# **Randomized linear algebra for** inversion

**Mathias Louboutin** 

ML4Seismic Partners Meeting

### Georgia Institute of Technology



Georgia Tech College of Computing School of Computational Science and Engineering



**Georgia Tech College of Sciences** School of Earth and **Atmospheric Sciences** 

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0) **Copyright (c) 2021, Mathias Louboutin (Georgia Tech)** 



### ML4Seismic

**Georgia Tech College of Engineering** School of Electrical and Computer Engineering



### Motivation High-memory footprint adjoint-state methods

Computationally expensive checkpointing

Case specific/internal solutions to manage memory

Fourier (BP patent)

••••

- Compression (No existing GPU porting)
- Serialization/Disk (High IO)
- Boundary methods (reversible only)





Rajiv Kumar, Marie Graff-Kray, Ivan Vasconcelos, and Felix J. Herrmann, "Target-oriented imaging using extended image volumes—a low-rank factorization approach", Geophysical Prospecting, vol. 67, pp. 1312-1328, 2019 Mengmeng Yang, Marie Graff, Rajiv Kumar, and Felix J. Herrmann, "Low-rank representation of omnidirectional subsurface extended image volumes", Geophysics, vol. 86, pp. 1-41, 2021. Mathias Louboutin, Ali Siahkoohi, Rongrong Wang, and Felix J. Herrmann, "Low-memory stochastic backpropagation with multi-channel randomized trace estimation". 2021. Philipp A. Witte, Mathias Louboutin, Fabio Luporini, Gerard J. Gorman, and Felix J. Herrmann, "Compressive least-squares migration with on-the-fly Fourier

transforms", Geophysics, vol. 84, pp. R655-R672, 2019.

Solutions Take advantage of large scale randomized linear algebra

Leverage our work on full-subsurface offset Image Volumes

Build on lessons learned form machine learning (convolutional layers)

According to stochastic optimization

- inaccurate gradients can still lead to accurate inversion
- undergirds our compressive imaging



Halko, Nathan, Per-Gunnar Martinsson, and Joel A. Tropp. "Finding structure with randomness: Probabilistic algorithms for constructing approximate matrix decompositions." SIAM review 53.2 (2011): 217-288.

# Randomized linear algebra

### **Randomized SVD:**

- information is reaped during probing  $AZ \le Z \le Z_1, \cdots, Z_r$ random
- only need access to action of A (in parallel)
- memory friendly
- vectors  $\mathbf{Z}_i$



• approximation w/accuracy  $\propto r \ll N$ , # of sketches w/random



### Hutchinson's Trick, http://blog.shakirm.com/2015/09/machine-learning-trick-of-the-day-3-hutchinsons-trick/

## **Random Trace Estimation**





$$_{j}^{\top}\mathbf{A}\mathbf{z}_{j} = \frac{1}{r}\operatorname{tr}(\mathbf{Z}^{\top}\mathbf{A}\mathbf{Z})$$



Hutchinson, Michael F. "A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines." Communications in Statistics-Simulation and Computation 18.3 (1989): 1059-1076. Avron, Haim, and Sivan Toledo. "Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix." Journal of the ACM (JACM) 58.2 (2011): 1-34. Meyer, Raphael A., et al. "Hutch++: Optimal Stochastic Trace Estimation." Symposium on Simplicity in Algorithms (SOSA). Society for Industrial

and Applied Mathematics, 2021.

## Randomized linear algebra

### **Randomized Trace Estimation:**

$$\operatorname{tr}(\mathbf{A}) \approx \frac{1}{r} \sum_{j=1}^{r} \mathbf{z}_{j}^{\top} \mathbf{A} \mathbf{z}_{j}$$

- only needs matrix-free access to actions of A
- sketches w/ random vectors  $\mathbf{Z}_i$
- errors studied & understood
- Why should we care?

$$= \frac{1}{r} \operatorname{tr}(\mathbf{Z}^{\top} \mathbf{A} \mathbf{Z})$$

• unbiased estimator when  $\mathbb{E}(\mathbf{z}\mathbf{z}^{\top}) = \mathbf{I}$  w/accuracy  $\propto r \ll N$ , # of



