InvertibleNetworks.jl – Memory efficient deep learning in Julia

Philipp A. Witte, Mathias Louboutin, Ali Siahkoohi, Bas Peters, Gabrio Rizzuti and Felix J. Herrmann

- (1) Georgia Institute of Technology, now Microsoft
- (2) Georgia Institute of Technology
- (3) Emory University
- (4) Georgia Institute of Technology, now Utrecht University

Invertible Neural Networks

(Kingma & Dhariwal, 2018)

Generative Modeling via Normalizing Flows

(Siahkoohi et al., 2021)

Inverse problems & Uncertainty quantification (UQ)

Invertible Neural Networks

Invertible Neural Networks

- Train deep 3D neural networks
 - Take advantage of invertibility
 - No need to store hidden states

INN & NF frameworks

- Relevant Julia packages
 - Flux.jl [1]
 - Knet.jl^[2]
 - Bijections.jl^[3]
 - No specific INN & NF frameworks

- Frameworks for Easily Invertible Architectures (FrEIA)^[4]
- MemCNN^[5]
- PyTorch Normalizing Flows [6]

Papers with code

- Glow [7]
- Invertible RIM + Fast MRI [8]
- Invertible Residual Networks [9]
- Etc.

No frameworks that optimally take advantage of invertibility

- [1] Innes, Mike. Flux: Elegant Machine Learning with Julia, Journal of Open Source Software, 2018
- [2] Yuret, Deniz. Knet: Beginning deep learning with 100 lines of Julia. Machine Learning Systems Workshop, NeurIPS, 2016
- [3] Scheinerman et al., Bijections.jl. https://github.com/scheinerman/Bijections.jl, 2021
- [4] Kruse et al., FrEIA. https://github.com/VLL-HD/FrEIA, 2021
- [5] Van de Leemput et al. *MemCNN: A Python/PyTorch package for creating memory-efficient INNs*, Journal of Open Source Software, 2019
- [6] Karpathy, Andrew. PyTorch Normalizing Flows. https://github.com/karpathy/pytorch-normalizing-flows, 2019.
- [7] Kingma & Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. arXiv preprints, 2018.
- [8] Putzky et al. i-RIM applied to the fastMRI challenge. ariXiv preprints, 2019.
- [9] Behrmann et al. Invertible Residual Networks. ICML, 2019.

Training INNs & NFs

* tracked

Training INNs & NFs

Training INNs & NFs

- [2] Putzky et al. i-RIM applied to the fastMRI challenge. ariXiv preprints, 2019.
- [3] Kingma & Dhariwal. Glow: Generative Flow with Invertible 1x1 Convolutions. arXiv preprints, 2018.

InvertibleNetworks.jl

Memory efficient training for INNs & NFs (MIT license)

- Common building blocks from literature
 - Coupling layers, hyperbolic layers, i-RIM, HINT, 1 x 1 convolutions, etc. [1-3]
 - Log-dets for training via change of variables
 - Forward + adjoint Jacobians (forward + backward differentiation)

o paper: https://arxiv.org/abs/2101.03709

o code: FastApproximateInference.jl

presentation

Github repository (MIT license)

https://github.com/slimgroup/InvertibleNetworks.jl

Package overview

Invertible layers	Invertible networks	Utilities	Examples
 Coupling layers (affine, additive, Glow, HINT) Hyperbolic layers Activation normalization 1 x 1 convolutions w/ Householder matrices Log-dets for NFs 	GlowHyperbolic networksHINTi-RIM	 Activations Dimensionality operations (squeeze, checkerboard, wavelet transform) Objective functions Log-dets 	 Generative models Seismic imaging/inversion Image segmentation Loop unrolling for inverse problems

```
# Activation normalization
AN = ActNorm(k; logdet=true)

# Forward-inverse
Y = AN.forward(X)
X = AN.inverse(Y)

# Backprop
ΔX, X = AN.backward(ΔY, Y)
ΔY, Y = AN.backward_inverse(ΔX, X)

# Jacobian
J = Jacobian(AN, X; io_mode="θ↦Y")
ΔY = J*Δθ
Δθ = J'*ΔΥ
```

```
# Glow network
G = NetworkGlow(n_in, n_hidden, L, K)

# Forward-inverse
Y = G.forward(X)
X = G.inverse(Y)

# Backprop
ΔX, X = G.backward(ΔY, Y)

# Jacobian
J = Jacobian(G, X; io_mode="θ↦Y")
ΔY = J*Δθ
Δθ = J'*ΔΥ
```

```
# Log likelihood
f = log_likelihood(X)

ΔX = ∇log_likelihood(X)

# Squeeze
Y = squeeze(X)
X = unsqueeze(Y)

# Wavelet transform
Y = wavelet_squeeze(X)
X = wavelet_unsqueeze(Y)
```


