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SLIM

Drivers
Our incessant 

• demand for hydrocarbons while we are no longer finding oil...

• desire to understand the Earth’s inner workings 

Push for improved seismic inversion to

• create more high-resolution information 

• from noisier and incomplete data
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Controversial 
statements

Size of our discretizations is dictated by 

• a far too pessimistic Nyquist-sampling criterion compounded by 
the curse of dimensionality

• our insistence to sample periodically and/or sequentially

Our desire to work with all data

• leads to “over emphasis” on data collection & full-data processing

• prohibits inversion that requires multiple passes through data
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Wish list
Acquisition & inversion costs determined by structure of data & 
complexity of the subsurface

‣ sampling criteria that are dictated by transform-domain 
sparsity and not by the size of the discretization

Controllable error that depends on 

‣ degree of subsampling / dimensionality reduction

‣ available computational resources
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Problem statement

Consider the following (severely) underdetermined system of 
linear equations:

Is it possible to recover x0 accurately from b?

The new field of Compressive Sensing attempts to answer this.

unknown

data
(measurements
/observations
/simulations)

x0

A

=

b
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Sparse recovery

x0

A

A := RFH=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal

b
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Coarse sampling schemes

Fourier

transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier

transform

Fourier

transform

[Hennenfent & Herrmann, ’08]
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Sparse one-norm recovery

Signal model

and      k sparse

Sparse one-norm recovery

with             where N is the ambient dimension

Study recovery as a function of

• the subsampling ratio n/N

• “over sampling” ratio k/n

x̃ = arg min
x

||x||1
def=

N∑

i=1

|x[i]| subject to b = Ax

b = Ax0 where b ∈ Rn

n! N

x0

[Sacchi ’98]
[Candès et.al, Donoho, ’06]
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Case study I
Acquisition design according to Compressive Sensing

• Periodic subsampling vs randomized jittered sampling 
of sequential sources

• Subsampling with randomized jittered sequential sources vs 
randomized phase-encoded simultaneous sources

[Hennenfent & Herrmann, ’08]
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Seismic Laboratory for Imaging and Modeling

seismic line
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Seismic Laboratory for Imaging and Modeling

missing shots

 
50% subsampled shot
from regularly missing

shot positions
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Seismic Laboratory for Imaging and Modeling

regularized

SNR = 8.9 dB
50% subsampled shot
from regularly missing

shot positions
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Jittered sampling

shot
positions

shot
positions
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[Hennenfent & FJH, ’08]
[Gang et.al., ‘09]
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Seismic Laboratory for Imaging and Modeling

missing traces

 
50% subsampled shot

from randomized 
jittered shots
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Seismic Laboratory for Imaging and Modeling

regularized

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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Simultaneous & incoherent sources
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Seismic Laboratory for Imaging and Modeling

multiplexed

 
50% subsampled shots

from randomized
simultaneous shots
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Seismic Laboratory for Imaging and Modeling

demultiplexed

SNR = 16.1 dB
50% subsampled shot

from randomized
simultaneous shots
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Seismic Laboratory for Imaging and Modeling

recovered

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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The math of Compressive Sensing

Recovery is possible & stable as long as each subset S of k 
columns of                  with            the # of nonzeros 
approximately behaves as an orthogonal basis.

In that case, we have 

where S runs over all sets with cardinality

• the smaller the restricted isometry constant (RIP)    the 
more energy is captured and the more stable the 
inversion of A

• determined by the mutual coherence of the cols in A

A ∈ Rn×N k ≤ N

(1− δ̂k)‖xS‖2!2 ≤ ‖ASxS‖2!2 ≤ (1 + δ̂k)‖xS‖2!2 ,

≤ k

δ̂k

[Candès et.al, ’06]
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Math cont’ed

RIP constant is bounded by 

where

Matrices with small     contain subsets of k incoherent columns.

Gaussian random matrices with i.i.d. entries have this property.

One-norm solvers recover x0 as long it is k sparse and

yields an oversampling ratio of

δ̂k ≤ (k − 1)µ

µ = max
1≤i "=j≤N

|aH
i aj |

δ̂k

k ≤ C · n

log2(N/n)
,

n/k ≈ C · log2 N

[Candès et.al, ’06]
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

sparsity-promoting solver

• requires few matrix-vector multiplications
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Seismic Laboratory for Imaging and Modeling

Fourier reconstruction

1 % of coefficients
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Seismic Laboratory for Imaging and Modeling

Wavelet reconstruction

1 % of coefficients
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Seismic Laboratory for Imaging and Modeling

Curvelet reconstruction

1 % of coefficients
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Curvelets
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[Demanet et. al., ‘06]
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Extension

Extend CS framework:

Expected to perform well when

Generalizes to redundant transforms for cases where

• max of RIP constants for M, S are small

• or            remains sparse for x sparse

Open research topic...

restriction
matrix

measurement
matrix

sparsity
matrix

A := RMSH

µ = max
1≤i "=j≤N

|
(
RMsi

)H RMsj |

SSHx [Candès et.al, ’10]

[Rauhut et.al, ’06]
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

➡nonlinear approximation error

• recovery error

• oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Nonlinear approximation error
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SLIM
Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling 

• generates incoherent random undersampling “noise” in the sparsifying domain

sparsity-promoting solver

• requires few matrix-vector multiplications

✓
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SLIM
Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓
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Data

missing shots sim. shots

Thursday, October 28, 2010



SLIM
Sparse recovery

recovery
missing shots

recovery
sim. shots
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Sparse recovery error

error
missing shots

error
sim. shots
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

➡recovery error

• oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Multiple experiments
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

• recovery error

➡oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Oversampling ratios
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling (mixing)

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓
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Reality check

“When a traveler reaches a fork in the road, 
the 11-norm tells him to take either one way 
or the other, but the l2 -norm instructs him to 
head off into the bushes.”