## Randomized trace estimation

### Approximate FWI gradient calculation for $r \ll n_t$ :

$$\delta \mathbf{m}[\mathbf{x}] = \operatorname{tr}\left(\mathbf{\ddot{u}}[t, \mathbf{x}]\mathbf{v}[t, \mathbf{x}]^{\top}\right) \approx \frac{1}{r}\operatorname{tr}\left((\mathbf{Z}^{\top}\mathbf{\ddot{u}}[\mathbf{x}])(\mathbf{v}[\mathbf{x}]^{\top}\mathbf{Z})\right)$$

- **ü** second time derivative solution forward wave equation
- v solution adjoint wave equation

$$\sum \mathbf{x}_i \mathbf{y}_i = \mathbf{x}^{\mathsf{T}} \mathbf{y} = \operatorname{tr}(\mathbf{x} \mathbf{y}^{\mathsf{T}})$$

• probing vectors  $\mathbf{Z} = [\mathbf{z}_1 \cdots \mathbf{z}_r]$ 

with 
$$\mathbb{E}(\mathbf{z}_i^{\mathsf{T}}\mathbf{z}_i) = 1$$



## Choice of probing vectors

### QR decomposition on the range of **u** is too expensive

Use the data as a proxy

$$[\mathbf{Q}, \sim] = qr(\mathbf{A}\mathbf{Z})$$
 v

### Data $D_{obs}$ corresponds to

- restriction of the wavefield u to the receivers
- ▶ is representative of its range

### with $\mathbf{A} = \mathbf{D}_{obs} \mathbf{D}_{obs}^{\mathsf{T}}$



## Crosstalk







r=64

r=4

r=256

**Z** : Random +-1 F: DFT



QQ⊺ ZZ⊤

### $\mathbf{F}\mathbf{F}^{\top}$





## **Approximate gradient FWI/RTM**

0. for t=2:nt-1 # forward propagation  $\begin{aligned} \mathbf{u}[t+1] &= f(\mathbf{u}[t], \mathbf{u}[t-1], \mathbf{m}, \mathbf{q}[t]) \\ \ddot{\mathbf{u}}[\mathbf{r}, \mathbf{x}] + &= \mathbf{Q}[\mathbf{r}, t] \ddot{\mathbf{u}}[t, \mathbf{x}] \ \forall \ \mathbf{r} \end{aligned}$ 

# back propagation  

$$(\mathbf{v}[t], \mathbf{v}[t+1], \mathbf{m}, \delta \mathbf{d}[t])$$
  
 $[\mathbf{r}, t]\mathbf{v}[t, \mathbf{x}] \forall \mathbf{r}$ 



Philipp A. Witte, Mathias Louboutin, Fabio Luporini, Gerard J. Gorman, and Felix J. Herrmann, "Compressive least-squares migration with on-the-fly Fourier transforms", Geophysics, vol. 84, pp. R655-R672, 2019 McMechan, G. A., 1983, Migration by extrapolation of time-dependent boundary values: Geophysical Prospecting, 31, 413–420.

# Randomized trace estimation

### Ultra-low memory use:

|         | FWI            | $\mathrm{DFT}$                        | Probing                              |
|---------|----------------|---------------------------------------|--------------------------------------|
| Compute | 0              | $\mathcal{O}(2r) \times n_t \times N$ | $\mathcal{O}(r) \times n_t \times N$ |
| Memory  | $N \times n_t$ | $2r \times N$                         | $r \times N$                         |
|         | For fi         | xed r:                                |                                      |
|         |                | half memory cost                      | t of DFT                             |

- half compute cost of DFT
- simple real-valued algorithm

Optimal checkpointing  $\mathcal{O}(log(n_t)) \times N \times n_t$  $\mathcal{O}(10) \times N$ 

Boundary reconstruction  $n_t \times N$  $n_t \times N^{\frac{2}{3}}$ 

Needs much smaller r than with DFT in practice



Op't Root, T. J., C. C. Stolk, and M. V. de Hoop, 2012, Linearized inverse scattering based on seismic reverse time migration: Journal de Mathematiques Pures et Appliquees, 98, 211–238.

