Released to public domain under Creative Commons license type BY (https://creativecommons.org/licenses/by/4.0). Copyright (c) 2008 SLIM group @ The University of British Columbia.

THE UNIVERSITY OF BRITISH COLUMBIA | VANCOUVER





# Compressive sampling: a new paradigm for seismic data acquisition and processing?

Felix J. Herrmann <u>fherrmann@eos.ubc.ca</u> <u>http://slim.eos.ubc.ca</u>

Gilles Hennenfent ghennenfent@eos.ubc.ca

http://wigner.eos.ubc.ca/~hegilles

Seismic Laboratory for Imaging & Modeling Department of Earth & Ocean Sciences The University of British Columbia





ION Technical forum - Sprowston, UK Tuesday 15th – Thursday 17th April

## Motivation

- Current state of affairs:
  - Seismic data processing firmly rooted in paradigm of regular Nyquist sampling
  - Practitioners go all out to create regularly-sampled data volumes
  - Preferred by Fourier-based processing flows
- Recent theoretical & hardware developments
  - Alternative multiscale, localized & directional transform domains that compress seismic data
  - New nonlinear sampling theory that supersedes the overly pessimistic Nyquist sampling criterion
  - New autonomous data acquisition devices that allow for more flexibility during acquisition
  - New simultaneous & continuous recording
- Recent successful application of directional transforms in seismic
  - wavefield separation
  - wavefield matching
  - image-amplitude recovery

Seismic Laboratory for Imaging and Modeling

#### Today's agenda

- Sparsity-promoting wavefield recovery
  - sparsifying transform
  - favorable (random) acquisition
  - nonlinear recovery by sparsity promotion
- Seismic data processing with curvelets
  - primary-multiple separation
- A look ahead ...
  - stable wavefield inversion
  - multidimensional acquisition design

Seismic Laboratory for Imaging and Modeling



## Sampling and reconstruction of seismic wavefields in the curvelet domain



#### **Gilles Hennenfent**

ghennenfent@eos.ubc.ca http://wigner.eos.ubc.ca/~hegilles

Seismic Laboratory for Imaging & Modeling Department of Earth & Ocean Sciences The University of British Columbia





ION Technical forum - Sprowston, UK Tuesday 15th – Thursday 17th April

#### Wavefield reconstruction methods

- filter-based methods [Spitz'91, Fomel'00]
  - convolve the incomplete data with an interpolating filter
- wavefield-operator-based methods [Canning and Gardner'96, Biondi et al.'98, Stolt'02]
  - explicitly include wave propagation
  - require knowledge of velocity model
  - computationally intensive
- transform-based methods [Sacchi et al.'98, Trad et al.'03, Zwartjes and Sacchi'07]
  - fastest approaches
  - no explicit link with wave propagation

## Performance of most aforementioned methods deteriorates for data with acquisition irregularities.

Seismic Laboratory for Imaging and Modeling

## Key ideas

Use recent insights from the field of compressive sensing to

- formulate a new wavefield reconstruction method that handles both regular and irregular acquisition geometries
  - curvelet reconstruction with sparsity-promoting inversion (CRSI) [Herrmann and Hennenfent<sup>608</sup>]
- develop a new random coarse sampling scheme that maximizes the performance of CRSI
  - jittered undersampling scheme [Hennenfent and Herrmann'08]
- implement a new large-scale, one-norm solver
  - iterative soft thresholding with cooling (ISTc) [Herrmann and Hennenfent'08, Hennenfent et al.'08]
- formalize nonlinear ad hoc methods
  - anti-leakage Fourier transform [Xu et. al. '05]

Seismic Laboratory for Imaging and Modeling

#### **Problem statement**

Consider the following (severely) underdetermined system of linear equations



Is it possible to recover  $\mathbf{x}_0$  accurately from  $\mathbf{y}$ ?

Seismic Laboratory for Imaging and Modeling

#### **Perfect recovery**



• procedure



#### • performance

S-sparse vectors recovered from roughly on the order of S measurements (to within constant and *log* factors)

[Candès et al. '06]

[Donoho'06]

Seismic Laboratory for Imaging and Modeling

#### Simple example



#### **NAIVE sparsity-promoting recovery**



Seismic Laboratory for Imaging and Modeling

#### **Coarse sampling schemes**



Seismic Laboratory for Imaging and Modeling

#### **Observations**

- Random undersampling breaks the constructive interferences, i.e. aliases
- Turns alias into incoherent noise
- Works by virtue of
  - incoherence (correlations) between the rows of the Dirac measurement basis and the columns of the Fourier synthesis basis
  - maximum *spreading* of Diracs in Fourier domain
  - maximum leakage
  - independence amongst columns of A, i.e., there exists a subset of columns of A that forms an orthonormal basis
- According to theory of compressive sensing
  - recovery stable w.r.t. noise
  - measurement & sparsity bases can be more general

