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SLIM

Drivers
Our incessant 

• demand for carbonhydrates while we are no longer finding oil...

• desire to understand the Earth’s inner workings 

Push for improved seismic inversion to

• create more high-resolution information 

• from noisier and incomplete data
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Controversial 
statements

Size of our discretizations is dictated by 

• a far too pessimistic Nyquist-sampling criterion compounded by 
the curse of dimensionality

• our insistence to sample periodically

Our desire to work with all data

• leads to “over emphasis” on data collection 

• prohibits inversion that requires multiple passes through data
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Wish list
Acquisition & inversion costs determined by structure of data & 
complexity of the subsurface

‣ sampling criteria that are dominated by transform-domain 
sparsity and not by the size of the discretization

Controllable error that depends on 

‣ degree of subsampling / dimensionality reduction

‣ available computational resources
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Problem statement

Consider the following (severely) underdetermined system of 
linear equations:

Is it possible to recover x0 accurately from b?

The new field of Compressive Sensing attempts to answer this.

unknown

data
(measurements
/observations
/simulations)

x0

A

=

b
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Sparse recovery
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Coarse sampling schemes
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[Hennenfent & Herrmann, ’08]
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Sparse one-norm recovery

Signal model

and      k sparse

Sparse one-norm recovery

with

Study recovery as a function of

• the subsampling ratio n/N

• “over sampling” ratio k/n

x̃ = arg min
x

||x||1
def=

N∑

i=1

|x[i]| subject to b = Ax

b = Ax0 where b ∈ Rn

n! N

x0

[Sacchi ’98]
[Candès et.al, Donoho, ’06]
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Case study 
Acquisition design according to Compressive Sensing

• Periodic subsampling vs randomized jittered sampling 
of sequential sources

• Subsampling with randomized jittered sequential sources vs 
randomized phase-encoded simultaneous sources
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shot interpolation
12.5m  to  25m

Pathology

50 % data‐size reduction



Seismic Laboratory for Imaging and Modeling

seismic line



Seismic Laboratory for Imaging and Modeling

missing shots

 
50% subsampled shot
from regularly missing

shot positions



Seismic Laboratory for Imaging and Modeling

regularized

SNR = 8.9 dB
50% subsampled shot
from regularly missing

shot positions
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Jittered sampling
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[Hennenfent & FJH, ’08]
[Gang et.al., ‘09]



Seismic Laboratory for Imaging and Modeling

missing traces

 
50% subsampled shot

from randomized 
jittered shots



Seismic Laboratory for Imaging and Modeling

regularized

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots



Simultaneous & incoherent sources



Seismic Laboratory for Imaging and Modeling

multiplexed

 
50% subsampled shots

from randomized
simultaneous shots



Seismic Laboratory for Imaging and Modeling

demultiplexed

SNR = 16.1 dB
50% subsampled shot

from randomized
simultaneous shots



Seismic Laboratory for Imaging and Modeling

recovered

SNR = 10.9 dB
50% subsampled shot

from randomized 
jittered shots
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The math of Compressive Sensing

Recovery is possible & stable as long as each subset S of k 
columns of                  with            the # of nonzeros 
approximately behaves as an orthogonal basis.

In that case, we have 

where S runs over all sets with cardinality

• the smaller the restricted isometry constant (RIP)    the 
more energy is captured and the more stable the 
inversion of A

• determined by the mutual coherence of the cols in A

A ∈ Rn×N k ≤ N

(1− δ̂k)‖xS‖2!2 ≤ ‖ASxS‖2!2 ≤ (1 + δ̂k)‖xS‖2!2 ,

≤ k

δ̂k

[Candès et.al, ’06]
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Math cont’ed

RIP constant is bounded by 

where

Matrices with small     contain subsets of k incoherent columns.

Gaussian random matrices with i.i.d. entries have this property.

One-norm solvers recover x0 as long it is k sparse and

yields an oversampling ratio of

δ̂k ≤ (k − 1)µ

µ = max
1≤i "=j≤N

|aH
i aj |

δ̂k

k ≤ C · n

log2(N/n)
,

n/k ≈ C · log2 N

[Candès et.al, ’06]
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

advantageous coarse randomized sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

sparsity-promoting solver

• requires few matrix-vector multiplications



Seismic Laboratory for Imaging and Modeling

Fourier reconstruction

1 % of coefficients



Seismic Laboratory for Imaging and Modeling

Wavelet reconstruction

1 % of coefficients



Seismic Laboratory for Imaging and Modeling

Curvelet reconstruction

1 % of coefficients
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Curvelets
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[Demanet et. al., ‘06]
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Extension