## Randomized trace estimation

### **Ultra-cheap imaging conditions:**

### $\mathbf{Q}^{\mathsf{T}}\left(\mathbf{D}_{\mathbf{x}}\mathbf{u}[\cdot,\mathbf{x}]\right) = \mathbf{D}_{\mathbf{x}}\left(\mathbf{Q}^{\mathsf{T}}\mathbf{u}[\cdot,\mathbf{x}]\right)$

Apply space-only imaging condition to time-compressed wavefields:

- K-space filter

inverse-scattering imaging condition (ISIC) Imaging condition usually costs extra(s) PDEs (ISIC = 1 PDE)



## FWI example

2D overthrust model OBN acquisition

Comparisons:

- standard FWI
- on-the-fly DFT
- randomized trace estimation

Hands-on tutorial:

Breakout 2. Scalable Software in the Cloud



### Accuracy – gradients

- Converges to true gradient as  $r \rightarrow n_t$
- Less accurate near source





### Accuracy – gradients

Exact for high r

Noisy error





## Trace estimation





X (km)









## RTM

### SEAM 2D:

- 44 OBN 1km apart
- ► 3521 sources 12.5m apart
- ► 14.5Hz Ricker wavelet
- ▶ 64 probing vectors (160 X memory savings, 84Gb vs .5Gb)

Makes RTM conducive to acceleration w/ GPUs



## Noisy but accurate







### SLIM A ML4Seismic



# 3D, frist gradient

### **Overthrust 3D:**

- Marine acquisition
- ▶ 12.5Hz Ricker wavelet filter at 3-15Hz
- 32 probing vectors => X40 memory reduction
- Probing on GPU (M60, 45\$/hr)
- True gradient on CPU (Intel Skylake, 65\$/hour)







- Truncated QR => Lower frequency

Matches the true gradient well (only 32 vectors)











## Conclusions

Leverage Randomized Linear Algebra

Low memory foot print and low algorithmic complexity

Controllable error

Allows for accelerators (GPUs)

Drop-in extension for existing open source framework JUDI/Devito



### **Open source software**

### **TimeProbeSeismic.jl:**

- **Open-source MIT license**
- Built on top of <u>JUDI.</u>
- Leverages <u>Devito</u>
- https://github.com/slimgroup/ **TimeProbeSeismic.jl**

ps = 32

A slimgroup /

<> Code (!)

### Standard JUDI function objective\_function(x) model0.m = xf, g = fwi\_objective(model0, q[idx], d\_obs[idx]; options=opt) options = spg\_options(verbose = 3, maxIter = fevals, memory = 3, iniStep = 1f0) g\_const = 0 sol = spg(x->objective\_function(x), vec(m0), ProjBound, options) # Probing extension function objective\_function(x, ps) model0.m = xf, g = fwi\_objective(model0, q[idx], d\_obs[idx], ps; options=opt) global g\_const = 0

sol = spg(x->objective\_function(x, ps), vec(m0), ProjBound, options)

| pup / TimeProbeSeismic Privat                | ● Unwatch - 2 ☆ Star 0 % Fork |                                      |                                                         |  |
|----------------------------------------------|-------------------------------|--------------------------------------|---------------------------------------------------------|--|
| <ul> <li>Issues 기 Pull requests (</li> </ul> | Actions III Projects          | 🕑 Security 🛛 🗠 Insights 🛛 🍪 Settings |                                                         |  |
| 양 master → 우 1 branch ा⊙ 0 tag               | js                            | Go to file Add file - Code -         | About ô                                                 |  |
| mloubout parallel                            |                               | 50176ec 18 hours ago 🕚 26 commits    | Memory efficient seismic inversion via trace estimation |  |
| papers                                       | update                        | 20 hours ago                         | 💭 Readme<br>গ্রু MIT License                            |  |
| plots/fwi_overthrust                         | manifest                      | 5 days ago                           |                                                         |  |
| scripts                                      | parallel                      | 18 hours ago                         |                                                         |  |
| src                                          | update                        | 20 hours ago                         | Releases                                                |  |
| 🗅 .gitignore                                 | File setup by DrWatson        | last month                           | No releases published<br>Create a new release           |  |
|                                              | first commit                  | last month                           |                                                         |  |
| 🗅 Manifest.toml                              | manifest                      | 5 days ago                           | Packages                                                |  |
| Project.toml                                 | remove jld2                   | 25 days ago                          | No packages published                                   |  |
| 🗅 README.md                                  | manifest                      | 5 days ago                           | Publish your first package                              |  |
| README.md                                    |                               | Ø                                    | Languages                                               |  |
| TimeProbeSeism                               | ic                            |                                      | ● Julia 54.1% ● TeX 45.9%                               |  |



