Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2011 SLIM group @ The University of British Columbia.

#### SINBAD's research program

Felix J. Herrmann & Tristan van Leeuwen

SLIM Seismic Laboratory for Imaging and Modeling the University of British Columbia



# What do we do at SLIM...?

# Main research areas

Randomized seismic acquisition design

- improved quality at reduced cost
- fundamental *new* insights in (simultaneous) acquisition

Robust & dimensionality-reduced full-waveform inversion

- removal of computational burden & memory imprint
- high-quality inversions from randomized subsets of data

# Main research areas

Sparsity inducing imaging with surface-related multiples

- *improved* image quality by *leveraging* 
  - relation between primaries and multiples
  - additional sparsity in the image domain
- efficiency via randomized dimensionality reduction

#### SLIM 🔶

# Key technologies

Stochastic optimization & compressive sensing

sim. source acquisition, phase encoding, randomized batching etc.

Sparsifying transforms

wavelets, curvelets etc.

Large-scale (convex) optimization & robust statistics

one-norm minimization, semi-stochastic optimization, student t minimization etc.



# **Randomized** seismic acquisition design





#### SLIM 🔶

## Key goals

Efficient & high-quality acquisition

more information from fewer data by adapting insights from compressive sensing

# Key strategy

Randomization of acquisition

- randomized source/receiver locations
- randomized time shifts in marine
- phase encoding on land or computer

Turn coherent interferences (aliases & source crosstalk) in Gaussian "noise"

SLIM 🕂

Use transform-domain (e.g. curvelets) sparsity promotion to remove the noise...





### **Randomized coil sampling**

Hennefent, G. and Herrmann, F. J. Simply denoise: wavefield reconstruction via jittered under-sampling. Geophysics, Vol. 73, No. 3, pp. V19–V28, 2008.

Nick Moldoveanu. Random sampling: A new strategy for marine acquisition. SEG Technical Program Expanded Abstracts, 29(1):51–55, 2010.





### **Coil shooting**



**Courtesy Nick Moldoveanu** 

#### Coil center grid design

**Courtesy Nick Moldoveanu** 

#### **Coil center grid design**

#### **Regular center distribution**



#### **Courtesy Nick Moldoveanu**

#### **Coil center grid design**

#### **Regular center distribution**



#### **Random center distribution**



#### **Courtesy Nick Moldoveanu**



**Receiver spread** 

**Courtesy Nick Moldoveanu** 

34 % of samples



Input data



Interpolation with 2D Curvelet



Input data



#### Interpolation with 2D Curvelet





#### **Randomized marine acquisition**

Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and Felix J. Herrmann. TR-2011-04. Simultaneous-source marine acquisition with compressive sampling matrices.

Hassan Mansour, Haneet Wason, Tim Lin and Felix J. Herrmann. A compressive sensing perspective on simultaneous marine acquisition. SBGF 2011.



# Simultaneous acquisition matrix

For a seismic line with  $N_s$  sources,  $N_r$  receivers, and  $N_t$  time samples, the sampling matrix is



# **Bigger picture**





#### SLIM 🐣

# Sparse recovery

Solve the convex optimization problem (one-norm minimization):



Sparsity-promoting solver:  $\mathbf{SPG}\ell_1$  [van den Berg and Friedlander, '08]

Recover single-source prestack data volume:  $~\tilde{\mathbf{d}} = \mathbf{S}^{\mathbf{H}} \mathbf{\tilde{x}}$ 

### Sequential vs. simultaneous sources

#### Sampling scheme: Random dithering



## Sampling scheme: Random dithering

 $\mathbf{R}\mathbf{M}$ 

d



### Sampling scheme: Random dithering

b



### Sampling scheme: Random time-shifting



### Sampling scheme: Random time-shifting

 $\mathbf{RM}$ 

d



### Sampling scheme: Random time-shifting

b



### Sampling scheme: Constant time-shifting



### Sampling scheme: Constant time-shifting

 $\mathbf{RM}$ 

d



### Sampling scheme: Constant time-shifting

b



# Original data (Sequential acquisition)

1600



#### Sparsity-promoting recovery: Random dithering SNR = 10.5 dB

1600



#### Conventional recovery: Random time-shifting SNR = 5.04 dB

1600



#### Sparsity-promoting recovery: Random time-shifting SNR = 9.52 dB

1600



#### Sparsity-promoting recovery: Constant time-shifting SNR = 4.80 dB

1600


## Key contributions

SLIM 🔮

Practical acquisition design & recovery

- Iand and marine acquisitions
- curvelet-domain sparsity induction
- large-scale one-norm solvers
- highly suitable for OBC

