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What do we do at
SLIM...?




Randomized seismic acquisition design
p improved quality at reduced cost

p fundamental new insights in (simultaneous) acquisition

Robust & dimensionality-reduced full-waveform inversion
p removal of computational burden & memory imprint

p high-quality inversions from randomized subsets of data
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Sparsity inducing imaging with surface-related multiples
p improved image quality by leveraging
- relation between primaries and multiples
- additional sparsity in the image domain

p efficiency via randomized dimensionality reduction

Thursday, November 17, 2011



Stochastic optimization & compressive sensing

D sim.source acquisition, phase encoding, randomized
batching etc.

Sparsifying transforms
p wavelets, curvelets etc.
Large-scale (convex) optimization & robust statistics

) one-norm minimization, semi-stochastic optimization,
student t minimization etc.
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Randomized seismic acquisition
design
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Key goals

Efficient & high-quality acquisition

p more information from fewer data by adapting insights
from compressive sensing
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Randomization of acquisition

p randomized source/receiver locations

p randomized time shifts in marine

p phase encoding on land or computer

Turn coherent interferences (aliases & source crosstalk) in
Gaussian “noise”

Use transform-domain (e.g. curvelets) sparsity promotion to
remove the noise...
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Randomized coil sampling

Hennefent, G. and Herrmann, F. J. Simply denoise:
wavefield reconstruction via jittered under-sampling.
Geophysics, Vol. 73, No. 3, pp. V19-V28, 2008.

Nick Moldoveanu. Random sampling: A new strategy
for marine acquisition. SEG Technical Program
Expanded Abstracts, 29(1):51-55, 2010.
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Coil center grid design

Courtesy Nick Moldoveanu
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Coil center grid design

Regular center distribution

Courtesy Nick Moldoveanu
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Coil center grid design

Regular center distribution Random center distribution

Courtesy Nick Moldoveanu
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Input data
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Interpolation with 2D Curvelet
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Randomized marine acquisition

Hassan Mansour, Haneet Wason, Tim T.Y. Lin, and
Felix J. Herrmann. TR-2011-04. Simultaneous-source
marine acquisition with compressive sampling
matrices.

Hassan Mansour, Haneet Wason, Tim Lin and Felix J.
Herrmann. A compressive sensing perspective on
simultaneous marine acquisition. SBGF 2011.
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Simultaneous acquisition matrix

For a seismic line with NV, sources, [V, receivers,
and N; time samples, the sampling matrix is

20|
o 80r
— A \ \
100 -
samples recorded at 120 \ \\
each receiver during 0l \ \

simultaneous acquisition

160 |

50 100 150 200 250 300 350 400 450 500

NN
ST — samples recorded at each receiver
during sequential acquisition
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Bigger picture

b

Simultaneous
measurement matrix

v

Simultaneous
measurement matrix
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Bigger picture

b =

“Compressive sampling
matrix”

< d
R
d ~ SHx
l
x SHx




Sparse recovery

Solve the convex optimization problem (one-norm
minimization);

X = argmin ||x||; subject to Ax=Db
Lf_z ——"

’ . data-consistent
sparsity amplitude recovery

Sparsity-promoting solver: SPG/4

~
~

Recover single-source prestack data volume: d = SHx
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Sampling scheme: Random dithering
RM
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Sampling scheme: Random dithering
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Sampling scheme: Random time-shifting
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Sampling scheme: Random time-shifting
RM
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Sampling scheme: Random time-shifting
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Sampling scheme: Constant time-shifting
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Sampling scheme: Constant time-shifting
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Original data
(Sequential acquisition)
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Sparsity-promoting recovery: Random dithering
SNR=10.5dB
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Conventional recovery: Random time-shifting
SNR=5.04 dB
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Sparsity-promoting recovery: Random time-shifting
SNR=9.52dB
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Sparsity-promoting recovery: Constant time-shifting
SNR =4.80 dB
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Practical acquisition design & recovery
p land and marine acquisitions
p curvelet-domain sparsity induction

p large-scale one-norm solvers

p highly suitable for OBC

Challenge: upscale to full 3D
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Robust & dimensionality-
reduced full-waveform inversion
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Reduce computational burden & memory imprint

p keep data in memory for each (GN) update

Improve imaging & inversion results by
p exploiting transform-domain sparsity

p incorporating robustness in the formulation
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Exploit structure and break coherences

p separable structure
(randomized source superposition / selection, stochastic
approximation, robust statistics)

p multiscale structure
(transform-domain sparsity & convex optimization)

