Dimensionality-reduction via SVD

Approximate data matrix $\hat{\mathbf{P}}$ with low-rank factorization:

$$\hat{\mathbf{P}} = \hat{\mathbf{G}}(\hat{\mathbf{Q}} - \hat{\mathbf{P}})$$

 $\hat{\mathbf{P}} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$

 $f U_{n_r imes k}$ left singular vectors $f \Sigma_{k imes k}$ singular values $f V_{n_s imes k}$ right singular vectors

k : approximate rank $k << min(n_r, n_s)$

Dimensionality Reduction Via SVD

Approximate data matrix $\hat{\mathbf{P}}$ with low-rank factorization:

SLIM 🛃

Thursday, November 17, 2011

Full vs approximated data

 $\hat{\mathbf{P}}$

Approximated $\hat{\mathbf{P}}$

$$n_s = n_r = 150$$

 $k = 20 = 14\%$
 $SNR = 16dB$

Full vs approximated data

$\widehat{\mathbf{P}}-$ approximated $\widehat{\mathbf{P}}$

Multiplication speed up 7.5 x Memory usage 70% less

500

400

300

200

100

0

-100

-200

-300

-400

-500

Gulf of Suez Total Data

SLIM 🐣

shot gather

$$n_r = 355$$

 $n_s = 355$
 $n_t = 1024$
 $dt = .004s$

Gulf of Suez <u>Full Data</u> Primary IR (G) SLIM 🔶

Gulf of Suez 20% of rank budget Primary IR (G)

SNR = 27dB

Gulf of Suez 12% of rank budget

Primary IR (G) SNR = 17dB

Gulf of Suez

<u>8% of rank budget</u> Primary IR (G) SNR = I2dB

Difference in EPSI Result

20% rank budget

Primary IR full data Primary IR approximated Data

SLIM 🔶

Key contributions

Robust implementation of estimation of primaries by sparse inversion

- Ieverages bi-convex optimization
- output deconvolved surface-free Green's function

Combination with imaging & dimensionality reduction look promising

Challenge: upscale to full 3D

SLIM 🔶

What can SLIM do help bring FWI into production...
Make FWI more

- efficient via dimensionality-reduction
- robust via (student t) misfit penalty functionals
- effective via transform-domain sparsity promotion

SLIM 🗍

- versatile via combination with
 - modeling of surface-related multiples
 - sophisticated randomized acquisition front end
 - elastic modeling & parameter identification

Short term [FWI]

Incorporation of

- dimensionality reduction via batching
- robustness via student t

Deliverable: scalable framework with manageable memory imprint

Can be done with existing code base

delivery more or less 'immediate'

Mid term [+ imaging]

Regularization & conditioning via inclusion of

- transform-domain (joint) sparsity promotion
- approximations to the wave-equation Hessian
- Deliverable: effective formulation that 'scales' to high frequencies Requires
 - exposure of Jacobians, their adjoints, and the GN Hessian
 - multiple preconditioned GN iterations (parallellization)

Long term [+ multiples & acquisition]

Combinations with

- efficient randomized acquisition schemes
- (dimensionality-reduced) SRME operators

Deliverable: *parsimonious* formulation that leverages CS & SRME Requires

- implementation & integration of SRME in FWI/imaging
- careful integration with incomplete acquisition including new sampling criteria

What's needed

Thursday, November 17, 2011

Research team

SLIM 🔮

Sustained support for

- research faculty at competitive salaries
- **faculty**

Matched funding via

- NSERC collaborative R&D grants
- NSERC industrial chair grants
- Provincial grants + UBC support

Research team

BG commitment addresses current needs for warm bodies

- to supervise students
- to coordinate R & D
- to maintain & develop IT infrastructure

Situation without support is unsustainable

- SLIM team > 20 people = max handled by single faculty
- miss experienced long-term team members

IT infrastructure

- Sustained support for a "small" local compute solutions to prototype new 3D algorithms
- Access to a "large" compute solution to test developed algorithms on industry-size problems

Matched funding via

- NSERC collaborative R&D grants
- Provincial grants + UBC support

NO funding for HP-IT in Canada without industry matching!

Organization

Matching will be organized in a "data mining satellite institute" at UBC involving faculty from CS, Math, EOS, etc.

"Brazilian parent institute" modeled after math institutes

- short/long-term thematic programs for visitors
- assistance with large-scale implementations
- help with industrialization where faculty act as consultants

Guarantees influx of innovations in the area of "data mining".