## **Convolutions in ML**

- Equivalent to adjoint state
  - Network is the wave-equation
  - Backpropagation is the adjoint wave-equation
- Similar gradient structure
  - Correlation of input and back propagated residual
- Bottleneck of CNNs
  - High memory (i.e saving wavefield)
  - High computed cost (i.e laplacian)



# Vectorize







### $\mathbb{R}^{n_x \times n_y}$



 $\mathbf{X} \in \mathbb{R}^{N \times b}$ b batch size N image size  $N = n_x \times n_y$ 







### $\mathbf{w} \in \mathbb{R}^{n_w}, n_w = 9$









 $\star$ 









# CNN as matvec



## **Trace in CNNs?**

### Gradient w.r.t all weights

$$\frac{\partial}{\partial \mathbf{W}} f(\mathbf{W}\mathbf{X}) = \delta \mathbf{Y}\mathbf{X}^{\mathsf{T}}$$

Gradient w.r.t. *i*<sup>th</sup> weight conv layer

$$\begin{aligned} \frac{\partial}{\partial w_i} f(\mathbf{W}\mathbf{X}) &= \operatorname{tr}\left(\left(\frac{\partial f(\mathbf{W}\mathbf{X})}{\partial \mathbf{W}}\right)^{\mathsf{T}} \frac{\partial \mathbf{W}}{\partial w_i}\right) \\ &= \operatorname{tr}\left(\left(\delta \mathbf{Y}\mathbf{X}^{\mathsf{T}}\right)^{\mathsf{T}} \mathbf{T}_{k(i)}^{\mathsf{T}}\right) \\ &= \operatorname{tr}\left(\mathbf{X}\delta \mathbf{Y}^{\mathsf{T}} \mathbf{T}_{-k(i)}\right) \end{aligned}$$

"Toeplitz" structure  

$$\mathbf{W} = \sum_{i=1}^{n_w} \overrightarrow{\text{diag}}(\mathbf{w}_i) T_{k(i)} = \sum_{i=1}^{n_w} \overrightarrow{\text{diag}}(w_i \mathbf{1}) T_{k(i)}$$



Hutchinson, Michael F. "A stochastic estimator of the trace of the influence matrix for Laplacian smoothing splines." Communications in Statistics-Simulation and Computation 18.3 (1989): 1059-1076. Avron, Haim, and Sivan Toledo. "Randomized algorithms for estimating the trace of an implicit symmetric positive semi-definite matrix." Journal of the ACM (JACM) 58.2 (2011): 1-34. Meyer, Raphael A., et al. "Hutch++: Optimal Stochastic Trace Estimation." Symposium on Simplicity in Algorithms (SOSA). Society for Industrial

and Applied Mathematics, 2021.

## Randomized trace estimation

### Based on stochastic approximation of the identity I



 $\operatorname{tr}(\mathbf{A}) = \operatorname{tr}(\mathbf{A}\mathbf{I}) = \operatorname{tr}(\mathbf{A}\mathbb{E}[\mathbf{z}\mathbf{z}^{\mathsf{T}}])$  $= \mathbb{E}\left[\operatorname{tr}\left(\mathbf{A}\mathbf{z}\mathbf{z}^{\mathsf{T}}\right)\right]$ 



## Randomized trace estimation

Stochastic approximation of the shift operator  $\mathbf{T}_{k(i)}$  $\operatorname{tr}(\mathbf{AT}_{k(i)}) = \operatorname{tr}\left(\mathbf{A}\mathbb{E}\left[\mathbf{T}_{-k(i)}\mathbf{z}\mathbf{z}^{\mathsf{T}}\right]\right)$  $\approx \frac{1}{r} \sum_{i=1}^{r} \left[ \mathbf{z}_{i}^{\mathsf{T}} \mathbf{A} \mathbf{T}_{-k(i)} \mathbf{z}_{i} \right]$ 