Challenge: upscale to full 3D



## Robust & dimensionalityreduced full-waveform inversion





## Key goals

Reduce computational burden & memory imprint

keep data in memory for each (GN) update

SLIM 🔮

Improve imaging & inversion results by

- exploiting transform-domain sparsity
- incorporating *robustness* in the formulation

## Key strategies

Exploit structure and break coherences

 separable structure (randomized source superposition / selection, stochastic approximation, robust statistics)

SLIM 🕂

- multiscale structure (transform-domain sparsity & convex optimization)
- convex-composite structure (compressive sensing)

SLIM 🔶

## Separable structure

FWI:

• is linear in the sources

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \sum_{i=1}^{K} \phi_i(\mathbf{m})$$

• costs are dominated by # of PDE solves = # of sources

# Stochastic optimization

[Haber, Chung, and FJH, '10] [van Leeuwen, Aravkin, FJH, '10] [Haber, Chung, and FJH, '10] [Bertsekas, '96, Nemirovsky, '08]

Exploit separable structure = linearity w.r.t. sources by

replacing deterministic FWI with sums cycling over each source & corresponding shot record (columns of D & Q):

$$\min_{\mathbf{m}} \phi(\mathbf{m}) = \frac{1}{N} \sum_{i=1}^{n_s} \frac{1}{2} \|\mathbf{d}_i - \mathcal{F}[\mathbf{m}; \mathbf{q}_i]\|_2^2$$

SLIM 🐣

## Randomized source encoding



[Morton, '98, Romero, '00]

## Gradient [one shot]

#### Sequential-source image



SLIM 🛃

Simultaneous-source image

## Two strategies

Reduce interferences by averaging amongst

- (sim.) source experiments (stochastic-average approximation)
- model iterates (stochastic approximation)
- or by
  - transform-domain sparsity promotion
     (curvelet-domain one-norm minimization on updates)

SLIM 🕂

SLIM 🔶

# Stochastic average approximation (SAA)

[Haber, Chung, & FJH, '10]

by a stochastic-optimization problem:

$$\begin{split} \min_{\mathbf{m}} \mathbf{E}_{\mathbf{w}} \{ \phi(\mathbf{m}, \mathbf{w}) &= \frac{1}{2} \| \mathbf{D}_{\mathbf{w}} - \mathcal{F}[\mathbf{m}; \mathbf{Q}_{\mathbf{w}}] \|_{2}^{2} \} \\ &= \min_{\mathbf{m}} \phi(\mathbf{m}) \\ &\approx \min_{\mathbf{m}} \frac{1}{K} \sum_{j=1}^{K} \frac{1}{2} \| \underline{\mathbf{d}}_{j} - \mathcal{F}[\mathbf{m}; \underline{\mathbf{q}}_{j}] \|_{2}^{2} \end{split}$$
with  $\mathbf{E}_{\mathbf{w}} \{ \mathbf{w} \mathbf{w}^{H} \} = \mathbf{I}$   
and  $\underline{\mathbf{d}}_{j} = \mathbf{D}_{\mathbf{w}_{j}}, \, \underline{\mathbf{q}}_{j} = \mathbf{Q}_{\mathbf{w}_{j}}$ 



# Stochastic approximation (SA)

Algorithm 1: Stochastic gradient descent

[Bertsekas, '96; Haber, Chung, and FJH, '10]

SLIM 🛃

## K=1 w and w/o redraw [noise-free case]

SLIM 🛃





#### SLIM 🐣

## Observations

Stochastic-average approximation (**SAA**):

Error due to crosstalk decays slowly with batch size K

Stochastic approximation (SA):

- Renewals improve convergence significantly
- Requires averaging to remove crosstalk & noise instability, which is detrimental to convergence

Both methods rely on *averaging* to mitigate *crosstalk*. Are there better alternatives?

