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Our incessant
® demand for hydrocarbons while we are no longer finding oil...

® desire to understand the Earth’s inner workings

Push for improved seismic inversion to
® create more high-resolution information

® from noisier and incomplete data
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Size of our discretizations is dictated by

® a far too pessimistic Nyquist-sampling criterion compounded by
the curse of dimensionality

® our insistence to sample periodically and/or sequentially
Our desire to work with all data
® |eads to “over emphasis” on data collection & full-data processing

® prohibits inversion that requires multiple passes through data

Thursday, October 28, 2010



Acquisition & inversion costs determined by structure of data &
complexity of the subsurface

p sampling criteria that are dictated by transform-domain
sparsity and not by the size of the discretization

Controllable error that depends on
p degree of subsampling / dimensionality reduction

p available computational resources
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Consider the following (severely) underdetermined system of
linear equations:

/observations
/simulations)

data
(measurements —— E =
b

0

1

unknown

s it possible to recover Xopaccurately from b?

The new field of Compressive Sensing attempts to answer this.
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Sparse recovery
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Coarse sampling schemes
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Signal model
b= Axy where beR"
and X( k sparse

SP&I’SE one-norm recovery

N
X = arg min HXHldéf Z x|i|| subject to b= Ax
® i=1

with n<< N where N is the ambient dimension
Study recovery as a function of
® the subsampling ratio n/N

® “over sampling” ratio k/n
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Acquisition design according to Compressive Sensing

® Periodic subsampling vs randomized jittered sampling
of sequential sources

® Subsampling with randomized jittered sequential sources vs
randomized phase-encoded simultaneous sources
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960 seismic line
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Seismic Laboratory for Imaging and Modeling
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960 missing shots
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0 1000 0
Receiver position (m)

Seismic Laboratory for Imaging and Modeling

regularized

SNR =8.9 dB

50% subsampled shot
from regularly missing
shot positions

Shot position (m)
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[Hennenfent & FJH, '08]
[Gang et.al.,"09]

Jittered sampling

: Typical spatial
Type Sampling scheme ypicarsp
convolution kernel
2 shot o o = &
= " D22 0000000000000 000 g
® positions 2
= °9 01 02 03 04 05
Normalized wavenumber (cycle)
PDF -~ el > = - =
> O | | | | | | E s
: @ 0 0 0 0 0 0 e
0o 2 ‘
o+ shot - o 2
Q= » D22 0000000000000 0O DL S | T LY. \ ; ]
positions 0O 01 02 03 04 05
Normalized wavenumber (cycle)
2 PDF -+ +~----- oo y - ——— - oo 3
T o I [ [ I 5w
E S ' ' ' ' ' ' ’_Q“O
Q g
s B shot
ax I 5000000000000 0000 00 = Lo b
o positions 0 01 02 03 04 05
Normalized wavenumber (cycle)

Thursday, October 28, 2010



0 1000 0
Receiver position (m)

Seismic Laboratory for Imaging and Modeling

missing traces

50% subsampled shot
from randomized
jittered shots

1000
Shot position (m)

Thursday, October 28, 2010



0 1000 0
Receiver position (m) Shot position (m)

Seismic Laboratory for Imaging and Modeling

regularized

SNR =10.9 dB

50% subsampled shot
from randomized
jittered shots

1000

Thursday, October 28, 2010



Simultaneous & incoherent sources
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045 multiplexed
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0 1000 0
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Seismic Laboratory for Imaging and Modeling
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0 1000 0
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Seismic Laboratory for Imaging and Modeling

recovered

SNR =10.9 dB

50% subsampled shot
from randomized
jittered shots

1000

Thursday, October 28, 2010



Recovery is possible & stable as long as each subset S of k
columns of A € R™*" with k < N the # of nonzeros

approximately behaves as an orthogonal basis.

