| Jeongjin (Jayjay) Park | Huseyin Tuna Erdinc | Felix Herrmann |
|
|
Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0)
Copyright (c) 2024, Felix J. Herrmann (Georgia Tech)
A learned operator \[\mathcal{G}_{nn}(\mathbf{m},\mathbf{m}_0) \approx \mathcal{G}(\mathbf{m}, \mathbf{m}_0)\]
predicts the RTM image for any \(\mathbf{m}_0\)
\[\mathcal{L}(\mathbf{m},\mathbf{m}_0) = \|\mathcal{G}_{nn}(\mathbf{m}, \mathbf{m}_0) - \delta \mathbf{m}_{RTM}\|^2_2\]
\[\hat{\mathbf{m}} = \arg\min_\mathbf{m} \mathcal{L}(\mathbf{m}, \mathbf{m}_0)\]
\[\mathbf{m}^{k+1} = \mathbf{m}^k - \eta \nabla_\mathbf{m} \mathcal{L}(\mathbf{m}^k)\]
To learn a two-argument RTM operator
\[
\mathcal{G}_{\text{nn}} : \mathcal{X} \times \mathcal{B} \rightarrow \mathcal{Y},
\] we require training data that samples the input function space.
In practice, drawing training instances, \((\mathbf{m}, \mathbf{m}_0) \sim \mu,\) mean
This matches operator-learning theory, which guarantees
\[ \mathbb{E}_{(m,m_0)\sim\mu} \Big[ \|\mathcal{G}_{\text{nn}}(m,m_0) - \delta m_{RTM} \| \Big] \]
This makes \(\mathcal{G}_{\text{nn}}\) an amortized RTM operator, meaning it generalizes across the space of backgrounds \(\mathcal{B}\).
Result: Strong generalization to unseen background models during inversion!
\[ \mathcal{D} = \big\{ \big(\mathbf{m}^{(i)},\, \mathbf{m}_{0}^{(i,s)},\, \delta \mathbf{m}_{\mathrm{RTM}}^{(i,s)}\big) \big\}_{i=1,\dots,N;\; s=1,\dots,10} \]
For each true model \(\mathbf{m}(x,z)^{(i)}\), we construct multiple background models by smoothing slowness field in depth and time-domain.
\[ s(x,z)= \left(S_{\sigma_x,\sigma_z} * s\right)(x,z) \]
But smoothing in time requires more steps. We first need to convert from depth to time coordinate.
LinearInterpolationGiven depth samples \(z_j = jh\) \[t_j(x)=2\sum_{k=1}^{j} \frac{h}{1000}\, s(x,z_k)\]
This defines discrete pairs \((z_j, t_j)\) that can be interpolated
\[\text{Using} \: t(z): z \mapsto t, \: \text{obtain} \: \mathbf{s}^{\text{time}}(x,t_n).\]
\[ s^\text{time}(x,t)= \left(S_{\sigma_x,\sigma_z} * s^\text{time}\right)(x,t) \]
\[\text{Using} \: z(t): t \mapsto z, \: \text{obtain} \: \mathbf{s}(x,z_j)\]
Variability in the \(\mathbf{m}_0\)
Velocity model and Migrated models
RTM variations
Can we replace \(\mathcal{G}\) with \(\mathcal{G}_{nn}\) in the least-squares inversion?
RTM Veritcal Trace
When MSE-FNO fails in inversion
This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic Center.