Architecture

• Each layer is mutable structure with associated methods

```
mutable struct ActNorm <: NeuralNetLayer
    k::Integer
    s::Parameter
    b::Parameter
    logdet::Bool
    is_reversed::Bool
end</pre>
```

Code structure of invertible layers

```
# Forward/inverse
function forward(X, AN::ActNorm; logdet=nothing)
function inverse(Y, AN::ActNorm; logdet=nothing)
# Backprop
function backward(ΔY, Y, AN::ActNorm; set_grad=true)
function backward_inv(ΔX, X, AN::ActNorm; set_grad=true)
# Jacobians
jacobian(\Delta X, \Delta \theta, X, AN::ActNorm; logdet=nothing)
adjointJacobian(ΔY, Y, AN::ActNorm)
    return backward(ΔY, Y, AN; set_grad=false)
# Helper functions
clear_grad!(AN::ActNorm)
reset!(AN::ActNorm)
get_params(AN::ActNorm)
tag_as_reversed!(AN::ActNorm)
```

Gradients & Jacobians

PyTorch Autograd

- Does not take original input as argument
- Input tracked during forward pass
- Same for TensorFlow, Flux, etc.

```
# PyTorch - grad from scalar
x = torch.randn(2, requires_grad=True)
y = torch.sum(x)
y.backward()

# PyTorch - grad from tensor
A = torch.randn(2, 2, requires_grad=True)
x = torch.randn(2, requires_grad=True)
y = torch.matmul(A, x)
e = torch.ones(2)
y.backward(e)
```


[2] Putzky et al. i-RIM applied to the fastMRI challenge. ariXiv preprints, 2019.

Gradients & Jacobians

PyTorch Autograd

- Does not take original input as argument
- Input tracked during forward pass
- Same for TensorFlow, Flux, etc.

```
# PyTorch - grad from scalar
x = torch.randn(2, requires_grad=True)
y = torch.sum(x)
y.backward()

# PyTorch - grad from tensor
A = torch.randn(2, 2, requires_grad=True)
x = torch.randn(2, requires_grad=True)
y = torch.matmul(A, x)
e = torch.ones(2)
y.backward(e)
```


Backprop w/ layer-wise AD

- 1. Recompute input (inverse layer)
- 2. Forward pass w/ tracking enabled
- 3. Call torch autograd for layer
- 4. Extract + set gradients
- 5. Return original input + grads

(MemCNN, i-RIM)^[1-2]

Gradients & Jacobians

InvertibleNetworks

- All-at-once layer for inverse + backward pass
- No tracking of variables

```
function backward(ΔY, Y, AN::ActNorm)

# Compute original input
X = inverse(Y, AN; logdet=false)

# Backprop residual ΔY
ΔX = ΔY .* reshape(AN.s.data, inds...)
AN.s.grad = sum(ΔY .* X, dims=dims)[inds...]
AN.b.grad = sum(ΔY, dims=dims)[inds...]

return ΔX, X
end
```


Integration with Flux.jl

Invertible coupling layers with Flux.jl


```
# Flux network
model = Chain(
    Conv((3,3), n_{in} \Rightarrow n_{hidden; pad=1),
    BatchNorm(n_hidden, relu),
    Conv((3,3), n_hidden => n_hidden; pad=1),
    BatchNorm(n_hidden, relu),
    Conv((3,3), n_hidden \Rightarrow n_in; pad=1),
    BatchNorm(n_in, relu)
# Flux block and invertible coupling layer
\Phi = FluxBlock(model)
CL = CouplingLayerBasic(Φ)
# Forward/Inverse
Ya, Yb = CL.forward(Xa, Xb)
Xa, Xb = CL.inverse(Ya, Yb)
```