) convex-composite structure
(compressive sensing)
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Separable structure

FWVI:

® s linear in the sources
min 6(m z@

® costs are dominated by # of PDE solves = # of sources
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S'I'OC h a S'I'iC Haber, Chung, and FJH, ’10]

'van Leeuwen, Aravkin, FJH, 1 0]

O p'l'i m iZd'l'iQ )  [Haber, Chung and FH,’10]

Bertsekas, '96, Nemirovsky, '08]

Exploit separable structure = linearity w.r.t. sources by

replacing deterministic FWI with sums cycling over each
source & corresponding shot record (columns of D & Q):

N s

_ 1 1 2
r%n¢(m) =N ; §Hdz’ — Flm; q;]|]5
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Randomized source
encoding

time [s]

2000 4000
X [m]

randomized superposition
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|
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0 2000 4000 6000
x_[m]
super shot
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[Morton, 98, Romero, '00]

Gradient

[one shot]
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Reduce interferences by averaging amongst

p (sim.) source experiments
(stochastic-average approximation)

p model iterates
(stochastic approximation)

or by

p transform-domain sparsity promotion
(curvelet-domain one-norm minimization on updates)
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Stochastic average

approximation (SAA)

[Haber, Chung, & FJH,’10]
by a stochastic-optimization problem:

min By {¢(m,w) = [Dw  Fm; Qw][3}
— Hrll%ln¢(m)
1 K
> IIrlrllnE Z _” [m g.j]HQ
j=1

with Ew {ww!} =1

andd; = Dw;, q;, = Qw;
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Stochastic
approximation (SA)

Algorithm 1: Stochastic gradient descent

Result: Output estimate for the model m
m<«— mg; k«— 0 ; // initial model
while not converged do

{Qk,gk} « {Dw"*, Qw"*} with w*¥ € N(0,1) ; // draw sim. exp.
gk «— VF* m*!, ¢*|(d" — Flm* 1, q"]) ; // gradient
m"t! — m" — ’Ykgk : // update
m* = k%-l (Zf:l m’ + mk“); // average
k—k+1;
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Stochastic-average approximation (SAA):

p Error due to crosstalk decays slowly with batch size K
Stochastic approximation (SA):
p Renewals improve convergence significantly

p Requires averaging to remove crosstalk & noise
instability, which is detrimental to convergence

Both methods rely on averaging to mitigate crosstalk. Are
there better alternatives?
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Control of the errors by increasing the batch size
p by moving from stochastic to deterministic optimization

p works with randomized sequential or simultaneous
source experiments

Add robustness
p by using student t misfit functional

p works with inaccurate forward models
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Hybrid stochastic-deterministic
optimization
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Fast FWI w/0o encoding

e Work with small subset of
randomly chosen shots at each
Iteration

e slowly increase number of shots




Fast FWI w/0o encoding

e Error in the gradient determines
convergence
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error
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Full waveform inversion

2 4 6
x [km]
data for multi-scale frequency
141 sources, 281 domain inversion:

receivers, 15 Hz Ricker [2.5-20] Hz in 16 bands

[Bunks " 95; Pratt 98]
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FWI

traditional L-BFGS
~10 full evaluations per frequency band
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hybrid method
~2 full evaluations per frequency band
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FWI 2

time domain data
min offset 100m, max offset 3 km
320 sources at 50m, 15 Hz Ricker
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FWI 2

Estimate source wavelet:

®[m, a] = [|a;F'[m]q; — d;|];

LS solution for a:
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FWI 2

2 passes through the data for each freq. band




-

FWI 2
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FWI 2
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FWI 2

100

amplitude

10 15 20
frequency [1/s]
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Fast FWI

o work with small subsets of data
at each iteration

e makes more sophisticated
approaches feasible




Robust FWI

e LS approach very sensitive to
noise or unexplained artifacts in
the data

e Use robust’ penalty
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Fast robust FWI
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From the Statistics to the Optimization

® Begin with assumptions on the model error

D = F|x;Q|]+e€
e ~ Heavy Tailed Distribution with density p

® Compute the Maximum a Posteriori (MAP) estimate for p:

min ¢(x) := — log {p (D — Fx; Q])}

X

® Note if you start with Gaussian errors, you get LS formulation.
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Densities and Penalties
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Speedup: Semistochastic vs. Direct

rel. model error

5X SPEEDUP!

