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Sub-Nyquist sampling and
sparsity: getting more
information from fewer samples

SLIM



Our incessant
® demand for carbonhydrates while we are no longer finding oil...

® desire to understand the Earth’s inner workings

Push for improved seismic inversion to
® create more high-resolution information

® from noisier and incomplete data



Size of our discretizations is dictated by

® a far too pessimistic Nyquist-sampling criterion compounded by
the curse of dimensionality

® our insistence to sample periodically
Our desire to work with all data
® |eads to “over emphasis” on data collection

® prohibits inversion that requires multiple passes through data



Acquisition & inversion costs determined by structure of data &
complexity of the subsurface

p sampling criteria that are dominated by transform-domain
sparsity and not by the size of the discretization

Controllable error that depends on
p degree of subsampling / dimensionality reduction

p available computational resources



Consider the following (severely) underdetermined system of
linear equations:

/observations
/simulations)

data
(measurements —— E =
b
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unknown

s it possible to recover Xopaccurately from b?

The new field of Compressive Sensing attempts to answer this.
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Coarse sampling schemes
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[Hennenfent & Herrmann, ’08]



Signal model
b= Axy where beR"
and X( k sparse

SP&I’SE one-norm recovery

~ : det
X = arg min ||x||; =
X

N

Z x|i|]| subject to b= Ax
i=1

with n< N

Study recovery as a function of

® the subsampling ratio n/N

® “over sampling” ratio k/n



Acquisition design according to Compressive Sensing

® Periodic subsampling vs randomized jittered sampling
of sequential sources

® Subsampling with randomized jittered sequential sources vs
randomized phase-encoded simultaneous sources



Pathology

shot interpolation
12.5m to 25m

50 % data-size reduction
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[Hennenfent & FJH, '08]
[Gang et.al.,"09]

Jittered sampling
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960 missing traces
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Simultaneous & incoherent sources
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960 demultiplexed
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Recovery is possible & stable as long as each subset S of k
columns of A € R™*¥ with k < N the # of nonzeros

approximately behaves as an orthogonal basis.

In that case, we have
(1 —0r)l[xsllz, < Asxsllz, < (14 0k)lxs]lz,.
where S runs over all sets with cardinality < &

e the smaller the restricted isometry constant (RIP) 4, the
more energy is captured and the more stable the

inversion of A

® determined by the mutual coherence of the cols in A



RIP constant is bounded by

AN

Ok < (k—1)p
where
_ H,_
:u_ 1§I££aj{};N‘az aj‘

Matrices with small 0; contain subsets of k incoherent columns.
Gaussian random matrices with i.i.d. entries have this property.

One-norm solvers recover Xo as long it is k sparse and

n
kE<(C- ,
Ing(N/”)

yields an oversampling ratio of

n/k ~ C-log, N




[ sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

7] advantageous coarse randomized sampling

® generates incoherent random undersampling “noise” in the sparsifying domain

[ sparsity-promoting solver

@ requires few matrix-vector multiplications



Fourier reconstruction
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Wavelet reconstruction
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Curvelet reconstruction
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[Demanet et. al.,‘06]
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Extend CS framework:

H
A = RMS
) T
restriction measurement sparsity
matrix matrix matrix

Expected to perform well when
p= max |(RMs')" RMSs|
1<i#j<N
Generalizes to redundant transforms for cases where
® max of RIP constants for M, S are small

H .
® or 5SS x remains sparse for X sparse

Open research topic...



Empirical
performance analysis

Selection of the appropriate sparsifying transform

® nonlinear approximation error

f—1
SNR(p) = —201log H HprH with p=k/P
® recovery error
f—1
SNR(d) = —201log | ] ol with 0 =n/N

® oversampling ratio

6/p with p=inf{p: SNR(J) < SNR(p)}

[FJH,’10]



Nonlinear approximation error

common receiver gather

Offset [m]
o)

2000

30

251

analysis wavelet
one—norm wavelet
analysis curvelet

one-norm curvelet
analysis waveatom
one-norm waveatom

20

15

SNR [db]

10

i
'“'\. |

Iuiiﬂhilm

|
\

WM

\|| l' PH"
|
{

|' l“l\‘ll\fh

0.01

0.012

0.014

0.016

0.018

0.02

0
0

0.002 0.004 0.006

0.008

p



V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

] advantageous coarse sampling

® generates incoherent random undersampling “noise” in the sparsifying domain

] sparsity-promoting solver

@ requires few matrix-vector multiplications



V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

[ sparsity-promoting solver

@ requires few matrix-vector multiplications
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Sparse recovery
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Sparse recovery error
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Multiple experiments
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Oversampling ratios
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling (mixing)

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

[ sparsity-promoting solver

@ requires few matrix-vector multiplications



“When a traveler reaches a fork in the road,
the |-norm tells him to take either one way
or the other, but the I; -norm instructs him to

head off into the bushes.”