 $\Phi(\mathbf{x})$: Shallow CNN/Res-Net

Integration with Flux.jl

```
import Flux.Optimise.update!
# Define network & input
G = NetworkGlow(n_in, n_hidden, L, K) |>gpu
X = rand(Float32, nx, ny, n_in, batchsize) |> gpu
# Objective function
function loss(X)
   Y, logdet = G.forward(X)
   f = .5f0/batchsize*norm(Y)^2 - logdet
   G.backward(1f0./batchsize*Y, Y)
   return f
end
# Set optimizer
opt = Flux.ADAM()
Params = get_params(G)
# Compute loss & update weights
f = loss(X)
for p in Params
   update!(opt, p.data, p.grad)
end
clear_grad!(G)
```

- Training INNs with Flux^[1]
 - Flux optimizers (ADAM, etc.)
 - Update weights of INNs
 - Same as Flux networks

Integration with ChainRules.jl

• Combine INN & Flux layers via ChainRules.jl [1-2]

```
# Reverse-mode AD rule
function ChainRulesCore.rrule(net, X; state)

# Forward pass
Y = net.forward(X)

# Backward
function pullback(\DeltaY; state=state)
    return net.backward(\DeltaY, current(state))
end

return Y, pullback
end
```

ChainRule definition for reverse differentiation

Define multi-layer INN

Unit tests

Adjoint tests for linear operators:

$$\epsilon \le \langle \mathbf{A}\mathbf{x}, \mathbf{y} \rangle - \langle \mathbf{A}^{\top}\mathbf{y}, \mathbf{x} \rangle$$

Gradient tests for (non-) linear layers:

$$\Phi(\mathbf{x} + h \cdot \Delta \mathbf{x}) - \Phi(\mathbf{x}) = \mathcal{O}(h)$$

$$\Phi(\mathbf{x} + h \cdot \Delta \mathbf{x}) - \Phi(\mathbf{x}) - h \cdot \nabla \Phi(\mathbf{x})^{\top} \Delta \mathbf{x} = \mathcal{O}(h^{2})$$

$$\Phi(\mathbf{w} + h \cdot \Delta \mathbf{w}) - \Phi(\mathbf{w}) = \mathcal{O}(h)$$

$$\Phi(\mathbf{w} + h \cdot \Delta \mathbf{w}) - \Phi(\mathbf{w}) - h \cdot \nabla \Phi(\mathbf{w})^{\top} \Delta \mathbf{w} = \mathcal{O}(h^{2})$$

Gradient test for Glow network

Examples & applications

- Example applications
 - Inverse problems & loop unrolling
 - Image segmentation with partial labels and/or weak supervision
 - Normalizing flows & Bayesian inference

- All examples implemented with InvertibleNetworks.jl
 - Reproducible examples at https://github.com/slimgroup/InvertibleNetworks.jl/tree/master/examples

Scenario 1: Loop-unrolled inverse problems [1-2]

Image-to-image mapping

- Learned denoiser/all-at-once
- Fully data-driven

Data-to-image mapping

- Data $\mathbf{d} = \mathbf{J}\mathbf{x}$
- Fully data-driven or
- Physics-augmented/iterative (use operator J)

True image

Scenario 1: Loop-unrolled inverse problems

Objective function for supervised learning

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{n_{\text{train}}} \frac{1}{2} \|\mathcal{G}_{\theta}(\mathbf{J}_i, \mathbf{d}_i) - \bar{\mathbf{x}}_i\|_2^2$$

with

1. function $\mathcal{G}(\mathbf{J}, \mathbf{d})$ Results after $\mathbf{x} = 0$ 4 training epochs for j = 1, ..., n $\mathbf{x} = \mathbf{Q}\mathbf{x}$ $\mathbf{x}_1' = \mathbf{x}_1$ $\mathbf{g} = \mathbf{J}^{\top} (\mathbf{J} \mathbf{x}_1'[1] - \mathbf{d})$ $\mathbf{s}', \mathbf{t} = NN([\mathbf{g}, \mathbf{x}'_1[2:end]])$ $\mathbf{s} = \sigma(\mathbf{s}')$ $\mathbf{x}_2' = \mathbf{x}_2 \odot \mathbf{s} + \mathbf{t}$ $\mathbf{x} = \mathbf{Q}^{ op} \mathbf{x}'$ **Invertible recurrent** end 13. return **x** inference machine (i-RIM)^[1-2] 14. **end**