SLIM 🔶

## Contributions

Control of the errors by increasing the batch size

- by moving from *stochastic* to *deterministic* optimization
- works with randomized sequential or simultaneous source experiments
- Add robustness
  - by using student t misfit functional
  - works with inaccurate forward models





# Hybrid stochastic-deterministic optimization



## Fast FWI w/o encoding

- Work with small subset of randomly chosen shots at each iteration
- slowly increase number of shots

## Fast FWI w/o encoding

• Error in the gradient determines

convergence



SLIM 🔶

## Full waveform inversion



### data for 141 sources, 281 receivers, 15 Hz Ricker

multi-scale frequency domain inversion: [2.5-20] Hz in 16 bands

[Bunks `95; Pratt `98]



#### traditional L-BFGS ~10 full evaluations per frequency band



#### hybrid method ~2 full evaluations per frequency band

SLIM 🤚

## **FWI 2**

### time domain data min offset 100m, max offset 3 km 320 sources at 50m, 15 Hz Ricker



**FWI 2** Estimate source wavelet:  $\Phi[\mathbf{m}, \mathbf{a}] = ||a_i F[\mathbf{m}] \mathbf{q}_i - \mathbf{d}_i||_2^2$  SLIM 🔶

LS solution for  $\, {\bf a}$  :

$$\hat{a}_i = \frac{\left(F[\mathbf{m}]\mathbf{q}_i\right)^H \mathbf{d}_i}{||\mathbf{d}_i||_2^2}$$

then:  $\nabla \Phi[\mathbf{m}, \hat{\mathbf{a}}] = \left(\frac{\partial a_i F[\mathbf{m}] \mathbf{q}_i}{\partial \mathbf{m}}\right)^H (a_i F[\mathbf{m}] \mathbf{q}_i - \mathbf{d}_i)$ 

#### SLIM 🔶

## **FWI 2**

#### 2 passes through the data for each freq. band





## **FWI 2**



x [km]



SLIM 🐣

**FWI 2** 



SLIM 🛃

## Fast FWI

 work with small subsets of data at each iteration SLIM 🔮

 makes more sophisticated approaches feasible

## Robust FWI

 LS approach very sensitive to noise or unexplained artifacts in the data SLIM 🔮

Use `robust' penalty

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER





#### **Fast robust FWI**



#### From the Statistics to the Optimization

• Begin with assumptions on the model error

$$\mathbf{D} ~=~ \mathcal{F}[\mathbf{x};\mathbf{Q}] + oldsymbol{\epsilon}$$

- $\epsilon~\sim~$  Heavy Tailed Distribution with density p
- Compute the Maximum a Posteriori (MAP) estimate for **p**:

$$\min_{\mathbf{x}} \phi(\mathbf{x}) := -\log \left[ \mathbf{p} \left( \mathbf{D} - \mathcal{F}[\mathbf{x}; \mathbf{Q}] \right) \right]$$

• Note if you start with Gaussian errors, you get LS formulation.

Seismic Laboratory for Imaging and Modeling

#### **Densities and Penalties**



Seismic Laboratory for Imaging and Modeling

#### **Speedup: Semistochastic vs. Direct**



#### Synthetic Example II: Missing Data



Seismic Laboratory for Imaging and Modeling

#### **Inversion Results**



Seismic Laboratory for Imaging and Modeling


Seismic Laboratory for Imaging and Modeling









Seismic Laboratory for Imaging and Modeling

# Key contributions

Practical & easy to implement extensions of FWI

- control of the error related to the randomized batches
- control over unmodelled events in the data

Challenge: upscale to *full 3D* but collaboration with Mike will take care of that...

# **Experiment** I



[Demanet et. al. ] [FJH et. al., 2008-]

#### Multiscale structure [model]

Multiscale & multidirectional structure of the Earth & wavefields

compressibility w.r.t. curvelet frames

Invariance of curvelets under action wave-equation Hessian

FWI is amenable to sparsity promotion:

- remove source crosstalk & restore leaked energy
- fill in the *nullspace* of the Hessian
- regularize Gauss-Newton updates

#### Dirac



#### curvelet synthesis









SLIM 🛃



20

40

Percentage of coefficients

60

80

100

80

60

40

20

0

0

Percentage of energy

#### Dirac









#### curvelet synthesis





#### Dirac



#### curvelet synthesis













#### Dirac

#### curvelet analysis

#### curvelet synthesis













#### Dirac



#### curvelet synthesis















Convex composite structure [Burke & Ferris, '95.]