Requires a long-term sustainable approach, which differs from recent initiatives in Singapore, Kaust, and Brazil in the 80's

Thursday, November 17, 2011

Phases

- I. Build parent and satellite institutes
 - access to IP from satellites
- 2. Have Brazil develop their own IP
 - generate 'own' capability
- 3. Help Brazil export IP
 - develop world-class services

HPC considerations

Overview

Part 1

- Data organization
- Algorithm design
- example: Matlab & Javaseis

Part 2

- Fast FWI without source encoding
- FWI with robust misfit

Part 1

Data organization trace-based: shot-based: cube-based: standard RTM, FWI FWI+ processing

SLIM 🛃

Trace-based

operations that work on single trace

SLIM 🛃

- `embarrassingly parallel'
- lot of disk i/o

shot-based

- RTM & FWI ...
- `embarrassingly parallel', given that one shot fits in the memory of a single node

SLIM 🕂

 avoid communication & storage of data by reducing each shot to end result (misfit, gradient)

shot-based

misfit and gradient for FWI:

$$f = \sum_{i} f_{i}, \quad f_{i} = ||\mathbf{d}_{i} - P\mathbf{u}_{i}||_{2}^{2}$$
$$\mathbf{g} = \sum_{i} \mathbf{g}_{i}, \quad \mathbf{g}_{i} = \mathbf{u}_{i} \otimes \mathbf{v}_{i}$$

only communicate $\{f_i, g_i\}$, no need to store wavefields $\{u_i, v_i\}$

cube-based

least-squares migration, FWI+

SLIM 🔮

- needs `massively parallel' approach
- store *or* recompute wavefields

cube-based

LS-migration:
$$\min_{\mathbf{x}} \sum_{i} ||A_i \mathbf{x} - \mathbf{b}_i||_2^2$$

$$\mathbf{b}_i = \mathbf{d}_i - P\mathbf{u}_i$$

at each iteration we need the residual for all *i*, and the action of A_i and A_i^* , all of which require the wavefields $\{\mathbf{u}_i, \mathbf{v}_i\}$

Algorithm design

- object-oriented programming
- algorithms work at high level and manipulate objects
- divide code into testable units

Algorithm design

- data cube and model `objects' $\mathcal{D} \ \mathcal{M}$
- modelling operator

$$\mathcal{D} = F(\mathcal{M})$$

jacobian

$$\mathcal{D}' = J\mathcal{M}', \quad \mathcal{M}' = J^*\mathcal{D}'$$

SLIM 🛃

Algorithm design

 $egin{split} \mathcal{D} &= F(\mathcal{M})\ \mathcal{R} &= \mathcal{D} - \mathcal{D}_{\mathrm{obs}}\ f &= \mathrm{norm}(\mathcal{R})\ \mathcal{G} &= J^*(\mathcal{R})\ \mathcal{M} &= \mathcal{M} - lpha \mathcal{G} \end{split}$

compute \mathbf{u}_1	m
	$\mathbf{d}_{1,\mathrm{obs}}$

compute \mathbf{u}_2	m
	$\mathbf{d}_{2,\mathrm{obs}}$

compute \mathbf{u}_3	m
	$\mathbf{d}_{3,\mathrm{obs}}$

compute	\mathbf{u}_4	m
		$\mathbf{d}_{4,\mathrm{obs}}$

Algorithm design

$$\mathcal{D} = F(\mathcal{M})$$

$$\mathcal{R} = \mathcal{D} - \mathcal{D}_{obs}$$

$$f = \operatorname{norm}(\mathcal{R})$$

$$\mathcal{G} = J^*(\mathcal{R})$$

$$\mathcal{M} = \mathcal{M} - \alpha \mathcal{G}$$

$$\mathbf{r}_1 = P\mathbf{u}_1 - \mathbf{d}_{1,\text{obs}} \qquad \begin{aligned} \mathbf{u}_1 \mathbf{m} \\ \mathbf{d}_{1,\text{obs}} \end{aligned}$$

$$\mathbf{r}_2 = P\mathbf{u}_2 - \mathbf{d}_{2,\text{obs}} \quad \begin{aligned} \mathbf{u}_2 \mathbf{m} \\ \mathbf{d}_{2,\text{obs}} \end{aligned}$$

$$\mathbf{r}_3 = P\mathbf{u}_3 - \mathbf{d}_{3,\text{obs}} \qquad \begin{bmatrix} \mathbf{u}_3 \, \mathbf{m} \\ \mathbf{d}_{3,\text{obs}} \end{bmatrix}$$

$$\mathbf{r}_4 = P\mathbf{u}_4 - \mathbf{d}_{4,\text{obs}} \quad \begin{aligned} \mathbf{u}_4 \, \mathbf{m} \\ \mathbf{d}_{4,\text{obs}} \end{aligned}$$