Depth [km] 3 2 10 Gradient descent (SNR -0.27) Depth [km] 10 Invertible loop unrolling (SNR 7.07) 0 Depth [km] 10

Lateral position [km]

True image

Scenario 1: Loop-unrolled inverse problems

Objective function for supervised learning

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{n_{\text{train}}} \frac{1}{2} \|\mathcal{G}_{\theta}(\mathbf{J}_i, \mathbf{d}_i) - \bar{\mathbf{x}}_i\|_2^2$$

with

1. function $\mathcal{G}(\mathbf{J}, \mathbf{d})$ Results after $\mathbf{x} = 0$ 4 training epochs for j = 1, ..., n $\mathbf{x} = \mathbf{Q}\mathbf{x}$ $\mathbf{x}_1' = \mathbf{x}_1$ $\mathbf{g} = \mathbf{J}^{\top} (\mathbf{J} \mathbf{x}_1'[1] - \mathbf{d})$ $\mathbf{s}', \mathbf{t} = NN([\mathbf{g}, \mathbf{x}'_1[2:end]])$ $\mathbf{s} = \sigma(\mathbf{s}')$ $\mathbf{x}_2' = \mathbf{x}_2 \odot \mathbf{s} + \mathbf{t}$ $\mathbf{x} = \mathbf{Q}^{ op} \mathbf{x}'$ **Invertible recurrent** end 13. return **x** inference machine (i-RIM)^[1-2] 14. **end**

Depth [km] 3 2 10 Gradient descent (SNR -0.27) Depth [km] 10 Invertible loop unrolling (SNR 7.07) 0 Depth [km] 10

Lateral position [km]

Scenario 1: Loop-unrolled inverse problems

Objective function for supervised learning

$$\underset{\theta}{\text{minimize}} \sum_{i=1}^{n_{\text{train}}} \frac{1}{2} \|\mathcal{G}_{\theta}(\mathbf{J}_i, \mathbf{d}_i) - \bar{\mathbf{x}}_i\|_2^2$$

with

```
1. function \mathcal{G}(\mathbf{J}, \mathbf{d})

2. \mathbf{x} = 0

3. for j = 1, ..., n

4. \mathbf{x} = \mathbf{Q}\mathbf{x}

5. \mathbf{x}_1' = \mathbf{x}_1

4. \mathbf{g} = \mathbf{J}^{\top} (\mathbf{J}\mathbf{x}_1'[1] - \mathbf{d})

5. \mathbf{s}', \mathbf{t} = \mathrm{NN}([\mathbf{g}, \mathbf{x}_1'[2:end]])

6. \mathbf{s} = \sigma(\mathbf{s}')

6. \mathbf{x}_2' = \mathbf{x}_2 \odot \mathbf{s} + \mathbf{t}

3. \mathbf{x} = \mathbf{Q}^{\top}\mathbf{x}'

12. end

13. return \mathbf{x}

14. end
```

Implementation


```
# i-RIM network
L = NetworkLoop(nx, nz, nc_in, nc_out, nb, maxiter, Ψ)

# Forward pass
η_, s_ = L.forward(η0, s0, d, J)

# Residual and function value
Δη = η_ - η
f = .5f0*norm(Δη)^2

# Backward pass (set gradients)
L.backward(Δη, 0f0.*s0, η_, s_, d, J)
```

Compatible w/ matrix-free linear operators

Scenario 2: 4D image segmentation

- Time-lapse hyper-spectral land use change [1]
 - Single large-scale 4D input volume (307 x 241 x 154 x 2)
 - 18 layer invertible hyperbolic net with 3D convolutions
 - Coupled space-frequency approach
 - 128 channels

Time 1

Scenario 2: 4D image segmentation

Goal: predict land use change

- Only 35 point annotations per class
- Predict change everywhere on coarse grid

Memory requirements

- 18 layer INN, 128 channels
- Image: 307 x 241 x 154 x 2
- Invertible hyperbolic net:17 GB
- Non-invertible equivalent:307 GB

Aguifer Atlas

Scenario 3: Weakly supervised segmentation

- Goal: Map out geological aquifers from multi-modal geophysical data [1]
 - Class 1: partial point annotations
 - Class 2: No labels, occupies ~50 to 65 % per domain
 - Learn from partial label + priors using constrained optimization