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \| \mathbf{D} - \mathbf{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] \|_{F}^{2}$$

SLIM 🔮

• exploit convexity by linearizing within

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \|\mathbf{D} - \boldsymbol{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] - \boldsymbol{\nabla} \boldsymbol{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] \boldsymbol{\delta} \mathbf{m}\|_{F}^{2}$$

• control the norm of the updates to guarantee convergence

FWI:

**Convex composite structure** [Burke & Ferris, '95.] smooth

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \| \mathbf{D} - \mathbf{\mathcal{F}}[\mathbf{m}; \mathbf{Q}] \|_{F}^{2}$$

SLIM 🔮

• exploit convexity by linearizing within

$$\min_{\mathbf{m}} \quad \phi(\mathbf{m}) := \frac{1}{2} \| \mathbf{\underline{D}} - \mathcal{F}[\mathbf{m}; \mathbf{\underline{Q}}] - \nabla \mathcal{F}[\mathbf{m}; \mathbf{\underline{Q}}] \boldsymbol{\delta} \mathbf{m} \|_{F}^{2}$$

• control the norm of the updates to guarantee convergence

FWI:

SLIM 🐣

### Example BG Compass model



SLIM 🛃

### FWI results



## FWI results

Time-harmonic Helmholtz:

- 205 X 701 with mesh size of 10m
- 9 point stencil [C. Jo et. al., '96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength
- solve wavefields on the fly with direct solver

### FWI results

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20m
- 701 receivers with sampling interval 10m
- maximal offset 7km (3.5 X depth of model)
- Ricker wavelet with central frequency of I2Hz

SLIM 🛃

• Recording time for each shot is 3.6s

### FWI results

FWI:

- I0 overlapping frequency bands with I0 frequencies (2.9Hz-25Hz)
- I0 Gauss-Newton steps for each frequency band (solved with max 20 spectral-projected gradient iterations)



#### SLIM 🐣

4000

3000 Velocity (m/s)

2000

### Results

#### True model



#### SLIM 🐣

4000

3000 Velocity (m/s)

2000

### Results

#### Initial model



#### Modified GN 7 sim. shots



SLIM 🛃

4000

3000 Velocity (m/s)

2000

#### 25 times speedup compared to full GN

#### Modified GN 7 sim. shots with renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000



#### 25 times speedup compared to full GN

#### SLIM 🐣

4000

3000 Velocity (m/s)

2000

### Results

#### quasi-Newton (I-BFGS)



#### Modified GN 7 sim. shots with renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000



#### 25 times speedup compared to full GN

#### Modified GN 7 sequential shots with renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000



#### Modified GN 7 sequential shots w/o renewals

SLIM 🛃

4000

3000 Velocity (m/s)

2000



Migration results

Time-harmonic Helmholtz:

- 409 X 1401 with mesh size of 5m
- 9 point stencil [C. Jo et. al., '96]
- absorbing boundary condition with damping layer with thickness proportional to wavelength

SLIM 🔮

• solve wavefields on the fly with direct solver

# **Migration results**

SLIM 🛃

Split-spread surface-free 'land' acquisition:

- 350 sources with sampling interval 20m
- 701 receivers with sampling interval 10m
- maximal offset 7km (3.5 X depth of model)
- Ricker wavelet with central frequency of 30Hz
- Recording time for each shot is 3.6s

# **Migration results**

Migration:

- I0 random frequencies (20Hz-50Hz)
- I7 simultaneous shots (versus 350 sequential shots)
- LASSO problems determined by SPGL1






**Migration results** imaged perturbation with renewals Lateral distance (m) 1000 1500 2000 2500 3000 3500 4000 4500 5000 5500 6000 6500 7000 500 0 500 Depth (m) 00 1000 500 2000





Thursday, November 17, 2011

#### SLIM 🔶

## Key contributions

More challenging to implement extensions of FWI

- works with randomized sequential or simultaneous source experiments
- control of the error related to the randomized batches by sparsity promotion & batch size
- control over null space of the wave-equation Hessian

Challenge: upscale to *full 3D* but careful coordination with Mike will take care of that...



# Sparsity inducing imaging with surface-related multiples





## Key goals

Use information in surface-related multiples

SLIM 🛃

- estimate the source function
- "fill in" missing data

Improve imaging results by

- exploiting transform-domain sparsity
- incorporating *physics* in the formulation

#### SLIM 🔶

## Key strategies

Use sparsity promotion to stabilize wavefield inversion Combine with sparsity promoting imaging Use randomized dimensionality reduction

## **EPSI Model**

**Estimation of Primaries by Sparse Inversion** (van Groenestijn and Verschuur, 2009)

SLIM

recorded data predicted data from primary IR  $\mathbf{P} = \mathbf{G}(\mathbf{Q} + \mathbf{R}\mathbf{P})$ 

- ${f P}$  total recorded up-going wavefield
- **Q** source signature (incl. src ghosts)
- **R** reflectivity of free surface (assume -1)
- G primary impulse response