John F. Claerbout and Francis Muir, 1973



[van den Berg & Friedlander, ’08]
[Hennenfent, FJH, et. al,‘08]

One-norm solver
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V] sparsifying transform

e typically localized in the time-space domain to handle the complexity of seismic
data

® curvelets

[V] advantageous coarse sampling (mixing)

® generates incoherent random undersampling “noise” in the sparsifying domain
® does not create large gaps for measurement in the physical domain

® does not create coherent interferences in simultaneous acquisition

V] sparsity-promoting solver

@ requires few matrix-vector multiplications



Controllable error for reconstruction from randomized subsamplings
Curvelets and simultaneous acquisition perform the best
Oversampling compared to conventional compression is small

Combination of sampling & encoding into a single linear step has
profound implications

® qacquisition costs no longer determined by resolution & size

® but by transform-domain sparsity & recovery error



Periodic sampling is detrimental to sparse recovery
“Random nature” of receiver functions is highly favorable
® know the source-time function

® deal with surface-related multiples & surface waves
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Include more “physics” in the formulation
® via discretization of integral equations of the second kind
® prediction of surface-related multiples

Incorporate dimensionality reductions in full-waveform
Inversion

® via creation of supershots

® stochastic gradients as part of stochastic optimization



Use L1-norm relaxation for the sparsity objective

minimize || Xo|l1 st |[|[PT — X, (Q+RP7)|5 <o

Q, X,

— total up-going wavefield

P

Q down-going source signature

R reflectivity of free surface (assume -1)
X

o Primaryimpulse response

(all single-frequency data volume, implicit W)
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EPSI L1: real data
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multisourcing

Receiver position (m)

2000 3000

Receiver position (m)
2000 3000 0

Receiver position (m)
1000

2000 3000 0 1000

0 1000

Time (s)

separate separate + primary inversion

~100 projected gradient, 5 source matching

Single simultaneous shot
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Multiexperiment PDE-constrained optimization problem:

1
min —||P — DUH; subject to Hm|U = Q
Ucld, meM 2

= Total multi-source and multi-frequency data volume
= Detection operator

— Solution of the Helmholtz equation

Discretized multi-frequency Helmholtz system

— Unknown seismic sources

S O T O
|

— Unknown model, e.g. ¢ ()



Unconstrained

problem

For each separate source q solve the unconstrained problem:

.1 9
min —|p —F|m,q
min 5 p — Flm,

with

F|m,q] = DH™ " [m]q

and q a single source function



Multiexperiment

Gradient updates:
m"“ " = m" — 9, VJ(m", Q)
with
J(m", Q) := ||P — Flm", QJ||3,

and

Flm, Q] = DH 'm|Q



Explicit solves 3D models (>1000%) extremely challenging

Use preconditioned indirect Krylov solvers and reduce # right-hand
sides and blockdiagonals

Flm,Q] — Fm,Q] with Q=RMQ

Removes the main disadvantage of indirect methods.



Stochastic

optimization

Stochastic “batch” gradient decent:

m“"i=m" — VY J(m" q') with g = (RM),Q
1=1

® for n — oo, the updates become deterministic

® prohibitively expensive

[Bersekas, '96]



Stochastic “online” gradient descent:
m**! .= m* — 9, VJ(m"* Q") with Q":=(RM), Q
p uses different random RM for each iteration
p involves a single Q" for each gradient update
p costs depend on # RHS and freq. blocks

p cheap but introduces “noise”... Sounds familiar?



Marmoussi model
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Full scenario:

p |13 sequential shots with 50 frequencies

p 18 iterations of I-BFGS (90=5*18 Helmholtz solves)
Reduced scenario:

p |6 randomized simultaneous shots with 4 frequencies

p 40 iterations of SA (2.27=16*4/(1 13*50)*40*5 solves)
Speed up of 40 X or > week vs 8 h on 32 CPUs



Dimensionality reduction will revolutionize our field
® reduction of acquisition costs

® |Jess reliance on full sampling

® decrease in processing time

® high-resolution inversions that are otherwise infeasible with
fully-sample (Nyquist-based) methods



.. if all components are in place

® Applied & Computational Harmonic analysis / Compressive
Sensing

® Convex & PDE-constrained optimization
® Numerical Linear Algebra
® Stochastic optimization & machine learning

This combination will lead to the breakthroughs we need...
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Compressive sensing
— Robust uncertainty principles: Exact signal reconstruction from highly incomplete frequency information by Candes, 06.
— Compressed Sensing by D. Donoho, 06
Simultaneous acquisition
— A new look at simultaneous sources by Beasley et. al.,’98.
— Changing the mindset in seismic data acquisition by Berkhout ’08.
Transform-based seismic data regularization
— Interpolation and extrapolation using a high-resolution discrete Fourier transform by Sacchi et. al,’98
— Non-parametric seismic data recovery with curvelet frames by FJH and Hennenfent.,;07
— Simply denoise: wavefield reconstruction via jittered undersampling by Hennenfent and FJH, ‘08
Estimation of surface-free Green’s functions:
— Estimating primaries by sparse inversion and application to near-offset data reconstruction by Groenestijn,’09
— Unified compressive sensing framework for simultaneous acquisition with primary estimation by T. Lin & FJH,’09
Simultaneous simulations, imaging, and full-wave inversion:
— Faster shot-record depth migrations using phase encoding by Morton & Ober, ’98.
— Phase encoding of shot records in prestack migration by Romero et. al., ’00.
— Efficient Seismic Forward Modeling using Simultaneous Random Sources and Sparsity by N. Neelamani et. al.,’08.
— Compressive simultaneous full-waveform simulation by FJH et. al.,’09.
— Fast full-wavefield seismic inversion using encoded sources by Krebs et. al.,’09
— Randomized dimensionality reduction for full-waveform inversion by FJH & X. Li,’ 10