John F. Claerbout and Francis Muir, 1973 
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One-norm solver

[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al, ‘08]
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

from http://people.cs.ubc.ca/~mpf/
Thursday, October 28, 2010
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling (mixing)

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓

✓
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Recent results
Recovery of seismic lines based 

• on “separable” sparsifying transform

• favorable simultaneous acquisition

Consider  “Marine” case

S = C⊗W
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Simultaneous sources
Marine case
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Original data
original data
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Recovered data
40 % of shots in 20 % of recording time

recoverd data
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Observations
Controllable error for reconstruction from randomized subsamplings

Oversampling compared to conventional compression is small

Combination of sampling & encoding into a single linear step has 
profound implications

• acquisition costs no longer determined by resolution & size

• but by transform-domain sparsity & recovery error

3-D Curvelets and simultaneous acquisition perform the best
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Extensions
Include more “physics” in the formulation via

• discretization of integral equations of the second kind

• prediction of surface-related multiples

• linearized-scattering operator

Incorporate dimensionality reductions in full-waveform inversion

• via creation of supershots

[Lin et. al., ‘10]

[Lin & FJH, 09-10]
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FWI formulation
Multiexperiment unconstrained optimization problem:

• requires large number of PDE solves

• linear in the sources

• apply randomized dimensionality reduction 

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1[m]Q

[Tarantola, 84; Pratt, ’98; Plessix, ‘06]
Thursday, October 28, 2010
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Reduced FWI 
formulation

Multiexperiment unconstrained optimization problem:

• requires smaller number of PDE solves

• explores linearity in the sources & block-diagonal structure 
of the Helmholtz system

• uses randomized frequency selection and phase encoding

min
m∈M

1
2
‖D−F [m;Q]‖2

2,2 with F [m;Q] := PH−1Q

[FJH et.al., ’08-10’, Krebs et.al., ’09, Operto et. al., ’09] 
[Haber, Chung, and FJH, ’10] 
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Batch/mini experiment

Collection of K simultaneous-source experiments with batch 
size

Q Q = RMQ

K ! nf × ns

adapted from FJH et. al. ,09

[FJH et. al.  ’08-’10]
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Math
Compressive-sampling operator

with

RM = (RΣMΣ ⊗ I⊗RΩ)F3

where θ ∈ Uniform(−π, π], and η ∈ Normal(0, 1)

MΣ = sign(η)! FH
1 ejθ

[Romberg, ’07]
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Interpretations

Consider randomized dimensionality reduction as instances of

• stochastic optimization & machine learning

• compressive sensing [FJH et. al, ’08-’10]
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Stochastic 
optimization

Replace deterministic-optimization problem

with sum cycling over different sources & corresponding shot 
records 
(columns of D & Q)

min
m∈M

f(m) =
1
N

N∑

i=1

1
2
‖di − F [m;qi]‖2

2

[Natterer, ’01]
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Stochastic average 
approximation

by a stochastic-optimization problem

with

and

w ∈ N(0, 1) and Ew{wwH} = I

min
m∈M

Ew{f(m,w) =
1
2
‖Dw − F [m;Qw]‖22}

≈ 1
K

K∑

j=1

1
2
‖dj − F [m;qj ]‖22

 [Haber, Chung, and FJH, ’10] 

dj = Dwj , qj = Qwj
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Stochastic average 
approximation

In the limit             , stochastic & deterministic formulations 
are identical

We gain as long as              ...

Since the error in Monte-Carlo methods decays only slowly 

this approach may be problematic...

However, the location for the minimum of the misfit may be 
relatively robust...

K ! N

(O(K−1/2))

K →∞
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SLIM

Stylized example
Search direction for batch size K:
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Decay
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SLIMMisfit functional
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 [adapted from Haber, Chung, and FJH, ’10] 
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Stochastic 
approximation

Use different simultaneous shots for each subproblem, i.e.,

Requires fewer PDE solves for each GN subproblem...

