
Georgia Institute of Technology
SLIM ML4Seismic

Mathias Louboutin et. al.

ML4Seismic Open Source
Software environment

October 22, 2021

Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0)
Copyright (c) 2021, Mathias Louboutin (Georgia Tech)

https://creativecommons.org/licenses/by/4.0

ML4Seismic

Some history

SINBAD 2006-2017, UBC

‣ inversion, data processing, acquisition design

‣ (parallel) Matlab code

‣ commercially adopted & in production  
(e.g. seismic data acquisition w/ Compressive Sensing)

Closed proprietary software framework stifled innovation due to

‣ restricted access to commercial (Matlab) code

‣ issues w/ scalability on parallel clusters

‣ limited uptake by sponsors

Moved to an open-source software (OSS) model in the Cloud.

ML4Seismic

ML4Seismic – Software

To improve our software stack, we

‣ improve access via Open Source (MIT license)

‣ build on years of experience

‣ leverage hyperscale serverless Cloud computing

‣ employs high-level abstractions to combat complexity

‣ are engaged in several (international) collaborations

ML4SeismicOpen source – https://github.com/slimgroup

https://github.com/slimgroup

ML4Seismic

Demos

 Afternoon breakout session:

‣ML4Seismic software environment preinstalled

‣ showcase code development on simple problems

‣ allows for evaluation of software

‣ platform to interact w/ users

https://ml4shub.eastus.cloudapp.azure.com

https://ml4s.eastus.cloudapp.azure.com/

ML4Seismic

Active & adopted by
the community

https://github.com/slimgroup

ML4Seismic

High-level Abstractions for
Seismic Inversion & ML

JUDI.jl & JUDI4Cloud.jl:
● matrix-free linear operators and abstract data (SEGY) containers
● parallel I/O based on look-up tables, parallelism (OMP + soon MPI)
● interface to Julia’s machine learning package Flux.jl
● https://github.com/slimgroup/JUDI.jl/ (MIT license)

Devito*:
● a domain-specific language for finite-differences in Python
● code generation with automated performance optimizations
● model parallelism (MPI, multithreading)
● https://github.com/devitocodes/devito (MIT license)
● Adopted by industry (CVX, BP, DUG, …)

InvertibleNetworks.jl:

● building blocks for invertible neural networks/normalizing flows
● scalable & gradients derived by hand
● https://github.com/slimgroup/InvertibleNetworks.jl (MIT license) 7

[1] P. A. Witte, M. Louboutin, N. Kukreja, F. Luporini, M. Lange, G. G. Gorman and Felix J. Herrmann, 2019, A large-scale framework for symbolic
implementations of seismic inversion algorithms in Julia, Geophysics, 84, 3.
[2] M. Louboutin, M. Lange, F. Luporini, N. Kukreja, P. A. Witte, F. J. Herrmann, P. Velesko and G. J. Gorman, 2019, Devito 3.1.0: an embedded
domain-specific language for finite differences and geophysical exploration: Geoscientific model development, 12, 3.

[3] F. Luporini, M. Lange, M. Louboutin, N. Kukreja, J. Hückelheim, , C. Yount, P. A. Witte, P. H. J. Kelly, F. J. Herrmann and G. J. Gorman, 2019,
Architecture and performance of Devito, a system for automated stencil computation, arXiv preprints.

[2][3]

[1]

*Devito is a joint project between Imperial & Georgia Tech with Mathias one of the two main developers.

https://github.com/slimgroup/JUDI.jl/
https://arxiv.org/search/cs?searchtype=author&query=H%C3%BCckelheim%2C+J

ML4SeismicState-of-the-art performance

ML4Seismic

GPU support roadmap

Legend:
Done
Nearly done
In progress
Potentially later this year

• Support for multiple target languages
• OpenMP, OpenACC
• potentially: CUDA, HIP, SYCL, …

• Unreliability of the target languages’ software stack
• Multi-GPU support:

• Make it possible to run different shots on different GPUs
• Single-node multi-GPU via domain decomposition
• Multi-node multi-GPU via domain decomposition

• Data movement (optimized)
• Data streaming (optimized)
• Kernel performance (best so far: 27 GPOINTS on iso-acoustic O(2, 8))

Devito – seismic
Louboutin, Mathias, et al. "Devito (v3. 1.0): an embedded domain-specific language for finite
differences and geophysical exploration." Geoscientific Model Development 12.3 (2019): 1165-1187.
Lange, Michael, et al. "Devito: Towards a generic finite difference dsl using symbolic python." 2016
6th Workshop on Python for High-Performance and Scientific Computing (PyHPC). IEEE, 2016.