0.8 ' ' '
0 50 100 150
passes through the data
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Synthetic Example Il: Missing Data

v r—
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T
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receiver index
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0 2 4 6
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Initial model 60 7% missing data!
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Inversion Results

STUDENT

Seismic Laboratory for Imaging and Modeling
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Robust FWI
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Seismic Laboratory for Imaging and Modeling
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Seismic La
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Seismic La O_ o 0.5 . 1 1.5 2
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Robus’r FWI

Seismic La O_ o 0.5 . 1 1.5 2

Thursday, November 17, 2011



Robust FWI

0.1
0.08}
g %% “True” Residual
=004 for Missing Data
Example
0.02f
£)5 0 5

scaled residual
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Robust FWI

0.1
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Robust FWI

0.1
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Robust FWI

0.1
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scaled residual
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Robust FWI

0.1
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004 for Missing Data
- Example
£)5 0 5

scaled residual
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Practical & easy to implement extensions of FWI

p control of the error related to the randomized
batches

p control over unmodelled events in the data

Challenge: upscale to full 3D but collaboration with Mike will
take care of that...
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Multiscale & multidirectional structure of the Earth & wavefields
p compressibility w.r.t. curvelet frames

Invariance of curvelets under action wave-equation Hessian

FWI is amenable to sparsity promotion:
p remove source crosstalk & restore leaked energy
p fill in the nullspace of the Hessian

p regularize Gauss-Newton updates
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Dirac curvelet analysis curvelet synthesis
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Dirac
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Dirac
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Dirac curvelet analysis curvelet synthesis
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Transform-domain

sparsity
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Convex composite

sII.rU CII.U re[Burke & Ferris,’95.]

smooth
. 1, —m——
min ¢(m) = 5“ D — Fm; Q| H%’
N r—

convex

FWVI:

® exploit convexity by linearizing within

min  ¢(m) = D — F[m: Q] ~ VF|m: Qlém|}

Im

® control the norm of the updates to guarantee convergence
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Convex composite

sII.rU CII.U re[Burke & Ferris,’95.]

smooth
. 1, —m——
min ¢(m) = 5“ D — Fm; Q| H%’
N r—

convex

FWVI:

® exploit convexity by linearizing within

min  ¢(m) := ~||D — Flm; Q] — VF[m; Q]6m|>

m 2

® control the norm of the updates to guarantee convergence
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Time-harmonic Helmholtz;
® 205 X 701 with mesh size of |10m
® 9 point stencil

® absorbing boundary condition with damping layer with
thickness proportional to wavelength

® solve wavefields on the fly with direct solver
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Split-spread surface-free ‘land’ acquisition:

350 sources with sampling interval 20m

701 receivers with sampling interval 10m
maximal offset 7km (3.5 X depth of model)
Ricker wavelet with central frequency of |2Hz

Recording time for each shot is 3.6s
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FWVI:

® |0 overlapping frequency bands with 10 frequencies
(2.9Hz-25Hz)

® |0 Gauss-Newton steps for each frequency band
(solved with max 20 spectral-projected gradient iterations)
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Resulis

Modified GN 7 sim. shots
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Results \

Modified GN 7 sim. shots with renewals

Lateral distance (m)
0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000 2500 6000 6500 /000

Depth (m)
1000

1500

2000

25 times speedup compared to full GN

Thursday, November 17, 2011



0 500

Depth (m)
1000 200

1500

2000

Resulis

quasi-Newton (I-BFGS)

Lateral distance (m)
1000 1500 2000 2500 3000 3500 4000

4500

5000

5500

6000

6500

<!

/7000

i

3000 4000

Velocity (m/s)

2000

Thursday, November 17, 2011



Results \

Modified GN 7 sim. shots with renewals
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Time-harmonic Helmholtz;
® 409 X 1401 with mesh size of bm
® 9 point stencil

® absorbing boundary condition with damping layer with
thickness proportional to wavelength

® solve wavefields on the fly with direct solver
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Split-spread surface-free ‘land’ acquisition:

350 sources with sampling interval 20m

701 receivers with sampling interval 10m
maximal offset 7km (3.5 X depth of model)
Ricker wavelet with central frequency of 30Hz

Recording time for each shot is 3.6s
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Migration results

Migration:

® |0 random frequencies
(20Hz-50Hz)

® |7 simultaneous shots (versus 350 sequential shots)

