Improved seismic survey design by maximizing the spectral gap with global optimization

Yijun Zhang and Felix J. Herrmann

November 23, 2021

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0)
Copyright (c) 2021, Yijun Zhang (Georgia Tech)
Motivations

Seismic data

- expensive to acquire

Random subsampling

- increasingly employed in seismic data acquisition
- reduce cost

Matrix completion (MC)

- reconstruct fully sampled wavefields from sparsely sampled seismic data
- computationally efficient method

Goal: Automatically generate sampling schemes that favor recovery by MC.
Motivations

Simulation-based acquisition design

- expensive
- time consuming

Uniform & jittered sampling scheme

- not optimal
- is not flexible - i.e., cannot add constraints

Spectral gap (SG) of sampling mask

- the gap between the first & second singular value
- a cheap metric to predict a performance of an acquisition design
- should be large to ensure success of matrix completion

Come up with a quantity to predict wavefield reconstruction w/ MC
Motivation
relationship between reconstruction quality & sampled matrix

M binary sampling matrix

$\sigma_1(\cdot)$ the first singular value

$\sigma_2(\cdot)$ the second singular value

$\frac{\sigma_2(M)}{\sigma_1(M)}$ SG ratio

an average of 100 experiments

Large spectral gap corresponds to small SG ratio
Problem

Generate sampling scheme w/o expensive wavefield reconstruction

Take advantage of spectral gap, a cheap metric to evaluate an acquisition mask

Start with 2D acquisition on a grid…

Hands-on tutorial:
Breakout 2. Acquisition design and wavefield reconstruction (code)
2D acquisition

Sampling mask in source-receiver domain
2D acquisition

Sampled mask in source-receiver domain

```
  1 0
  1 0
  1 0
  1 0
  1 0
  1 0
```

Sources

Receivers

Source

Receivers
2D acquisition

Sampled mask in source-receiver domain

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>0</th>
<th>1</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0</td>
<td>1</td>
<td></td>
</tr>
</tbody>
</table>

Receivers

![Diagram of Receivers and Source](image)

Source

![Image of Source](image)
2D acquisition

Receivers

Sampled mask in source-receiver domain

<table>
<thead>
<tr>
<th>Sources</th>
<th>1 0 1 0 0 1 1</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1 0 1 0 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0 1 1</td>
</tr>
<tr>
<td></td>
<td>1 0 1 0 0 1 1</td>
</tr>
</tbody>
</table>
2D acquisition

Sampled mask in source-receiver domain

<table>
<thead>
<tr>
<th>Sources</th>
<th>Receivers</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 0 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0 0 1 1</td>
<td></td>
</tr>
<tr>
<td>1 0 1 0 0 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Sampled mask in midpoint-offset domain

<table>
<thead>
<tr>
<th>Midpoints</th>
<th>Offsets</th>
</tr>
</thead>
<tbody>
<tr>
<td>0 0 0 0 0 1 1 1 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 1 1 0 0 1 1 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 1 1 0 0 1 1 0 0 0 0 1 0</td>
<td>0 1 1 0 0 1 1 0 0 0 0 1 1 1 1</td>
</tr>
<tr>
<td>1 0 0 1 1 0 0 0 1 1 1 1 0 0 0</td>
<td>0 0 1 0 0 0 0 1 1 1 1 1 0 0</td>
</tr>
<tr>
<td>0 0 1 0 0 0 0 1 1 1 1 1 0 0 0</td>
<td>0 0 0 0 0 1 1 1 1 0 0 0 0 0</td>
</tr>
<tr>
<td>0 0 0 0 0 0 1 1 0 0 0 0 0 0 0</td>
<td>0 0 0 0 0 1 0 0 0 0 0 0 0 0</td>
</tr>
</tbody>
</table>
2D acquisition

Sampled mask in source-receiver domain

Sampled mask in midpoint-offset domain

SG ratio = 0.804
Optimized problem
2D acquisition

Given \(n_s \) source locations & subsampling ratio \(r \), find \(m = \lfloor n_s \times r \rfloor \times n_r \) subsampling locations \(X \)

\[
\text{minimize} \quad \frac{\sigma_2(\mathcal{S}X)}{\sigma_1(\mathcal{S}X)} \quad \text{subject to} \quad \|X\|_0 = m, \quad X \in [0,1]^{n_s \times n_r}.
\]

