
Georgia Institute of Technology
SLIM ML4Seismic

Thomas J. Grady1, Rishi Khan2, Felix J. Herrmann1

Distributed Fourier Neural Operators

1Georgia Tech, 2Extreme Scale Solutions Released to public domain under Creative Commons license type BY
(https://creativecommons.org/licenses/by/4.0)

https://creativecommons.org/licenses/by/4.0

Motivation
Given an earth model (porosity/permeability), simulate CO₂ plumes

‣ over long periods of time

‣ for different scenarios (earth models, injection rates, etc.)

Important component of seismic monitoring for CCS

Motivation
Use Fourier Neural Operators (FNOs) to learn development of CO₂ plumes

‣Generalize to families of PDEs (i.e. differing parameters)

‣Up to three orders of magnitude faster than numerical solvers once trained

‣Discretization scale-invariance

Zongyi Li et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

Background - FNOs

Input in , output

 lifts to higher latent dimensions and projects to target dimension

A Fourier layer reads

K (x, y, K(x, y)) c(x, y, t)

P Q

vj+1 = σ (Wvj + ℱ−1 (Rϕ ⋅ (ℱvj)))

Zongyi Li et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

Ziyi Yin. Figure shown.

Adapted from Li

K(x) c(x, t)

ν(x, t)

Example - FNOs
learning two-phase flow

‣Generate 1000 random tortuous channels

‣Simulate 51 snapshots of CO₂ concentrations

‣Map permeability to time evolution of CO₂ concentration

https://github.com/lidongzh/FwiFlow.jl	 	 Ziyi Yin. Unpublished work.

https://github.com/zongyi-li/fourier_neural_operator

permeability Predict by FNO

Ground-truth

difference
10 ×

https://github.com/lidongzh/FwiFlow.jl
https://github.com/zongyi-li/fourier_neural_operator

Motivation
Scaling FNOs to realistic problems (3D, large volumes) is a challenge

‣ problems beyond do not fit w/i GPUs

‣ real problems are often much larger 
(e.g. Sleipner (low-resolution) is)

‣ need high-dimensional model-parallelism on distributed-memory systems 
(cloud/traditional HPC)

643 (x, y, z)

64 × 118 × 263

https://co2datashare.org/dataset/sleipner-2019-benchmark-model#orgf2c5747

https://co2datashare.org/dataset/sleipner-2019-benchmark-model#orgf2c5747

Solution
DistDL (Hewett, Grady, Merizian) framework provides parallelism

‣ partition data & model tensors onto different parallel workers along
spacetime dimensions

‣ use advanced MPI functionality to perform parallel computation of neural
net functions (convolution, pooling, etc.)

https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors

https://github.com/distdl/distdl

https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors
https://github.com/distdl/distdl

Solution
DistDL (Hewett, Grady, Merizian) framework provides parallelism

‣ implemented w/i PyTorch – differentiable parallelism

‣ runs on CPU/GPU clusters both cloud & traditional HPC

‣ for design philosophy & implementation specifics, Breakout Room 3

https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors

https://github.com/distdl/distdl

https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors
https://github.com/distdl/distdl

Parallelism - FNOs
Fourier transform

Parallelism - FNOs
Challenges

‣ FFT is a global operation – inherently difficult to parallelize

Distributed FFT algorithm by Dalcin et al.

‣multi-dimensional FFT equivalent to repeated FFTs of lower dimension

‣ switch data partition to keep FFTs along sequential dimension

Lisandro Dalic, Mikael Mortensen, and David E. Keyes. "Fast parallel multidimensional FFT using advanced MPI". arXiv preprint arXiv:1804.09536 (2018).

https://github.com/mpi4py/mpi4py-fft

Fourier transform

https://github.com/mpi4py/mpi4py-fft

Parallelism - FNOs
Fourier transform

Parallelism - FNOs
Fourier Transform
Distributed FFT is part of a neural network

‣must be differentiable

‣must work on tensors of arbitrary size & partition

Custom implementation needed, made simple by DistDL

Parallelism - FNOs
https://arxiv.org/pdf/1804.09536.pdf

Spectral Convolution

https://arxiv.org/pdf/1804.09536.pdf

Parallelism - FNOs

Determine the size of weights on each worker by complex indexing tricks

Only perform computation where restriction operator is nonzero globally

Spectral Convolution

Parallelism - FNOs
Affine Transformation

Parallelism - FNOs
Affine Transformation

Input network , output network , and weights all are affine
transformations along channel dimension

Want the action of to be the same everywhere, so broadcast weights &
biases before multiplication/addition

Parallelism - FNOs
Affine Transformation

Results
Distributed FNO running on Azure & NERSC Perlmutter

‣ barrier surpassed

‣Gradient computed for random input up to in spatial
dimensions

‣Capability to train FNOs on real-world data on distributed memory systems

643

512 × 512 × 256

Results
gradient timing experiment

Run on NERSC Perlmutter cluster

‣ 10 gradient computations per run, take the average

‣Max problem size reached in spatial dimensions

‣Simultaneous usage of 10TB of A100 GPU memory for a single gradient
computation – true HPC scale

512 × 512 × 256

https://www.nersc.gov/systems/perlmutter/

https://www.nersc.gov/systems/perlmutter/

Results
gradient timing experiment

Weak scaling experiment

‣ data size & weight sizes scale with number of GPUs

Performance

‣ speedup due to structure of the network and performance of A100s

‣ contiguous assignment of workers essential

Results
gradient timing experiment

Results
gradient timing experiment

Results
gradient timing experiment - speedup explanation

Conclusions
Distributed-memory parallelism of FNOs is difficult

‣ high-dimensional data/network

‣ large memory consumption

‣ complex network components

Using HPC-oriented deep learning tools (i.e. DistDL) solves the problem

‣ good abstraction of data movement in HPC systems

‣ integration with PyTorch allows concise expression & differentiation

FNOs scale well, due to structure of network

Future Work
Scaling:

‣ fully train network on realistic volume sizes

‣ remove communication bottlenecks (e.g. GPU offload)

Cloud integration:

‣ full data pipeline (e.g. Azure Blob w/ HSDS, CycleCloud)

‣ packaging & deployment of pre-trained models

https://swimburger.net/media/ppnn3pcl/azure.png

https://www.hdfgroup.org/wp-content/uploads/2017/11/stackedlogo-RGB.jpg

+

https://swimburger.net/media/ppnn3pcl/azure.png
https://www.hdfgroup.org/wp-content/uploads/2017/11/stackedlogo-RGB.jpg

Future Work
CCS Integration

‣wave-based monitoring of CCS

‣ inversion for permeability

‣ uncertainty quantification

Ziyi Yin. Unpublished work.

Related Work
DFNO Implementation - https://github.com/slimgroup/dfno

Original FNO - https://github.com/zongyi-li/fourier_neural_operator

DistDL - https://github.com/distdl/distdl

https://github.com/slimgroup/dfno
https://github.com/zongyi-li/fourier_neural_operator
https://github.com/distdl/distdl

Acknowledgements
Rishi Khan, Extreme Scale Solutions, & US DOE for HPC resources and
development guidance

Phillip Witte & Microsoft Research for training data & cloud resources/support

Georgia Research Alliance & partners of the ML4Seismic Center