® | ASSO problems determined by SPGLI

[Herrmann & Xi, 2011]
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Migration results

true perturbation
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Migration results

imaged perturbation
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Migration results

imaged perturbation with renewals
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Migration results

true perturbation

Lateral distance (m)
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Migration

resulfs Model error

x 10

with renewals -
without renewals

7.4

7.3

7.2

7.1

two—norm of model error

6.9

6.8

6.7 | |

0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8
number of PDE solves x 104
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More challenging to implement extensions of FWI

p works with randomized sequential or simultaneous
source experiments

p control of the error related to the randomized
batches by sparsity promotion & batch size

p control over null space of the wave-equation Hessian

Challenge: upscale to full 3D but careful coordination with
Mike will take care of that...
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Sparsity inducing imaging wi
surface-related multiples
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Use information in surface-related multiples
p estimate the source function

p “fill in” missing data

Improve imaging results by
p exploiting transform-domain sparsity

p incorporating physics in the formulation
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Key strategies

Use sparsity promotion to stabilize wavefield inversion
Combine with sparsity promoting imaging

Use randomized dimensionality reduction
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Estimation of Primaries by Sparse Inversion (van Groenestijn and
Verschuur, 2009)

recorded data predicted data from primary IR

P = G(Q + RP)

total recorded up-going wavefield
source signature (incl. src ghosts)

reflectivity of free surface (assume -1)

QRO T

primary impulse response

(all monochromatic data matrix, implicit W)
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EPSI Inversion

Estimation of Primaries by Sparse Inversion (van Groenestijn and
Verschuur, 2009)

recorded data predicted data from primary IR

P = G(Q + RP)

Inversion objective:

f(G,Q) = ;[P — G(Q + RP)|3

+ Sparse inversion
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Convolution model

Convolution Model
Up-going Primary = GQ
EPSI Model
Up-going Primary + Multiples = GQ
additional info on G

total recorded up-going wavefield
source signature (incl. src ghosts)

reflectivity of free surface (assume -1)

QIO T

primary impulse response

(all monochromatic data matrix, implicit W)
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trace x104
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Pluto15
REPSI

Primary IR (G)

no transform used

80 iters
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Sparse inversion of
data with multiples
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Sparse inversion of data
with multiples with EPSI

200

400

Depth
(0))
o
o

800

1000

1200

0 500 1000 1500 2000 2500 3000 3500 4000 4500 5000
Lateral distance(m)

Thursday, November 17, 2011



Q> w> O

EPSI| problem

recorded data predicted data
P=G(Q - P)

“low-rank” approximation (known)

full-rank diagonal matrix (known)

assume —1

unknown
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Dimensionality-reduction via SVD

Approximate data matrix P with low-rank factorization:

P =G(Q-P)

P~UXV”®

U, xk left singular vectors :
k : approximate rank

Dk xk singular values k<< mm(n n )
Ty '¥S

Vi, xk right singular vectors
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Dimensionality Reduction Via SVD

Approximate data matrix P with low-rank factorization:

Ny X Ng n, X k
k : approximate rank
k<< min(n,,ng)

10

A

)y

5 10 1B 2

k x k

II J L}
- =

R

a o0 0 8 moow W

k X ng
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Full vs approximated data

P Approximated P

ne = n, = 150
k=20 = 14%
SNR =16dB
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Full vs approximated data

P— approximated P

20
40
60
80
100
120

140

20 40 60 80 100 120 140

500

- 400

- 300

200

100

-100

-200

-300

-400

-500

Multiplication speed up
/.5X

Memory usage

70% less
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trace x1 O4
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Gulif of Suez

Total Data

shot gather

Ny = 399
Ng = 399
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5.30

5.32

x104

Gulf of Suez
Full Data

Primary IR (G)

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations
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5.30

5.32

x104

Gulf of Suez
20% of rank budget

Primary IR (G)
SNR = 27dB

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations
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5.30

5.32

x104

Gulf of Suez
12% of rank budget

Primary IR (G)
SNR = 17dB

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations
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trace x1 04
5.29 5.30 5.31 5.32

Gulf of Suez

8% of rank budget
Primary IR (G)
SNR = 12dB

shot gather
2D Curvelet (Src-Rcv)

| 50 iterations
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Difference in EPSI Result

20% rank budget
trace x1 04 trace x104 trace x10
5.29 5.30 5.31 5.32 5.29 5.30 5.31 5.32 5.29 5.30 5.31 5.32

Primary IR Primary IR
full data approximated Data

Difference
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Robust implementation of estimation of primaries by sparse
Inversion

p leverages bi-convex optimization
p output deconvolved surface-free Green’s function

Combination with imaging & dimensionality reduction look
promising

Challenge: upscale to full 3D
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What can SLIM do
help bring FWI into
production...