(all monochromatic data matrix, implicit  $\omega$  )

# **EPSI Inversion**

# **Estimation of Primaries by Sparse Inversion** (van Groenestijn and Verschuur, 2009)

SLIM 🛃

recorded data predicted data from primary IR  $\mathbf{P} = \mathbf{G}(\mathbf{Q} + \mathbf{R}\mathbf{P})$ 

**Inversion objective:** 

$$f(\mathbf{G}, \mathbf{Q}) = \frac{1}{2} \|\mathbf{P} - \mathbf{G}(\mathbf{Q} + \mathbf{RP})\|_2^2$$

+ Sparse inversion

# **Convolution model**

**Convolution Model** 

Up-going Primary 
$$= \mathbf{G}\mathbf{Q}$$

**EPSI Model** 

Up-going Primary + Multiples =  $\mathbf{GQ} + \mathbf{GRP}$ 

additional info on G

- P total recorded up-going wavefield
- **Q** source signature (incl. src ghosts)
- **R** reflectivity of free surface (assume -1)
- G primary impulse response

(all monochromatic data matrix, implicit  $\omega$  )



### Pluto15 data Elastic FD Modeling muted no deghosting



**Pluto15 REPSI** Primary IR (G) no transform used 80 iters



F-K Spectrum of data

F-K Spectrum of REPSI Primary IR

k Q k -0.02 0-\_\_\_\_ 0.01 -0.01 0.02 -0.02 -0.01 0.01 0.02 0 0 frequency (Hz) frequency (Hz) 5-5-10-10-F-K Spectrum of data F-K Spectrum of REPSI Primary IR



Gulf of Suez data

SLIM 🛃

shot gather interpolated, muted reciprocity no deghosting



#### Gulf of Suez REPSI Primary IR (G) shot gather 80 SPG grad. iterations



F-K Spectrum of data

F-K Spectrum of REPSI+Transform Primary IR



#### Gulf of Suez REPSI Primary IR (G) shot gather 80 SPG grad. iterations



#### Gulf of Suez REPSI + Transform

SLIM 🛃

Primary IR (G) shot gather 2D Curvelet (Src-Rcv) Spline a=3.0 DWT (Time) 90 SPG grad. iterations





F-K Spectrum of REPSI+Transform Primary IR

# Sparse inversion of data with multiples



# Sparse inversion of data with multiples with EPSI



# **EPSI problem**

recorded data

predicted data

SLIM 🛃

$$\hat{\mathbf{P}} = \hat{\mathbf{G}}(\hat{\mathbf{Q}} - \hat{\mathbf{P}})$$

- "low-rank" approximation (known)
- $\hat{\mathbf{Q}}$  full-rank diagonal matrix (known)
- $\hat{\mathbf{R}}$  assume  $-\mathbf{I}$
- $\hat{\mathbf{G}}$  unknown

 $\hat{\mathbf{P}}$ 

## Dimensionality-reduction via SVD

Approximate data matrix  $\hat{\mathbf{P}}$  with low-rank factorization:

$$\hat{\mathbf{P}} = \hat{\mathbf{G}}(\hat{\mathbf{Q}} - \hat{\mathbf{P}})$$
  
 $\hat{\mathbf{P}} \approx \mathbf{U} \mathbf{\Sigma} \mathbf{V}^*$ 

 $f U_{n_r imes k}$  left singular vectors  $f \Sigma_{k imes k}$  singular values  $f V_{n_s imes k}$  right singular vectors

k : approximate rank  $k << min(n_r, n_s)$ 

## **Dimensionality Reduction Via SVD**

Approximate data matrix  $\hat{\mathbf{P}}$  with low-rank factorization:



SLIM 🛃

Thursday, November 17, 2011

## Full vs approximated data

 $\hat{\mathbf{P}}$ 

### Approximated $\hat{\mathbf{P}}$



$$n_s = n_r = 150$$
  
 $k = 20 = 14\%$   
 $SNR = 16dB$ 

## Full vs approximated data

## $\widehat{\mathbf{P}}-$ approximated $\widehat{\mathbf{P}}$



Multiplication speed up 7.5 x Memory usage 70% less

500

400

300

200

100

0

-100

-200

-300

-400

-500



#### Gulf of Suez Total Data

SLIM 🐣

#### shot gather

$$n_r = 355$$
  
 $n_s = 355$   
 $n_t = 1024$   
 $dt = .004s$ 



Gulf of Suez <u>Full Data</u> Primary IR (G) SLIM 🔶





#### Gulf of Suez 20% of rank budget Primary IR (G)

SNR = 27dB





#### Gulf of Suez 12% of rank budget

Primary IR (G) SNR = 17dB





### **Gulf of Suez**

<u>8% of rank budget</u> Primary IR (G) SNR = I2dB

## **Difference in EPSI Result**



20% rank budget

Primary IR full data Primary IR approximated Data



SLIM 🔶

## Key contributions

Robust implementation of estimation of primaries by sparse inversion

- Ieverages bi-convex optimization
- output deconvolved surface-free Green's function