Algorithm design

$$\mathcal{D} = F(\mathcal{M})$$
$$\mathcal{R} = \mathcal{D} - \mathcal{D}_{obs}$$
$$\boldsymbol{f} = \operatorname{norm}(\mathcal{R})$$
$$\mathcal{G} = J^*(\mathcal{R})$$
$$\mathcal{M} = \mathcal{M} - \alpha \mathcal{G}$$

$$f = \sum_{i} f_{i}$$

$$f_{1} = ||\mathbf{r}_{1}||_{2}^{2} \qquad \mathbf{r}_{1} \mathbf{u}_{1} \mathbf{m}$$
$$\mathbf{d}_{1,\text{obs}}$$
$$f_{2} = ||\mathbf{r}_{2}||_{2}^{2} \qquad \mathbf{r}_{2} \mathbf{u}_{2} \mathbf{m}$$
$$\mathbf{d}_{2,\text{obs}}$$

112

$$f_3 = ||\mathbf{r}_3||_2^2$$
 $\mathbf{r}_3 \, \mathbf{u}_3 \, \mathbf{m}$
 $\mathbf{d}_{3,\mathrm{obs}}$

$$f_4 = ||\mathbf{r}_4||_2^2$$
 $|\mathbf{r}_4 \, \mathbf{u}_4 \, \mathbf{m}|$
 $\mathbf{d}_{4,\text{obs}}$

SLIM 🐣

Algorithm design

Algorithm design

 $\mathcal{D} = F(\mathcal{M})$ $\mathcal{R} = \mathcal{D} - \mathcal{D}_{obs}$ $f = norm(\mathcal{R})$ $\mathcal{G} = J^*(\mathcal{R})$ $\mathcal{M} = \mathcal{M} - \alpha \mathcal{G}$

$\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$	$egin{array}{c} \mathbf{r}_1\mathbf{u}_1\mathbf{m}\ \mathbf{v}_1,\mathbf{g}\ \mathbf{d}_{1,\mathrm{obs}} \end{array}$	
$\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$	$egin{array}{c} \mathbf{r}_2\mathbf{u}_2\mathbf{m}\ \mathbf{v}_2,\mathbf{g}\ \mathbf{d}_{2,\mathrm{obs}} \end{array}$	
$\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$	$egin{array}{c} \mathbf{r}_3\mathbf{u}_3\mathbf{m}\ \mathbf{v}_3,\mathbf{g}\ \mathbf{d}_{3,\mathrm{obs}} \end{array}$	
$\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$	$\mathbf{r}_4 \mathbf{u}_4 \mathbf{m}$ \mathbf{v}_4, \mathbf{g}	

 $\mathbf{d}_{4,\mathrm{obs}}$

SLIM 🔮

- use matlab as `scripting' language
- call external modelling code
- store wavefields on disk
- keep model and update in memory

SLIM 🛃

```
% read data
Dobs = DataMap('datafile');
```

```
% set parameters
model = ...
Q = ...
```

% initial model m0 = readfile('modelfile');

% FWI fh = @(x) Jls(x,Q,model);

```
mn = minimize(fh,m0);
```

Thursday, November 17, 2011

Matlab example

```
[D] = function F(m,Q,model)
```

```
...
D = DataMap(nrec,nsrc,nfreq)
for i=1:nfreq
for j=1:nsrc
u = simulate(m,Q(:,i),...);
D(:,j,i) = P*u;
end
end
```

SLIM 🔶

[f,g] = function Jls(m,Q,D,model)

```
% modeling

[Dt,Jt] = F(m,Q,model);

% residual

R = Dt - D;

% misfit

f = norm(R)<sup>2;</sup>

% gradient

g = Jt*R;
```

SLIM 🛃

```
function [m] = minimize(fh,m0)
mk = m0;
```

```
for k = 1:maxiter
  [fk,gk] = fh(mk);
  I = 1;
  fn = fh(mk - I*gk);
  while fh(mk-I*gk) > fk + I*norm(gk);
    I = I/2;
  end
    mk = mk - I*g;
end
```

SLIM 🛃

class DataMap

properties

size

filename

methods function M = DataMap(filename,size) % create empty datamap

function M = plus(A,B)
% create new datamap A+B

function a = norm(A)
% calculate norm of datamap

JavaSeis

 use existing capability for handling seismic data in distributed (memory and disk)environment SLIM 🕂

- optimized operations such as transpose and FFT's
- can be bridged to matlab

Conclusions

- Use matlab as `scripting language'
- allows us to quickly propotype and benefit from algorithms developed by `experts'

Conclusions

- Overloading allows us to call external modelling code, and access data from external sources (disk, memory)
- no need to explicitly import data into matlab