Extend CS framework:

Expected to perform well when

Generalizes to redundant transforms for cases where

• max of RIP constants for M, S are small

• or            remains sparse for x sparse

Open research topic...

restriction
matrix

measurement
matrix

sparsity
matrix

A := RMSH

µ = max
1≤i "=j≤N

|
(
RMsi

)H RMsj |

SSHx [Candès et.al, ’10]

[Rauhut et.al, ’06]
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Empirical 
performance analysis

Selection of the appropriate sparsifying transform

• nonlinear approximation error

• recovery error

• oversampling ratio

SNR(ρ) = −20 log
‖f − fρ‖
‖f‖ with ρ = k/P

SNR(δ) = −20 log
‖f − f̃ δ‖
‖f‖ with δ = n/N

δ/ρ with ρ = inf{ρ̃ : SNR(δ) ≤ SNR(ρ̃)}
[FJH, ’10]
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Nonlinear approximation error
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling 

• generates incoherent random undersampling “noise” in the sparsifying domain

sparsity-promoting solver

• requires few matrix-vector multiplications
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications

✓

✓
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Data

missing shots sim. shots
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Sparse recovery

recovery
missing shots

recovery
sim. shots



SLIM
Sparse recovery error

error
missing shots

error
sim. shots
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Multiple experiments
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Oversampling ratios
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling (mixing)

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications
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Reality check

“When a traveler reaches a fork in the road, 
the 11-norm tells him to take either one way 
or the other, but the l2 -norm instructs him to 
head off into the bushes.”

John F. Claerbout and Francis Muir, 1973 
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One-norm solver

[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al, ‘08]
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Fig. 6.1. Corrupted and interpolated images for problem seismic. Graph (c) shows the Pareto
curve and the solution path taken by SPGL1.

ever, as might be expected of an interior-point method based on a conjugate-gradient
linear solver, it can require many matrix-vector products.

It may be progressively more difficult to solve (QPλ) as λ → 0 because the reg-
ularizing effect from the one-norm term tends to become negligible, and there is less
control over the norm of the solution. In contrast, the (LSτ ) formulation is guaranteed
to maintain a bounded solution norm for all values of τ .

6.4. Sampling the Pareto curve. In situations where little is known about
the noise level σ, it may be useful to visualize the Pareto curve in order to understand
the trade-offs between the norms of the residual and the solution. In this section
we aim to obtain good approximations to the Pareto curve for cases in which it is
prohibitively expensive to compute it in its entirety.

We test two approaches for interpolation through a small set of samples i =
1, . . . , k. In the first, we generate a uniform distribution of parameters λi = (i/k)‖ATb‖∞
and solve the corresponding problems (QPλi). In the second, we generate a uni-
form distribution of parameters σi = (i/k)‖b‖2 and solve the corresponding problems
(BPσi). We leverage the convexity and differentiability of the Pareto curve to approx-
imate it with piecewise cubic polynomials that match function and derivative values
at each end. When a nonconvex fit is detected, we switch to a quadratic interpolation

from http://people.cs.ubc.ca/~mpf/

http://people.cs.ubc.ca/~mpf/
http://people.cs.ubc.ca/~mpf/
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Key elements

sparsifying transform

• typically localized in the time-space domain to handle the complexity of seismic 
data

• curvelets 

advantageous coarse sampling (mixing)

• generates incoherent random undersampling “noise” in the sparsifying domain

• does not create large gaps for measurement in the physical domain

• does not create coherent interferences in simultaneous acquisition

sparsity-promoting solver

• requires few matrix-vector multiplications
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Observations
Controllable error for reconstruction from randomized subsamplings

Curvelets and simultaneous acquisition perform the best

Oversampling compared to conventional compression is small

Combination of sampling & encoding into a single linear step has 
profound implications

• acquisition costs no longer determined by resolution & size

• but by transform-domain sparsity & recovery error
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Implications
Periodic sampling is detrimental to sparse recovery

“Random nature” of receiver functions is highly favorable

• know the source-time function

• deal with surface-related multiples & surface waves
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US array
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Sample points
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Spectra
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Spectra
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Extensions
Include more “physics” in the formulation

• via discretization of integral equations of the second kind

• prediction of surface-related multiples

Incorporate dimensionality reductions in full-waveform 
inversion

• via creation of supershots

• stochastic gradients as part of stochastic optimization
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EPSI L1 formulation

minimize s.t. ≤ σ

Use L1‐norm relaxaAon for the sparsity objecAve

||Xo||1 ||P− − Xo(Q + RP−)||22
Q,Xo

total up‐going wavefield

down‐going source signature

reflecAvity of free surface (assume ‐1)

primary impulse response

(all single‐frequency data volume, implicit    )