- \(\mathcal{S} \): an operator that transfers the data from SR domain to midpoint-offset domain
- \(\sigma_1(\cdot) \) and \(\sigma_2(\cdot) \): the first & second singular values
- \(n_s \), the number of sources & \(n_r \), the number of receivers.
- \(n_m \), the number of midpoints & \(n_o \), the number of offsets.
Simulated annealing (SA)
Combinatorial search technique

Outline:

► Select a neighbor at random

 - If better than current state, update the state (improving move)

 - Otherwise, update current state w/ some probability (worsening move)

► Probability goes down with time

High probability means diversify (many worsening moves)

Low probability means intensify (focus on improving moves)

Select a neighbor at random

Previous state
Fix 80% subsampled positions, move 20% subsampled positions
Set move range
New neighbor state

- ○: all possible locations;
- ●: initial subsampled locations;
- •: to be moved location;
- ●: the new neighbor subsampled location
Stylized example
w/ equal source/receiver dimension (300 × 300)
Experiment 1
Optimal SG ratio w/ simulated annealing

Mask dimension: 300 x 300

Subsampling ratio: 33 %

Source and receiver sampling interval: 12.5 m

Decrease the SG ratio of given initial subsampling masks:

- uniform random subsampling
- optimal jittered subsampling
Uniform random mask
Initial state (input) of the optimal method

SG ratio = 0.341
Improved random mask
Output of the optimal method w/ SA algorithm

SG ratio = 0.196
Optimal jittered mask
Initial state (input) of the optimal method

SG ratio = 0.334
Improved jittered mask
Output of the optimal method w/ SA algorithm
SG ratio comparison
W/ 10 independent tests

Subsampling ratio = 33%
Synthetic example
Experiment 2
Test masks by using wavefield reconstruction (LR matrix completion)

Data dimension: 300 x 300 x 1024 (nr x ns x nt)

Dimension of each frequency slice: 300 x 300

Source sampling interval: 12.5 m

Receiver sampling interval: 12.5 m

Time sampling interval: 0.002 s
2D synthetic Compass dataset

Ground truth

Observed data
Scenarios

Use wavefield reconstruction to recover the subsampled data w/ 4 masks

- Uniform random
- Improved random mask w/ proposed optimized method
- Optimal jittered (w/ max gap control)
- Improved jittered subsampling w/ proposed optimized method
Recovery & difference
Uniform random mask

Recovery (w/ SNR = 13.25 dB)

Difference = ground truth - recovery
Recovery & difference
Improved uniform random mask
Recovery & difference
Optimal jittered mask

Recovery (w/ SNR = 12.39 dB)

Difference

Times [s]

Sources [Km]
Recovery & difference
Improved jittered mask w/ proposed method
SNR comparison
W/ 10 independent tests

Subsampling ratio = 33%
SG ratio comparison vs. SNR comparison
W/ 10 independent tests

Subsampling ratio = 33%

SG ratio

Uniform random
Improved random
Optimal jittered
Improved jittered

SNR [dB]

Uniform random
Improved random
Optimal jittered
Improved jittered
Stylized example
w/ unequal source/receiver dimension (300×150)
Experiment 3
Optimal SG ratio w/ simulated annealing

Mask dimension: 300 × 150

Subsampling ratio: 20%

Source & receiver sampling interval: 12.5 m

Decrease SG ratio of given initial subsampling masks:

- uniform random subsampling
- optimal jittered subsampling
Subsampled mask in source-receiver domain
Subsampling ratio = 20%
Subsampled mask in source-receiver domain

Subsampling ratio = 20%
Uniform random mask
Initial state (input) of the optimal method
Improved random mask
Output of the optimal method w/ SA algorithm

SG ratio = 0.249
Optimal jittered mask
Initial state (input) of the optimal method
Improved jittered mask
Output of the optimal method w/ SA algorithm
SG ratio comparison
W/ 10 independent tests

Subsampling ratio = 20%

- Uniform random
- Improved random
- Optimal jittered
- Improved jittered
Conclusion & future works

Improved seismic survey design w/o expensive wavefield reconstruction

Proposed optimization scheme that finds subsampling masks w/ small SG ratio

Optimized masks improve wavefield reconstruction

Test reconstruction quality w/ unequal source/receiver dimension

3D seismic data survey design
Thank you for your attention!