ML4SeismicJUDI – true vertical integration

polyhydral compiler
people

CS/math/physics
people

math/optimizers/cs/
seismic practitioners

students

students

ML4Seismic

Example : Compressive seismic imaging

Least-squares migration as an elastic net:

Solve via the linearized Bregman method:

● at each iteration: random subsets of sources + frequencies

● memory per source:

● compressive sensing: no. of samples no. of grid points, non-zero entries

[1] P. A. Witte, M. Louboutin, F. Luporini, G. G. Gorman and Felix J. Herrmann, 2019, Compressive
least-squares migration with on-the-fly Fourier transforms , Geophysics, 84, 5.

[1]

ML4Seismic

Compressive seismic imaging

Linearized Bregman method with JUDI:

ML4Seismic

Compressive seismic imaging

Linearized Bregman method with JUDI:

ML4Seismic

Ultra-long offset SEG workshop
– 5 iterations 4 shots each

ML4SeismicServerless seismic imaging on Azure
“Small” 3D Imaging case study w/ Devito DSL + JUDI

● Data set: 1,500 source locations (~2.1 TB data)
● Model: 10 x 10 x 3.325 km (270 million unknowns)
● PDE: tilted transversely isotropic (TTI) wave equation, 3,500 time steps
● Cost: < 10,000$ on 100 E64/E64s instances (2 VMs per gradient with MPI)
● Peak performance: 140 TFLOPs
● cost single image is comparable to training a large NN

Witte, Philipp A., et al. "An event-driven approach to serverless seismic imaging in the cloud." IEEE Transactions on Parallel and Distributed
Systems 31.9 (2020): 2032-2049.

ML4SeismicJUDI4Cloud

polyhydral compiler
people

CS/math/physics
people

math/optimizers/cs/
seismic practitioners

students

students

Azure Batch parallelizationSimple swap-in

ML4Seismic

Clusterless implementation on Azure

JUDI operators in Azure Batch w/ JUDI4Cloud.jl

Once again, abstractions pay off:

● no need to refactor code

● readable codes

JUDI4Cloud.init_clusterless(n_instances; n_julia_per_instance=2)
Setup operators
Pr = judiProjection(info, recGeometry)
F = judiModeling(info, model; options=opt)
F0 = judiModeling(info, model0; options=opt)
Ps = judiProjection(info, srcGeometry)
J = judiJacobian(Pr*F0*adjoint(Ps), q)

Nonlinear modeling
dobs = Pr*F*adjoint(Ps)*q

Setup Azure Batch

(see previous talk)

Run on Azure &

gather results

http://www.apple.com

ML4Seismic

Compressive seismic imaging

Linearized Bregman method with JUDI: Now runs on Azure

ML4Seismic

JUDI
the Julia Devito Inversion framework

AddiZonal advantages:

● Devito propagators usable as standalone python

● SEGY I/O

● Extended source imaging (rank 1 source)

● GPU offloading, simple ENV-variable change

● Low-memory gradients with randomized trace estimation (See Tue)

Future work: expose in JUDI

● Devito’s MPI domain decomposition

● AD support

q[t]w[x]

ML4Seismic

Designed for Interoperability

Combine JOLI matrix-free linear operators w/ COFII’s Jets

Once again, abstractions pay off:

● no need to refactor code

● readable codes

Seamless integration JUDI & COFII super fast developments cycle = innovation.⟹

using JOLI, JetPack, Jets
1D real DFT with 1000 samples
J = joDFT(1000; DDT=Float64, RDT=Float64)
Jet operator for circular shift by 25 samples
jop = JopCircShift(JetSpace(Float64, 1000), 25);

a = randn(1000)
Parenthesis needed to prevent julia to compute J*jop first
a = randn(1000);b = J*(jop*a); c = jop'*(J'*b);
dot test
@show dot(b, b), dot(c, a), dot(b, b) - dot(c, a), dot(b, b) / dot(c, a)
490.00330785, 490.003307859, 1.1368683772161603e-13, 1.0000000000000002)