P−

R
Xo

ω

Q

[Groenestijn et. al. ‘09]
[Lin and Herrmann, ‘09]
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EPSI L1: synthetic
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EPSI L1: real data
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multisourcing

Single simultaneous shot

~100 projected gradient, 5 source matching
separate separate + primary inversion
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50% measurement

separate separate + primary inversion
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20% measurement

separate separate + primary inversion
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Full-waveform inversion
Multiexperiment PDE-constrained optimization problem:

min
U∈U ,m∈M

1
2
‖P−DU

∥∥2

2
subject to H[m]U = Q

P = Total multi-source and multi-frequency data volume
D = Detection operator
U = Solution of the Helmholtz equation
H = Discretized multi-frequency Helmholtz system
Q = Unknown seismic sources
m = Unknown model, e.g. c−2(x)
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Unconstrained 
problem

For each separate source q solve the unconstrained problem: 

with

and q a single source function

F [m,q] = DH−1[m]q

min
m∈M

1
2
‖p− F [m,q]‖2

2



SLIM

Multiexperiment

Gradient updates:

with

and

mk+1 := mk − ηk∇J(mk,Q)

F [m, Q] = DH−1[m]Q

J(mk,Q) := ‖P−F [mk,Q]‖2
2,2
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Dimensionality reduction

Explicit solves 3D models (>10003) extremely challenging

Use preconditioned indirect Krylov solvers and reduce # right-hand 
sides and blockdiagonals

Removes the main disadvantage of indirect methods.
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F [m,Q] !→ F [m,Q] with Q = RMQ

[Erlanga, Nabben, ’08, Erlanga and F.J.H, ’08, FJH et. al., ’09-’10]
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Stochastic 
optimization

Stochastic “batch” gradient decent:

• for           , the updates become deterministic

• prohibitively expensive

n→∞

mk+1 := mk − ηk∇
n∑

i=1

J(mk,qi) with qi := (RM)i Q

[Bersekas, ’96]
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Stochastic 
optimization

Stochastic “online” gradient descent:

‣ uses different random RM for each iteration

‣ involves a single      for each gradient update

‣ costs depend on # RHS and freq.  blocks

‣ cheap but introduces “noise”... Sounds familiar?

Qk

[Krebs et.al, ’09]
[Bersekas, ’96]

mk+1 := mk − ηk∇J(mk,Qk) with Qk := (RM)k Q
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offset (m)

de
pt

h 
(m

)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

500

1000

1500

2000

2500

1.5

2

2.5

3

3.5

4

4.5

5

5.5

offset (m)

de
pt

h 
(m

)

 

 

0 500 1000 1500 2000 2500 3000 3500 4000 4500

0

500

1000

1500

2000

2500

1.5

2

2.5

3

3.5

4

4.5

5

5.5

Full-waveform inversion
recovered model 

l-BFGS
recovered 

stochastic gradient



SLIM

Speed up
Full scenario: 

‣ 113 sequential shots with 50 frequencies

‣ 18 iterations of l-BFGS (90=5*18 Helmholtz solves)

Reduced scenario:

‣ 16 randomized simultaneous shots with 4 frequencies

‣ 40 iterations of SA (2.27=16*4/(113*50)*40*5 solves)

Speed up of 40 X or > week vs 8 h on 32 CPUs



SLIM

Conclusions
Dimensionality reduction will revolutionize our field

• reduction of acquisition costs

• less reliance on full sampling

• decrease in processing time

• high-resolution inversions that are otherwise infeasible with 
fully-sample (Nyquist-based) methods
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It is only going to work ...

... if all components are in place

• Applied & Computational Harmonic analysis / Compressive 
Sensing

• Convex & PDE-constrained optimization 

• Numerical Linear Algebra

• Stochastic optimization & machine learning

This combination will lead to the breakthroughs we need...



SLIM

Acknowledgments
This work was in part financially supported by the Natural 
Sciences and Engineering Research Council of Canada Discovery 
Grant (22R81254) and the Collaborative Research and 
Development Grant DNOISE (334810-05). 

This research was carried out as part of the SINBAD II project 
with support from the following organizations: BG Group, BP, 
Petrobras, and WesternGeco. 



SLIM

Thank you

slim.eos.ubc.ca

http://slim.eos.ubc.ca
http://slim.eos.ubc.ca


Further reading
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– Simply denoise: wavefield reconstruction via jittered undersampling by Hennenfent and FJH, ‘08
Estimation of surface-free Green’s functions:
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Simultaneous simulations, imaging, and full-wave inversion:
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