So that

 $\delta w_i =$ 

$$\frac{1}{r} \sum_{j=1}^{r} \left( \mathbf{z}_{j}^{\top} \mathbf{X} \right) \left( \delta \mathbf{Y}^{\top} \mathbf{T}_{-k(i)} \mathbf{z}_{j} \right)$$

+  $(\mathbf{Z}^{\top}\mathbf{X}) (\delta \mathbf{Y}^{\top}\mathbf{T}_{-k(i)}\mathbf{Z}))$  $= -\mathrm{tr}$ r  $\overline{\mathbf{X}} \in \mathbb{R}^{r imes b}$  $\overline{\mathbf{Y}}^{\top} \in \mathbb{R}^{b \times r}$ 



## Algorithm

### Backward pass Forward pass **Data**: Back-propagated residual $\delta \mathbf{Y}$ **Data**: Convolution input **X** and weights **w Result**: Convolution **Result**: Gradient w.r.t to weights begin begin Draw random seed s $\mathbf{X} = \mathbf{Z}(s)^{\mathsf{T}}\mathbf{X}$ $\overline{\mathbf{Y}}^{\mathsf{T}} = \delta \mathbf{Y}^{\mathsf{T}} \mathbf{T}_{-k(i)} \mathbf{Z}(s)$ $\delta \mathbf{w} = \operatorname{tr}(\overline{\mathbf{X}} \overline{\mathbf{Y}}^{\mathsf{T}})$ $\mathbf{Y} = \operatorname{conv}(\mathbf{X}; \mathbf{w})$ Store X, s end end

$$\mathbf{X}, \mathbf{Y} \in \mathbb{R}^{N \times b} \Longrightarrow \overline{\mathbf{X}}, \overline{\mathbf{Y}} \in \mathbb{R}^{r \times b}, r \ll N = n_x \times n_y$$

Load random seed s and probed forward  $\mathbf{X}$ 



https://github.com/slimgroup/XConv/blob/master/benchmark/mem\_prof.py

## **Convolutions only memory**

```
scripts @ eas-coda-fherr07 [mlouboutin3](master)$ PYTORCH_NO_CUDA_MEMORY_CACHING=1 python3 mem_prof.py 1 &&
PYTORCH_NO_CUDA_MEMORY_CACHING=1 python3 mem_prof.py 2;
```

1 True

Network Sequential(

```
(0): Xconv2D(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (1): Xconv2D(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (2): Xconv2D(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (3): Xconv2D(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
Input size torch.Size([128, 16, 256, 256])
GPU usage probe before forward: mem: 26.951%, abs-mem: 1.0595703125 (GiB) # nothing done
GPU usage probe after forward: mem: 27.000%, abs-mem: 1.0615234375 (GiB) # after Y = N(X).mean()
GPU usage probe after backward: mem: 27.000%, abs-mem: 1.0615234375 (GiB) # after Y.backward
Network Sequential(
 (0): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
 (1): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (2): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
  (3): Conv2d(16, 16, kernel_size=(3, 3), stride=(1, 1), padding=(1, 1), bias=False)
Input size torch.Size([128, 16, 256, 256])
GPU usage true before forward: mem: 26.951%, abs-mem: 1.0595703125 (GiB) # nothing done
GPU usage true after forward: mem: 65.154\%, abs-mem: 2.5615234375 (GiB) # after Y = N(X).mean()
GPU usage true after backward: mem: 27.000%, abs-mem: 1.0615234375 (GiB) # after Y.backward
```

### Orders of magnitude ( $\mathcal{O}(10^3)$ ) reduction in memory usage...

```
2Mb memory
```

**1.5Gb memory** 



Deep Learning Memory Usage and Pytorch Optimization Tricks, Quentin Fevbre. https://github.com/quentinf00/article-memory-log https://github.com/slimgroup/XConv/blob/master/benchmark/network\_mem.py

## Network memory – squeezenet

effective 100<sup>1</sup>

memory use

opportunitie:



Memory (Gb)

Forward

Backward



https://github.com/slimgroup/XConv/blob/master/benchmark/perf\_pyxconv.py



- linear scaling in **PyTorch**
- up to  $3 \times$  speedup on **GPUs**
- not good for small sizes & small # of channels