Combination with imaging & dimensionality reduction look promising

Challenge: upscale to full 3D

SLIM 🔶

# What can SLIM do help bring FWI into production...
## Make FWI more

- efficient via dimensionality-reduction
- robust via (student t) misfit penalty functionals
- effective via transform-domain sparsity promotion

SLIM 🗍

- versatile via combination with
  - modeling of surface-related multiples
  - sophisticated randomized acquisition front end
  - elastic modeling & parameter identification

## Short term [FWI]

Incorporation of

- dimensionality reduction via batching
- robustness via student t

Deliverable: scalable framework with manageable memory imprint

Can be done with existing code base

delivery more or less 'immediate'

## Mid term [+ imaging]

Regularization & conditioning via inclusion of

- transform-domain (joint) sparsity promotion
- approximations to the wave-equation Hessian
- Deliverable: effective formulation that 'scales' to high frequencies Requires
  - exposure of Jacobians, their adjoints, and the GN Hessian
  - multiple preconditioned GN iterations (parallellization)

## Long term [+ multiples & acquisition]

#### Combinations with

- efficient randomized acquisition schemes
- (dimensionality-reduced) SRME operators

Deliverable: *parsimonious* formulation that leverages CS & SRME Requires

- implementation & integration of SRME in FWI/imaging
- careful integration with incomplete acquisition including new sampling criteria

#### What's needed

Thursday, November 17, 2011

Research team

SLIM 🔮

Sustained support for

- research faculty at competitive salaries
- **faculty**

Matched funding via

- NSERC collaborative R&D grants
- NSERC industrial chair grants
- Provincial grants + UBC support

### Research team

BG commitment addresses current needs for warm bodies

- to supervise students
- to coordinate R & D
- to maintain & develop IT infrastructure

Situation without support is unsustainable

- SLIM team > 20 people = max handled by single faculty
- miss experienced long-term team members

## IT infrastructure

- Sustained support for a "small" local compute solutions to prototype new 3D algorithms
- Access to a "large" compute solution to test developed algorithms on industry-size problems

Matched funding via

- NSERC collaborative R&D grants
- Provincial grants + UBC support

**NO** funding for HP-IT in Canada without industry matching!

## Organization

Matching will be organized in a "data mining satellite institute" at UBC involving faculty from CS, Math, EOS, etc.

"Brazilian parent institute" modeled after math institutes

- short/long-term thematic programs for visitors
- assistance with large-scale implementations
- help with industrialization where faculty act as consultants

Guarantees influx of innovations in the area of "data mining".

Requires a long-term sustainable approach, which differs from recent initiatives in Singapore, Kaust, and Brazil in the 80's

Thursday, November 17, 2011

#### Phases

- I. Build parent and satellite institutes
  - access to IP from satellites
- 2. Have Brazil develop their own IP
  - generate 'own' capability
- 3. Help Brazil export IP
  - develop world-class services





#### **HPC considerations**



## Overview

#### Part 1

- Data organization
- Algorithm design
- example: Matlab & Javaseis

Part 2

- Fast FWI without source encoding
- FWI with robust misfit

### Part 1

Data organization trace-based: shot-based: cube-based: standard RTM, FWI FWI+ processing

SLIM 🛃

#### Trace-based

operations that work on single trace

SLIM 🛃

- `embarrassingly parallel'
- lot of disk i/o

# shot-based

- RTM & FWI ...
- `embarrassingly parallel', given that one shot fits in the memory of a single node

SLIM 🕂

 avoid communication & storage of data by reducing each shot to end result (misfit, gradient)