ML4Seismic

Mored advanced integration
synergetic

COFII propagator SetIntersectionProjection.jl
Projection onto intersection of constraints

SlimOptim.jl
quasi-newton

https://github.com/slimgroup/ConstrainedFWIExamples/blob/master/notebooks/02_constr_fwi_jetpack.ipynb
https://github.com/ChevronETC/Examples/blob/main/50_fwi/11_constrained_fwi_pqn.ipynb

https://github.com/slimgroup/ConstrainedFWIExamples/blob/master/notebooks/02_constr_fwi_jetpack.ipynb
https://github.com/ChevronETC/Examples/blob/main/50_fwi/11_constrained_fwi_pqn.ipynb

ML4Seismic

Mored advanced integration
constrains from SLIM & wave propagators from CVX’s COFII

https://github.com/ChevronETC/Examples/blob/main/50_fwi/11_constrained_fwi_pqn.ipynb

https://github.com/ChevronETC/Examples/blob/main/50_fwi/11_constrained_fwi_pqn.ipynb

SLIM COFII Compatible

Language julia, python julia, C++ yes

Software philosophy Linear Algebra Jets yes (see above)

Propagators Devito Legacy C++, potential migration
to Devito NA

IO SEGY (via SegyIO),

no cloud support yet

JavaSeis

CloudSeis not yet

Cloud
Azure Batch  

(via AzureClusterlessHPC)

fully remote (local desktop/laptop)

Azure Virtual Machine ScaleSet

Custom cloud cluster manager

Azure Network only
no

Cloud storage OpenVDS (future plan)

Cloud native OSDU compliant Blob manager yes

OSS Yes, all Yes, transitioning Yes

COFII vs SLIM

ML4Seismic

ML Software

Inver&bleNetworks.jl: A Julia package for inverZble CNNs

● Manually implemented derivatives and Jacobians that make use of invertibility

● Unit testing (adjoints, gradients, invertibility)

● hFps://github.com/slimgroup/InverGbleNetworks.jl (MIT license)
● GPU support through CUDA.jl

Main features:

● Additive and affine invertible coupling layers (e.g. as in NICE, Glow)

● Invertible recurrent inference machines (i-RIM)

● Hyperbolic networks

● Hierarchical invertible neural transport (HINT) and conditional HINT

● 1 x 1 convolutions, wavelet squeezing, etc.

● Integration of Flux.jl layers

● AD with ChainRules.jl

https://github.com/slimgroup/InvertibleNetworks.jl

ML4Seismic
InvertibleNetworks.jl

Class structure:

Usage:

ML4SeismicLoop unrolling revisited
Invertible version of loop-unrolled network:

● Inspired by i-RIM and Real NVP
● Invertible + tractable logdet

Migration-demigration

ML4Seismic
Uncertainty Quantification

Examples:

Siahkoohi, Ali, and Felix J. Herrmann. "Learning by example: fast reliability-aware seismic imaging with normalizing flows." arXiv preprint
arXiv:2104.06255 (2021).
Orozco, Rafael, et al. "Photoacoustic imaging with conditional priors from normalizing flows." NeurIPS 2021 Workshop on Deep Learning and Inverse
Problems. 2021.

ML4Seismic
Uncertainty Quantification

Posterior sampling implemented with conditional layers in InvertibleNetworks.jl

First, train with joint distribution target then sample from posterior distribution:

Kruse, Jakob, et al. "HINT: Hierarchical invertible neural transport for density estimation and Bayesian inference." arXiv preprint arXiv:1905.10687 (2019)

ML4Seismic

Next steps

Scaling of ML in 3D

Integration w/ OLIVES & generative classifiers

Further integration AD tools to combine wave-equation solvers w/ ML

Integration of Julia’s new AD tool when available

‣ leverages JIT compiler

‣ offers more control scales well→

ML4Seismic

This research was carried out with the support of Georgia
Research Alliance and partners of the ML4Seismic consortium.

30