- theoretical control on the error of random-trace estimation
- - batch size *b*
  - number of probing vectors *r*

• for Gaussian probing vectors &  $\mathbb{E}(\mathbf{z}\mathbf{z}^{\top}) = \mathbf{I}$  error decreases w/

flexibility to strike balance between memory gain, compute & error



# Accuracy MNIST training

Batch size=64



- Validation classification accuracy vs epochs
- No loss in classification accuracy
- Ability to work w/ larger batch sizes

Batch size=128



# Observations

Gradient calculations w/ random trace estimation

- approximate gradient w/ controllable error
- theoretical memory reduction ( $\mathcal{O}(n_x \times n_v \times n_c \times b)$  to  $\mathcal{O}(r \times b)$ ) training CNNs
- effective memory improvement of  $2 \times$  for actual DNN
- computational performance improvement for larger images/channels
- speedups of  $2 3 \times$  for GPUs and  $10 \times$  CPUs
- comparable NN performance after training
- option to increase batch sizes (offset inaccuracies gradient)

### We leveraged ideas known from randomized linear algebra.



## **Bottom line**

NN training w/ randomized trace estimation

- more efficient use of hardware & less CO2 production
- facilitates ML@scale (e.g. video encoding, 3D seismic segmentation, etc.)
- allows for training next-generation memory-efficient & larger NNs

Use of randomized algorithms

- adaptive accuracy control during training
- use of optical devices (LightOn) for random projections

Technology is as good as the weakest link...

- reliance on dense linear algebra impedes ML@scale
- optimization landscape remains a challenge





Pytorch

**XConv:** 

CPU/GPU codes for training w/ randomized trace estimation

open-source MIT license

Code

- optimized Python implementation for PyTorch
- Julia implementation for Flux
- easily integrated in existing networks
- https://github.com/slimgroup/XConv

| 20(CC, CC,               | , ( <mark>3, 3</mark> ), Dlas=           | =False, padding=1, str                  | 10e=1)                                                          |  |
|--------------------------|------------------------------------------|-----------------------------------------|-----------------------------------------------------------------|--|
| l pytorch<br>odel, 'net  | <pre>convolutions t ', mode='conv'</pre> | to XConv in a network<br>')             |                                                                 |  |
| .jl overlo<br>nv(ps, "E\ | oad<br>/Grad")                           |                                         |                                                                 |  |
| uests 🕞 Actions          | 🖽 Projects 🔅 Security 🗠                  | Insights 🔯 Settings                     | ⊙ Unwatch → 3                                                   |  |
| ു 1 branch 💿 0 tags      | 5                                        | Go to file Add file ▼                   | About                                                           |  |
| Jpdate README.md         |                                          | b836315 2 hours ago 🕚 <b>70</b> commits | Memory efficient convolution<br>networks                        |  |
| :                        | NNlib fix                                | 2 days ago                              | julia-language pytorch                                          |  |
| S                        | byte relu                                | 5 days ago                              | convolutional-layers                                            |  |
|                          | replace LA in manuscript                 | 2 days ago                              | unbiased probing                                                |  |
|                          | cleaner relu                             | 4 days ago                              | ☐ Readme<br>₫ MIT License                                       |  |
|                          | NNlib fix                                | 2 days ago                              |                                                                 |  |
|                          | first commit                             | 3 months ago                            |                                                                 |  |
| nl                       | torch stride                             | last month                              | Releases                                                        |  |
| d                        | Update README.md                         | date README.md 2 hours ag               |                                                                 |  |
|                          | README                                   | 15 days ago                             | Create a new release                                            |  |
|                          | network mem prfile                       | 5 days ago                              |                                                                 |  |
| rv efficient (           | convolution laver                        | via matrix skotching                    | Packages<br>No packages published<br>Publish your first package |  |
|                          |                                          |                                         |                                                                 |  |

### Memory efficient convolution layer via matrix sketching

This software provides the implementation of convolution layers where the gradient with respect to the weights is approximated by an unbiased estimate. This estimate is obtained via matrix probing. This package contains two implementation:

Contributors 3



alisiahkoohi Ali Siahkoohi

### SLIM 🔶 .4Seismic



ණ

# This research was carried out with the support of Georgia Research Alliance and partners of the ML4Seismic consortium.