In that case, we have
(1= dn)llxsllz, < [Asxsllz, < (1+0k)[xsllz,,
where S runs over all sets with cardinality < &

e the smaller the restricted isometry constant (RIP) ¢, the
more energy is captured and the more stable the

inversion of A

® determined by the mutual coherence of the cols in A
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RIP constant is bounded by

AN

Ok < (k—1)p
where
_ H_
:u_ 1;@1;8]"-};]\;‘&@ aJ‘

Matrices with small 0; contain subsets of k incoherent columns.
Gaussian random matrices with i.i.d. entries have this property.

One-norm solvers recover Xo as long it is k sparse and

n
E<(C - ,
- log, (N /1)

yields an oversampling ratio of

n/k~C-logy N
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[ sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

7] advantageous coarse randomized sampling

® generates incoherent random undersampling “noise” in the sparsifying domain

[ sparsity-promoting solver

@ requires few matrix-vector multiplications
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Fourier reconstruction
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Wavelet reconstruction
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Curvelet reconstruction
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[Demanet et. al.,‘06]

Curvelets
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Extend CS framework:

H
A = RMS
) T
restriction measurement sparsity
matrix matrix matrix

Expected to perform well when
p= max |(RMs')" RMSs|
1<i#j<N
Generalizes to redundant transforms for cases where
® max of RIP constants for M, S are small

H .
® or 5SS x remains sparse for X sparse

Open research topic...
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

= nonlinear approximation error

f—f

SNR(p) = —20log H HprH with p=k/P
® recovery error .
f—f

SNR(d) = —201log | ] sl with 6 =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]
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Nonlinear approximation error
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

] advantageous coarse sampling

® generates incoherent random undersampling “noise” in the sparsifying domain

] sparsity-promoting solver

@ requires few matrix-vector multiplications
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

[ sparsity-promoting solver

@ requires few matrix-vector multiplications

— -
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Sparse recovery error
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

® nonlinear approximation error

f—1f
SNR(p) = —201log H HprH with p=k/P
) recovery error
f—1f
SNR(8) = —20log | ||f||5H with & =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]
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Multiple experiments
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Empirical
performance analysis

Selection of the appropriate sparsifying transform

® nonlinear approximation error

f—f

SNR(p) = —20log H HprH with p=k/P
® recovery error .
f—f

SNR(d) = —201log | ] sl with 6 =n/N

=) oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]
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Oversampling ratios
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling (mixing)

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

[ sparsity-promoting solver

@ requires few matrix-vector multiplications

— -
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“When a traveler reaches a fork in the road,
the |-norm tells him to take either one way
or the other, but the |; -norm instructs him to

head off into the bushes.”

John F. Claerbout and Francis Muir, 1973
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[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al,‘08]

One-norm solver
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http://people.cs.ubc.ca/~mpf/
http://people.cs.ubc.ca/~mpf/

V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling (mixing)

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

V] sparsity-promoting solver

@ requires few matrix-vector multiplications

— -

Thursday, October 28, 2010



Recent resulis

Recovery of seismic lines based

® on “separable” sparsifying transform
S=CW

® favorable simultaneous acquisition

Consider “Marine” case
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Simultaneous sources

Marine case
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Recovered data
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Controllable error for reconstruction from randomized subsamplings
Oversampling compared to conventional compression is small

Combination of sampling & encoding into a single linear step has
profound implications

® qacquisition costs no longer determined by resolution & size
® but by transform-domain sparsity & recovery error

3-D Curvelets and simultaneous acquisition perform the best
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Include more “physics” in the formulation via
® discretization of integral equations of the second kind
® prediction of surface-related multiples

® linearized-scattering operator

Incorporate dimensionality reductions in full-waveform inversion

® via creation of supershots
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Multiexperiment unconstrained optimization problem:

min —HD Fm; Q]||5

with : .= PH !
i th  Flm; Q] m|Q

* requires large number of PDE solves
* linear in the sources

* apply randomized dimensionality reduction
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Multiexperiment unconstrained optimization problem:

min —HD F|m; Q] with Flm; Q| := PH 'Q

meM 2

* requires smaller number of PDE solves

* explores linearity in the sources & block-diagonal structure
of the Helmholtz system

