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Motivation
Given an earth model (porosity/permeability), simulate CO₂ plumes


‣ over long periods of time


‣ for different scenarios (earth models, injection rates, etc.)


Important component of seismic monitoring for CCS



Motivation
Use Fourier Neural Operators (FNOs) to learn development of CO₂ plumes


‣Generalize to families of PDEs (i.e. differing parameters)


‣Up to three orders of magnitude faster than numerical solvers once trained


‣Discretization scale-invariance


Zongyi Li et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).



Background - FNOs

Input  in , output 


 lifts to higher latent dimensions and  projects to target dimension


A Fourier layer reads 

K (x, y, K(x, y)) c(x, y, t)

P Q

vj+1 = σ (Wvj + ℱ−1 (Rϕ ⋅ (ℱvj)))

Zongyi Li et al. "Fourier neural operator for parametric partial differential equations." arXiv preprint arXiv:2010.08895 (2020).

Ziyi Yin. Figure shown.

Adapted from Li

K(x) c(x, t)

ν(x, t)



Example - FNOs
learning two-phase flow

‣Generate 1000 random tortuous channels


‣Simulate 51 snapshots of CO₂ concentrations


‣Map permeability to time evolution of CO₂ concentration

https://github.com/lidongzh/FwiFlow.jl	 	 Ziyi Yin. Unpublished work.

https://github.com/zongyi-li/fourier_neural_operator

permeability Predict by FNO

Ground-truth

difference
10 ×

https://github.com/lidongzh/FwiFlow.jl
https://github.com/zongyi-li/fourier_neural_operator


Motivation
Scaling FNOs to realistic problems (3D, large volumes) is a challenge


‣ problems beyond  do not fit w/i GPUs


‣ real problems are often much larger 
(e.g. Sleipner (low-resolution) is )


‣ need high-dimensional model-parallelism on distributed-memory systems 
(cloud/traditional HPC)


643 (x, y, z)

64 × 118 × 263

https://co2datashare.org/dataset/sleipner-2019-benchmark-model#orgf2c5747

https://co2datashare.org/dataset/sleipner-2019-benchmark-model#orgf2c5747


Solution
DistDL (Hewett, Grady, Merizian) framework provides parallelism


‣ partition data & model tensors onto different parallel workers along 
spacetime dimensions


‣ use advanced MPI functionality to perform parallel computation of neural 
net functions (convolution, pooling, etc.)


https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors

https://github.com/distdl/distdl

https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors
https://github.com/distdl/distdl


Solution
DistDL (Hewett, Grady, Merizian) framework provides parallelism


‣ implemented w/i PyTorch – differentiable parallelism


‣ runs on CPU/GPU clusters both cloud & traditional HPC


‣ for design philosophy & implementation specifics, Breakout Room 3


https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors

https://github.com/distdl/distdl

https://distdl.readthedocs.io/en/latest/user_guide/index.html#tensors
https://github.com/distdl/distdl


Parallelism - FNOs
Fourier transform



Parallelism - FNOs
Challenges


‣ FFT is a global operation – inherently difficult to parallelize


Distributed FFT algorithm by Dalcin et al.


‣multi-dimensional FFT equivalent to repeated FFTs of lower dimension


‣ switch data partition to keep FFTs along sequential dimension

Lisandro Dalic, Mikael Mortensen, and David E. Keyes. "Fast parallel multidimensional FFT using advanced MPI". arXiv preprint arXiv:1804.09536 (2018).

https://github.com/mpi4py/mpi4py-fft

Fourier transform

https://github.com/mpi4py/mpi4py-fft


Parallelism - FNOs
Fourier transform



Parallelism - FNOs
Fourier Transform
Distributed FFT is part of a neural network


‣must be differentiable


‣must work on tensors of arbitrary size & partition


Custom implementation needed, made simple by DistDL



Parallelism - FNOs
https://arxiv.org/pdf/1804.09536.pdf

Spectral Convolution

https://arxiv.org/pdf/1804.09536.pdf


Parallelism - FNOs

Determine the size of weights on each worker by complex indexing tricks


Only perform computation where restriction operator     is nonzero globally

Spectral Convolution



Parallelism - FNOs
Affine Transformation



Parallelism - FNOs
Affine Transformation

Input network    , output network    , and weights      all are affine 
transformations along channel dimension


Want the action of      to be the same everywhere, so broadcast weights & 
biases before multiplication/addition 



Parallelism - FNOs
Affine Transformation



Results
Distributed FNO running on Azure & NERSC Perlmutter


‣  barrier surpassed


‣Gradient computed for random input up to  in spatial 
dimensions


‣Capability to train FNOs on real-world data on distributed memory systems


643

512 × 512 × 256



Results
gradient timing experiment

Run on NERSC Perlmutter cluster


‣ 10 gradient computations per run, take the average


‣Max problem size reached  in spatial dimensions


‣Simultaneous usage of 10TB of A100 GPU memory for a single gradient 
computation – true HPC scale


512 × 512 × 256

https://www.nersc.gov/systems/perlmutter/

https://www.nersc.gov/systems/perlmutter/


Results
gradient timing experiment

Weak scaling experiment


‣ data size & weight sizes scale with number of GPUs


Performance


‣ speedup due to structure of the network and performance of A100s


‣ contiguous assignment of workers essential



Results
gradient timing experiment



Results
gradient timing experiment



Results
gradient timing experiment - speedup explanation



Conclusions
Distributed-memory parallelism of FNOs is difficult


‣ high-dimensional data/network


‣ large memory consumption


‣ complex network components


Using HPC-oriented deep learning tools (i.e. DistDL) solves the problem


‣ good abstraction of data movement in HPC systems


‣ integration with PyTorch allows concise expression & differentiation


FNOs scale well, due to structure of network



Future Work
Scaling:


‣ fully train network on realistic volume sizes


‣ remove communication bottlenecks (e.g. GPU offload)


Cloud integration:


‣ full data pipeline (e.g. Azure Blob w/ HSDS, CycleCloud)


‣ packaging & deployment of pre-trained models

https://swimburger.net/media/ppnn3pcl/azure.png

https://www.hdfgroup.org/wp-content/uploads/2017/11/stackedlogo-RGB.jpg

+

https://swimburger.net/media/ppnn3pcl/azure.png
https://www.hdfgroup.org/wp-content/uploads/2017/11/stackedlogo-RGB.jpg


Future Work
CCS Integration


‣wave-based monitoring of CCS


‣ inversion for permeability


‣ uncertainty quantification


Ziyi Yin. Unpublished work.



Related Work
DFNO Implementation - https://github.com/slimgroup/dfno


Original FNO - https://github.com/zongyi-li/fourier_neural_operator


DistDL - https://github.com/distdl/distdl


 

https://github.com/slimgroup/dfno
https://github.com/zongyi-li/fourier_neural_operator
https://github.com/distdl/distdl
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