### shot-based

misfit and gradient for FWI:

$$f = \sum_{i} f_{i}, \quad f_{i} = ||\mathbf{d}_{i} - P\mathbf{u}_{i}||_{2}^{2}$$
$$\mathbf{g} = \sum_{i} \mathbf{g}_{i}, \quad \mathbf{g}_{i} = \mathbf{u}_{i} \otimes \mathbf{v}_{i}$$

only communicate  $\{f_i, g_i\}$ , no need to store wavefields  $\{u_i, v_i\}$ 

#### cube-based

least-squares migration, FWI+

SLIM 🔮

- needs `massively parallel' approach
- store *or* recompute wavefields

#### cube-based

**LS-migration:** 
$$\min_{\mathbf{x}} \sum_{i} ||A_i \mathbf{x} - \mathbf{b}_i||_2^2$$

$$\mathbf{b}_i = \mathbf{d}_i - P\mathbf{u}_i$$

at each iteration we need the residual for all *i*, and the action of  $A_i$  and  $A_i^*$ , all of which require the wavefields  $\{\mathbf{u}_i, \mathbf{v}_i\}$ 

# Algorithm design

- object-oriented programming
- algorithms work at high level and manipulate objects
- divide code into testable units

## Algorithm design

- data cube and model `objects'  $\mathcal{D} \ \mathcal{M}$
- modelling operator

$$\mathcal{D} = F(\mathcal{M})$$

jacobian

$$\mathcal{D}' = J\mathcal{M}', \quad \mathcal{M}' = J^*\mathcal{D}'$$

SLIM 🛃

## Algorithm design

 $egin{split} \mathcal{D} &= F(\mathcal{M})\ \mathcal{R} &= \mathcal{D} - \mathcal{D}_{\mathrm{obs}}\ f &= \mathrm{norm}(\mathcal{R})\ \mathcal{G} &= J^*(\mathcal{R})\ \mathcal{M} &= \mathcal{M} - lpha \mathcal{G} \end{split}$ 

| compute $\mathbf{u}_1$ | m                             |
|------------------------|-------------------------------|
|                        | $\mathbf{d}_{1,\mathrm{obs}}$ |

| compute $\mathbf{u}_2$ | m                             |
|------------------------|-------------------------------|
|                        | $\mathbf{d}_{2,\mathrm{obs}}$ |

| compute $\mathbf{u}_3$ | m                             |
|------------------------|-------------------------------|
|                        | $\mathbf{d}_{3,\mathrm{obs}}$ |

| compute | $\mathbf{u}_4$ | m                             |
|---------|----------------|-------------------------------|
|         |                | $\mathbf{d}_{4,\mathrm{obs}}$ |

## Algorithm design

$$\mathcal{D} = F(\mathcal{M})$$
  

$$\mathcal{R} = \mathcal{D} - \mathcal{D}_{obs}$$
  

$$f = \operatorname{norm}(\mathcal{R})$$
  

$$\mathcal{G} = J^*(\mathcal{R})$$
  

$$\mathcal{M} = \mathcal{M} - \alpha \mathcal{G}$$

$$\mathbf{r}_1 = P\mathbf{u}_1 - \mathbf{d}_{1,\text{obs}} \qquad \begin{aligned} \mathbf{u}_1 \mathbf{m} \\ \mathbf{d}_{1,\text{obs}} \end{aligned}$$

$$\mathbf{r}_2 = P\mathbf{u}_2 - \mathbf{d}_{2,\text{obs}} \quad \begin{aligned} \mathbf{u}_2 \mathbf{m} \\ \mathbf{d}_{2,\text{obs}} \end{aligned}$$

$$\mathbf{r}_3 = P\mathbf{u}_3 - \mathbf{d}_{3,\text{obs}} \qquad \begin{bmatrix} \mathbf{u}_3 \, \mathbf{m} \\ \mathbf{d}_{3,\text{obs}} \end{bmatrix}$$

$$\mathbf{r}_4 = P\mathbf{u}_4 - \mathbf{d}_{4,\text{obs}} \quad \begin{aligned} \mathbf{u}_4 \, \mathbf{m} \\ \mathbf{d}_{4,\text{obs}} \end{aligned}$$

## Algorithm design

$$\mathcal{D} = F(\mathcal{M})$$
$$\mathcal{R} = \mathcal{D} - \mathcal{D}_{obs}$$
$$\boldsymbol{f} = \operatorname{norm}(\mathcal{R})$$
$$\mathcal{G} = J^*(\mathcal{R})$$
$$\mathcal{M} = \mathcal{M} - \alpha \mathcal{G}$$

$$f = \sum_{i} f_{i}$$

$$f_{1} = ||\mathbf{r}_{1}||_{2}^{2} \qquad \mathbf{r}_{1} \mathbf{u}_{1} \mathbf{m}$$
$$\mathbf{d}_{1,\text{obs}}$$
$$f_{2} = ||\mathbf{r}_{2}||_{2}^{2} \qquad \mathbf{r}_{2} \mathbf{u}_{2} \mathbf{m}$$
$$\mathbf{d}_{2,\text{obs}}$$