efficient via dimensionality-reduction

robust via (student t) misfit penalty functionals

)
4
p effective via transform-domain sparsity promotion
p versatile via combination with

- modeling of surface-related multiples

- sophisticated randomized acquisition front end

- elastic modeling & parameter identification
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Incorporation of
p dimensionality reduction via batching
p robustness via student t

Deliverable: scalable framework with manageable memory
imprint

Can be done with existing code base

p delivery more or less ‘immediate’
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Regularization & conditioning via inclusion of
p transform-domain (joint) sparsity promotion

p approximations to the wave-equation Hessian

Deliverable: effective formulation that ‘scales’ to high frequencies
Requires
p exposure of Jacobians, their adjoints, and the GN Hessian

p multiple preconditioned GN iterations (parallellization)
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Combinations with

p efficient randomized acquisition schemes

p (dimensionality-reduced) SRME operators
Deliverable: parsimonious formulation that leverages CS & SRME
Requires

p implementation & integration of SRME in FWl/imaging

p careful integration with incomplete acquisition including new
sampling criteria
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What's needed




Sustained support for
p research faculty at competitive salaries

p faculty

Matched funding via
p NSERC collaborative R&D grants
p NSERC industrial chair grants

p Provincial grants + UBC support
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BG commitment addresses current needs for warm bodies
p to supervise students
p to coordinate R & D
p to maintain & develop IT infrastructure
Situation without support is unsustainable
p SLIM team > 20 people = max handled by single faculty

p miss experienced long-term team members
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p Sustained support for a “small” local compute
solutions to prototype new 3D algorithms

p Access to a “large” compute solution to test
developed algorithms on industry-size problems

Matched funding via
p NSERC collaborative R&D grants
p Provincial grants + UBC support

NO funding for HP-IT in Canada without industry matching!

Thursday, November 17, 2011



Matching will be organized in a “data mining satellite institute” at"
UBC involving faculty from CS, Math, EQS, etc.

“Brazilian parent institute” modeled after math institutes

p short/long-term thematic programs for visitors

p assistance with large-scale implementations

p help with industrialization where faculty act as consultants
Guarantees influx of innovations in the area of “data mining”.

Requires a long-term sustainable approach, which differs from
recent initiatives in Singapore, Kaust, and Brazil in the 80’s
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|. Build parent and satellite institutes
e access to |IP from satellites

2. Have Brazil develop their own [P
e generate ‘own’ capability

3. Help Brazil export IP

e develop world-class services

Thursday, November 17, 2011



THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER

HPC considerations
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Overview

Part 1

e Data organization

e Algorithm design

e example: Matlab & Javaseis

Part 2

e Fast FWI without source
encoding
e FWI with robust misfit




Part 1

-
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Data organization

>l

trace-based: shot-based: cube-based:
standard RTM, FWI FWI+

processing




Trace-based

e operations that work on single
trace

e embarrassingly parallel’
e lot of diski/o




shot-based

e RTM & FWI ...

e embarrassingly parallel’, given
that one shot fits in the memory
of a single node

e avoid communication & storage
of data by reducing each shot to
end result (misfit, gradient)




shot-based

misfit and gradient for FWI:
F=> fi, fi=Ildi—Puf3

=) 8 & =UQV

only communicate {fi,g:},
no need to store wavefields{u;, v;}
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cube-based

e least-squares migration, FWI|+

e needs massively parallel’
approach

e store or recompute wavefields
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cube-based
LS-migration: min  _[|4;x — b;|[3

bi:di—Pui

at each iteration we need the
residual for all i, and the action

of A; and 4], all of which require
the wavefields {u;, vi}




Algorithm design

e Object-oriented programming

e algorithms work at high level and
manipulate objects

e divide code into testable units




Algorithm design

e data cube and model objects’
D M

e modelling operator
D = F(M)
e jacobian
D=JM, M =JD




Algorithm design




Algorithm design




Algorithm design




Algorithm design




Algorithm design




Matlab example

e use matlab as ‘scripting’
language

o call external modelling code

o store wavefields on disk

e keep model and update in
memory




Matlab example




Matlab example




Matlab example




Matlab example




Matlab example




JavaSeis

e use existing capability for
handling seismic data in
distributed (memory and
disk)environment

e optimized operations such as
transpose and FFT's

e can be bridged to matlab




Conclusions

e Use matlab as ‘scripting
language’

e allows us to quickly propotype
and benefit from algorithms
developed by experts’




Conclusions

e Overloading allows us to call
external modelling code, and
access data from external
sources (disk, memory)

e no need to explicitly import data
into matlab