Input data: 1,450 x 450 x 56

Scenario 3: Weakly supervised segmentation

- Translate partial labels + prior information
 convex constraints
- Constraints on network output y = g(K, d) (not on weights)
- Training: non-convex feasibility problem

find
$$g(\mathbf{K}, \mathbf{d}) \in D \Leftrightarrow \min_{\mathbf{K}} \iota_D(g(\mathbf{K}, \mathbf{d}))$$

K: Network weights

d: Input data

y: Output label

Solve via projection-based point-to-set distance functions

$$d_D^2(\mathbf{y}) = \frac{1}{2} \|P_D(\mathbf{y}) - \mathbf{y}\|_2^2 \qquad \nabla_{\mathbf{y}} d_D^2(\mathbf{y}) = \mathbf{y} - P_D(\mathbf{y})$$

Scenario 3: Weakly supervised segmentation

Train neural network as:

$$\min_{\mathbf{K}} \frac{1}{2} \|P_D(g(\mathbf{K}, \mathbf{d})) - g(\mathbf{K}, \mathbf{d})\|_2^2$$

Add INN as constraint

- $\min_{\{\mathbf{K}\}} \frac{1}{2} \|P_D(\mathbf{y}_n) \mathbf{y}_n\|_2^2 \text{ s.t.}$ $\mathbf{y}_n = \mathbf{y}_{n-1} \sigma(\mathbf{K}_n \mathbf{y}_{n-1})$
 - $n \quad \mathbf{y} = \mathbf{y} \quad \mathbf{y} = \mathbf{y}$
 - $\mathbf{y}_j = \mathbf{y}_{j-1} \sigma(\mathbf{K}_j \mathbf{y}_{j-1})$
 - :
 - $\mathbf{y}_1 = \mathbf{d}$,

- Difference to previous examples using labels
 - Gradient of loss gradient of distance function

Scenario 4: Normalizing flows & inference

- Goal: perform Bayesian inference for data & image reconstruction [1-3]
- Train conditional INN $G_{\theta}: \mathcal{Y} \times \mathcal{X} \to \mathcal{Z}_{y} \times \mathcal{Z}_{x}$

$$\min_{\theta} \mathbb{E}_{\mathbf{y}, \mathbf{x} \sim p(\mathbf{y}, \mathbf{x})} \left[\frac{1}{2} \left\| G_{\theta}(\mathbf{y}, \mathbf{x}) \right\|^{2} - \log \left| \det \nabla_{y, x} G_{\theta}(\mathbf{y}, \mathbf{x}) \right| \right]$$

$$G_{ heta}(\mathbf{y},\mathbf{x}) = egin{bmatrix} G_{ heta_y}(\mathbf{y}) \ G_{ heta_x}(\mathbf{y},\mathbf{x}) \end{bmatrix}, \; oldsymbol{ heta} = egin{bmatrix} oldsymbol{ heta}_y \ oldsymbol{ heta}_x \end{bmatrix}$$

Perform conditional sampling via

$$G_{\theta_{\mathbf{x}}}^{-1}(G_{\theta_{\mathbf{y}}}(\mathbf{y}), \mathbf{z}) \sim p(\mathbf{x} \mid \mathbf{y}), \quad \mathbf{z} \sim \mathrm{N}(\mathbf{0}, \mathbf{I})$$

^[1] Kruse et al., HINT: Hierarchical Invertible Neural Transport for Density Estimation and Bayesian Inference. Proceedings of AAAI, 2021

^[2] Siahkoohi et al., *Preconditioned training of normalizing flows for variational inference for inverse problems*. 3rd Symposium on Advances in Approximate Bayesian Inference. 2021

^[3] Rizzuti et al., Parameterizing uncertainty by deep invertible networks, an application to reservoir characterization. SEG, 2020.

Scenario 4: Normalizing flows & inference

Seismic wavefield reconstruction

Scenario 4: Normalizing flows & inference

Seismic image reconstruction

Summary & conclusions

- Invertible CNNs & Normalizing Flows in Julia language
- Memory efficient/optimal training
 - Stateless training
 - No extra forward evaluations
- Integration with Julia ecosystem
 - Flux.jl, ChainRules.jl, Zygote.jl
- Julia enables ML innovation
 - No comparable frameworks with PyTorch, TensorFlow, etc.

https://github.com/slimgroup/InvertibleNetworks.jl

Thank you for your attention &

Thanks to the Georgia Research Alliance and partners of the ML4Seismic Consortium