112

$$f_3 = ||\mathbf{r}_3||_2^2$$
  $\mathbf{r}_3 \, \mathbf{u}_3 \, \mathbf{m}$   
 $\mathbf{d}_{3,\mathrm{obs}}$ 

$$f_4 = ||\mathbf{r}_4||_2^2$$
  $|\mathbf{r}_4 \, \mathbf{u}_4 \, \mathbf{m}|$   
 $\mathbf{d}_{4,\text{obs}}$ 

SLIM 🐣

## Algorithm design



## Algorithm design

 $\mathcal{D} = F(\mathcal{M})$  $\mathcal{R} = \mathcal{D} - \mathcal{D}_{obs}$  $f = norm(\mathcal{R})$  $\mathcal{G} = J^*(\mathcal{R})$  $\mathcal{M} = \mathcal{M} - \alpha \mathcal{G}$ 

| $\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$ | $egin{array}{c} \mathbf{r}_1\mathbf{u}_1\mathbf{m}\ \mathbf{v}_1,\mathbf{g}\ \mathbf{d}_{1,\mathrm{obs}} \end{array}$ |  |
|-----------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|--|
|                                               |                                                                                                                       |  |
| $\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$ | $egin{array}{c} \mathbf{r}_2\mathbf{u}_2\mathbf{m}\ \mathbf{v}_2,\mathbf{g}\ \mathbf{d}_{2,\mathrm{obs}} \end{array}$ |  |
|                                               |                                                                                                                       |  |
| $\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$ | $egin{array}{c} \mathbf{r}_3\mathbf{u}_3\mathbf{m}\ \mathbf{v}_3,\mathbf{g}\ \mathbf{d}_{3,\mathrm{obs}} \end{array}$ |  |
|                                               |                                                                                                                       |  |
| $\mathbf{m} = \mathbf{m} - \alpha \mathbf{g}$ | $\mathbf{r}_4  \mathbf{u}_4  \mathbf{m}$<br>$\mathbf{v}_4, \mathbf{g}$                                                |  |

 $\mathbf{d}_{4,\mathrm{obs}}$ 

SLIM 🔮

- use matlab as `scripting' language
- call external modelling code
- store wavefields on disk
- keep model and update in memory

SLIM 🛃

```
% read data
Dobs = DataMap('datafile');
```

```
% set parameters
model = ...
Q = ...
```

% initial model m0 = readfile('modelfile');

% FWI fh = @(x) Jls(x,Q,model);

```
mn = minimize(fh,m0);
```

Thursday, November 17, 2011

## Matlab example

```
[D] = function F(m,Q,model)
```

```
...
D = DataMap(nrec,nsrc,nfreq)
for i=1:nfreq
for j=1:nsrc
u = simulate(m,Q(:,i),...);
D(:,j,i) = P*u;
end
end
```

SLIM 🔶

[f,g] = function Jls(m,Q,D,model)

```
% modeling

[Dt,Jt] = F(m,Q,model);

% residual

R = Dt - D;

% misfit

f = norm(R)<sup>2;</sup>

% gradient

g = Jt*R;
```

SLIM 🛃

```
function [m] = minimize(fh,m0)
mk = m0;
```

```
for k = 1:maxiter
  [fk,gk] = fh(mk);
  I = 1;
  fn = fh(mk - I*gk);
  while fh(mk-I*gk) > fk + I*norm(gk);
    I = I/2;
  end
    mk = mk - I*g;
end
```

SLIM 🛃

#### class DataMap

properties

size

filename

methods function M = DataMap(filename,size) % create empty datamap

function M = plus(A,B)
% create new datamap A+B

function a = norm(A)
% calculate norm of datamap

### JavaSeis

 use existing capability for handling seismic data in distributed (memory and disk)environment SLIM 🕂

- optimized operations such as transpose and FFT's
- can be bridged to matlab

## Conclusions

- Use matlab as `scripting language'
- allows us to quickly propotype and benefit from algorithms developed by `experts'

## Conclusions

- Overloading allows us to call external modelling code, and access data from external sources (disk, memory)
- no need to explicitly import data into matlab