* uses randomized frequency selection and phase encoding
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[FJH et.al. *08-"10]

Batch/mini experiment

adapted from FJH et. al. ,09

separated source
960 ] 960

s i1 m | - 1. m e ] 1 IIIr 6v
0 500 1000 1500 N 0 500 1000 1500
Reciever Offset (m) Shot Position (m)

Q Q=RMQ

Collection of K simultaneous-source experiments with batch
size K < ny X ng
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quh [Romberg, '07]

Compressive-sampling operator

RM = (R*M* @ I ® R*)F;
with

M?> = sign(n) © File’?

where 6 € Uniform(—mn, 7|, and € Normal(0, 1)
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Interpretations

Consider randomized dimensionality reduction as instances of
® stochastic optimization & machine learning

® compressive sensing [ et al, ‘0810
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Stochastic
optimization

Replace deterministic-optimization problem

1 N

1
' m) = — —||d; — Flm; q,]|3
n?él,/r\l/tf( ) N;:;z” m;q,|5

with sum cycling over different sources & corresponding shot
records

(columns of D & Q)
[Natterer, '01]
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Stochastic average

@ p prOXi m d'l'iO N [Haber, Chung, and FH, "10]

by a stochastic-optimization problem

min By {f(m,w) = _[Dw - Flm:Qwl|}

—Z—H Flm;q,]l3

withw € N(0,1) and Ew{ww?} =1

2

andd; = Dw;, q; = Qw;
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In the limit K — o0, stochastic & deterministic formulations
are identical

We gain as longas K < N ..,

Since the error in Monte-Carlo methods decays only slowly
(O(K™1/%))

this approach may be problematic...

However, the location for the minimum of the misfit may be
relatively robust...
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Stylized example

Search direction for batch size K:

z [km]

full K=1 K=5
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Decay

107, —

lerrorl

error between full and sampled gradient
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Misfit functional

K [adapted from Haber, Chung, and F|H, 1 0]

1

1
fre(gr) = 72 > 5 lld; = Flm + age: qj]|I3
j=1

x 10° x 10°

15 * * * * 3
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Use different simultaneous shots for each subproblem,i.e.,
k
Q - Q

Requires fewer PDE solves for each GN subproblem...
® corresponds to stochastic approximation
® related to Kaczmarz ("37) method applied by Natterer, Ol

® supersedes ad hoc approach by Krebs et.al.,"09
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Renewals introduce stochasticity in the gradients
May lead to

® Jack of convergence

® sensitivity to noise in data

Solutions

® increase the batch size

® average over the past model updates
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Stochastic
approximation

Algorithm 1: Stochastic gradient descent

Result: Output estimate for the model m

m «— mg; k«— 0 ; // initial model
while not converged do
g"C ¢ Il< Z;K:1 VF* [mk_l,gf](df — ]:[mk_l,g?]) : // gradient
m~t!l «—— m” — fgh . // update with linesearch
m~t! = k+r1 (Z?:l m’ + mk_H); // average
k+— k—+ 1;
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Renewals improve convergence significantly

Averaging removes noise instability but is detrimental to the
convergence

Smart averaging over limited history improves convergence

Increasing the batch size in combination with smart averaging
leads to superior convergence

Second-order methods ad hoc & not well understood

Produces noisy updates ... Sounds familiar?
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Leverage findings from sparse recovery & compressive sensing

® consider each phase-encoded Gauss-Newton update as
separate compressive-sensing experiment

® remove interferences by curvelet-domain sparsity
promotion

® exploit properties of Pareto curves
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Wavefields are compressible in curvelet frames

® correlations between source & residual wavefields are
compressible

® velocity distributions of sedimentary basins are also
compressible

Linearized subproblems are convex

Assume proximity Pareto curves for successive linearizations
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Gauss-Newion