• corresponds to stochastic approximation

• related to Kaczmarz (’37) method applied by Natterer, ‘01

• supersedes ad hoc approach by Krebs et.al., ‘09

[Nemirovski, ’09]

Q !→ Qk

[Bertsekas,’ ’96; Nemirovski, ’09]
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K=1 w and w/o redraw
[noise-free case]
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Known issues
Renewals introduce stochasticity in the gradients

May lead to

• lack of convergence

• sensitivity to noise in data

Solutions 

• increase the batch size

• average over the past model updates

[Krebs, ’09-’10]
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Stochastic 
approximation

 [Bertsekas, ’96; Haber, Chung, and FJH, ’10] 

Algorithm 1: Stochastic gradient descent
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
gk ←− 1

K

∑K
j=1∇F∗[mk−1,qk

j
](dk

j −F [mk−1,qk
j
]) ; // gradient

mk+1 ←−mk − γkgk ; // update with linesearch

mk+1 = 1
k+1

(∑k
i=1 mi + mk+1

)
; // average

k ←− k + 1;
end
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K=1
[noisy case]
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K=5
[noisy case]
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Observations
Renewals improve convergence significantly

Averaging removes noise instability but is detrimental to the 
convergence

Smart averaging over limited history improves convergence

Increasing the batch size in combination with smart averaging 
leads to superior convergence

Second-order methods ad hoc & not well understood

Produces noisy updates ... Sounds familiar?
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Our approach
Leverage findings from sparse recovery & compressive sensing

• consider each phase-encoded Gauss-Newton update as 
separate compressive-sensing experiment

• remove interferences by curvelet-domain sparsity 
promotion

• exploit properties of Pareto curves

[Candes et al., ’06; Donoho, ’06]
[Demanet et. al. ’07; Herrmann & Li, ’08-’09]
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Rationale
Wavefields are compressible in curvelet frames

• correlations between source & residual wavefields are 
compressible

• velocity distributions of sedimentary basins are also 
compressible

Linearized subproblems are convex

Assume proximity Pareto curves for successive linearizations
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Gauss-Newton

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− argminp

1
2‖δd−∇F [mk;Q]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←− mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Phase encoding

Algorithm 1: Gauss Newton with renewed phase encodings
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− arg minp

1
2‖δd

k −∇F [mk;Qk]p‖22 + λk‖p‖22 ; // search dir.

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end
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Sparse recovery
Least-squares migration with sparsity promotion

leads to significant speedup as long as

δx = Sparse curvelet-coefficient vector
S∗ = Curvelet synthesis

δm̃ = S∗ arg min
δx

1
2
‖δx‖"1 subject to ‖δd−∇F [m0;Q]S∗δx‖2 ≤ σ

n!1
PDE ×K " n!2

PDE × nf × ns

[Wang & Sacchi, ’07]
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Compressive 
updates

Algorithm 1: Gauss Newton with sparse updates
Result: Output estimate for the model m
m ←− m0; k ←− 0 ; // initial model

while not converged do
pk ←− S∗ arg minx

1
2‖δd

k −∇F [mk;Qk]S∗x‖22 s.t. ‖x‖1 ≤ τk

mk+1 ←−mk + γkpk ; // update with linesearch

k ←− k + 1;
end

[van den Berg & Friedlander, ’08]
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Solution strategy

• Draw new CS experiment 
when Pareto curve is 
reached

• Do new linearization

• Sweep from low to hight 
frequencies
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation
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Example
FWI specs:

• Committed inversion crime

• Frequency continuation over 10 bands

• 15 simultaneous shots with 10 frequencies each

K = 10× 15" 100× 384
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True model
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Initial model
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Inverted model
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Initial model

Lateral (× 24 meters)

De
pt

h 
(×

 2
4 

m
et

er
s)

 

 

50 100 150 200 250 300 350

20

40

60

80

100

120

140

2000

2500

3000

3500

Thursday, October 28, 2010



SLIM

Inverted model
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Difference
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Performance
Remember per subproblem

                                     versus

SPEEDUP of 13 X

n!1
PDE ×K " n!2

PDE × nf × ns

n!1
PDE ≈ 200

K = 150
n!2

PDE ≈ 10
K = 38400
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Conclusions
Dimensionality reduction will revolutionize our field

• reduction of acquisition costs

• less reliance on full sampling

• decrease in processing time

• high-resolution inversions that are otherwise infeasible with 
fully-sample (Nyquist-based) methods

Non uniqueness & missing low frequencies remain fundamental 
problems...
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Thank you

slim.eos.ubc.ca
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Further reading
Compressive sensing

– Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.

– Compressed Sensing by D. Donoho, ’06

Simultaneous acquisition
– A new look at simultaneous sources by Beasley et. al., ’98.

– Changing the mindset in seismic data acquisition by Berkhout ’08.

Simultaneous simulations, imaging, and full-wave inversion:
– Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.

– Phase encoding of shot records in prestack migration by Romero et. al., ’00.
– High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang & Sacchi, ’07

– Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al., ’08.

– Compressive simultaneous full-waveform simulation by FJH et. al., ’09.
– Fast full-wavefield seismic inversion using encoded sources by Krebs et. al., ’09

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10

 Stochastic optimization and machine learning:

– A Stochastic Approximation Method by Robbins and Monro, 1951

– Neuro-Dynamic Programming by Bertsekas, ’96
– Robust stochastic approximation approach to stochastic programming by Nemirovski et. al., ’09

– Stochastic Approximation approach to Stochastic Programming by Nemirovski

– Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li, ’10
– An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung, 

and Felix J. Herrmann. ’10
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