Algorithm 1: Gauss Newton

Result: Output estimate for the model m
m <— mg; k<— 0 ; // initial model
while not converged do

pF «— arg min,, %]‘5d — VF[m*; Q]pl||3 + M\*||pll2; // search dir.
m*t! «— mF +~FpF ; // update with linesearch
k<+— k-+1;

end
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Algorithm 1: Gauss Newton with renewed phase encodings

Result: Output estimate for the model m

m «— mg; k«— 0 ; // initial model
while not converged do

pF — arg min, %‘]5Qk — V]:[mk,gk]pH% + N¥|pl||3 ; // search dir.
m~t —— mF + ~Fp” // update with linesearch
k+— k+1;

end
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[Wang & Sacchi, ’07]

Sparse recovery

Least-squares migration with sparsity promotion

~ 1
om = S™ arg min §H5Xugl subject to |[0d — VF | mg; Q]S™ x|l < o
dx o
0x = Sparse curvelet-coefficient vector

S>I<

Curvelet synthesis

leads to significant speedup as long as

El 62
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Compressive

updates

Algorithm 1: Gauss Newton with sparse updates

Result: Output estimate for the model m

m «— mg; k«— 0 ; // initial model
while not converged do

p® «— S* arg min_ %H5Qk — Vf[mk;gk]S*XH% st ||x|[p < 7F
m*t! «—— m* + +Fp” ; // update with linesearch
k+— k+1;

end

[van den Berg & Friedlander, '08]
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Solution sirategy

® Draw new CS experiment
when Pareto curve is

250

reached - :
L 5 E
® Do new linearization s ;
& — [
, 5
® Sweep from low to hight ¢
frequencies d o
50

b B
L]
-
L
L
L]
---
L]

Pareto curve
- @ = Solution path

1.5 2
one-norm of solution (x1 04)
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Example

FWI specs:

® Committed inversion crime
® Frequency continuation over |0 bands

® |5 simultaneous shots with |0 frequencies each

K =10 x 15 <« 100 x 384

Thursday, October 28, 2010



True model
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Initial model
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Inverted model
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True model
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Initial model
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Depth (x 24 meters)

Inverted model
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True model
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Difference
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Performance

Remember per subproblem

61 22

~ {2 ~

K = 150 K 33400

SPEEDUPof |13 X
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Dimensionality reduction will revolutionize our field
® reduction of acquisition costs

® |ess reliance on full sampling

® decrease in processing time

® high-resolution inversions that are otherwise infeasible with
fully-sample (Nyquist-based) methods

Non uniqueness & missing low frequencies remain fundamental
problems...
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Thank you

slim.eos.ubc.ca



http://slim.eos.ubc.ca
http://slim.eos.ubc.ca

Compressive sensing
—  Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
—  Compressed Sensing by D. Donoho, 06
Simultaneous acquisition
— A new look at simultaneous sources by Beasley et. al.,’98.
—  Changing the mindset in seismic data acquisition by Berkhout ’08.
Simultaneous simulations, imaging, and full-wave inversion:
—  Faster shot-record depth migrations using phase encoding by Morton & Ober, '98.
—  Phase encoding of shot records in prestack migration by Romero et. al.,’00.
—  High-resolution wave-equation amplitude-variation-with-ray-parameter (AVP) imaging with sparseness constraints by Wang & Sacchi, '07
—  Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al.,’08.
—  Compressive simultaneous full-waveform simulation by FJH et. al.,’09.
—  Fast full-wavefield seismic inversion using encoded sources by Krebs et. al.,’09
—  Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li,’ 10
Stochastic optimization and machine learning:
— A Stochastic Approximation Method by Robbins and Monro, 1951
—  Neuro-Dynamic Programming by Bertsekas, ’96
—  Robust stochastic approximation approach to stochastic programming by Nemirovski et. al.,’09
—  Stochastic Approximation approach to Stochastic Programming by Nemirovski

— Randomized dimensionality reduction for full-waveform inversion by FJH & X.Li,’ |0

—  An effective method for parameter estimation with PDE constraints with multiple right hand sides. by Eldad Haber, Matthias Chung,
and Felix J. Herrmann.’ 10
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