Seismic Laboratory for Imaging and Modeling

#### **Sparsity-promoting wavefield reconstruction**



Interpolated data given by  $\tilde{\mathbf{f}} = \mathbf{S}^H \tilde{\mathbf{x}}$  with

$$\tilde{\mathbf{x}} = \arg\min_{\mathbf{x}} ||\mathbf{x}||_1 \quad \text{s.t.} \quad \mathbf{y} = \mathbf{A}\mathbf{x}$$

[Sacchi et al.'98] [Xu et al.'05] [Zwartjes and Sacchi'07] [Herrmann and Hennenfent'08]

Seismic Laboratory for Imaging and Modeling

## **Key elements**

#### Sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

#### **D**advantageous coarse sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create large gaps
  - because of the limited spatiotemporal extent of transform elements used for the reconstruction

#### **Sparsity-promoting solver**

- requires few matrix-vector multiplications

### **Representations for seismic data**

| Transform                        | Underlying assumption                |
|----------------------------------|--------------------------------------|
| FK                               | plane waves                          |
| linear/parabolic Radon transform | linear/parabolic events              |
| wavelet transform                | point-like events (1D singularities) |
| curvelet transform               | curve-like events (2D singularities) |

- curvelet transform
  - multiscale: tiling of the FK domain into dyadic coronae
  - multidirectional: coronae subpartitioned into angular wedges, # of angles doubles every other scale
  - **anisotropic**: parabolic scaling principle
  - local



Seismic Laboratory for Imaging and Modeling

#### **2D discrete curvelets**



Seismic Laboratory for Imaging and Modeling



#### **3D discrete curvelets**





Seismic Laboratory for Imaging and Modeling

#### 2D nonequispaced fast discrete curvelets



data with acquisition irregularities

"seismic" curvelet

Seismic Laboratory for Imaging and Modeling

Wednesday, April 23, 2008

[Hennenfent and Herrmann'06]

## **Key elements**

#### Sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

#### advantageous coarse sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create large gaps
  - because of the limited spatiotemporal extent of transform elements used for the reconstruction

#### **Sparsity-promoting solver**

- requires few matrix-vector multiplications

#### Localized transform elements & gap size



## **Discrete random jittered undersampling**



Seismic Laboratory for Imaging and Modeling

Wednesday, April 23, 2008

[Hennenfent and Herrmann'08]

## **Key elements**

#### Sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

#### Madvantageous coarse sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create large gaps
  - because of the limited spatiotemporal extent of transform elements used for the reconstruction

#### sparsity-promoting solver

requires few matrix-vector multiplications

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

$$LS_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \le \sigma$$

$$LS_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

$$LS_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

**basis pursuit denoise** [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

$$\mathrm{LS}_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

• quadratic programming [many references!]

$$\operatorname{QP}_{\lambda}: \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} + \lambda \|\mathbf{x}\|_{1}$$

basis pursuit denoise [Chen et al.'95]

$$BP_{\sigma}: \min_{\mathbf{x}} \|\mathbf{x}\|_{1} \quad \text{s.t.} \quad \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \sigma$$

• LASSO [Tibshirani'96]

$$\mathrm{LS}_{\tau}: \quad \min_{\mathbf{x}} \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2}^{2} \quad \text{s.t.} \quad \|\mathbf{x}\|_{1} \leq \tau$$

Seismic Laboratory for Imaging and Modeling

#### **One-norm solvers**



#### **One-norm solvers**

![](_page_29_Figure_1.jpeg)

## **Key elements**

#### Sparsifying transform

typically localized in the time-space domain to handle the complexity of seismic data

#### Madvantageous coarse sampling

- generates incoherent random undersampling "noise" in the sparsifying domain
- does not create large gaps
  - because of the limited spatiotemporal extent of transform elements used for the reconstruction

![](_page_30_Picture_7.jpeg)

- requires few matrix-vector multiplications

Seismic Laboratory for Imaging and Modeling

#### Model

![](_page_31_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

#### **Regular 3-fold undersampling**

![](_page_32_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

#### **CRSI from regular 3-fold undersampling**

![](_page_33_Figure_1.jpeg)

 $\frac{\|\text{model}\|_2}{\text{reconstruction error}}$ 

 $\mathrm{SNR} = 20 \times \log_{10}$ 

Seismic Laboratory for Imaging and Modeling

#### **Random 3-fold undersampling**

![](_page_34_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

#### **CRSI from random 3-fold undersampling**

![](_page_35_Figure_1.jpeg)

 $\frac{\|\text{model}\|_2}{|\text{reconstruction error}|}$ 

 $\mathrm{SNR} = 20 \times \log_{10}$ 

Seismic Laboratory for Imaging and Modeling

#### **Optimally-jittered 3-fold undersampling**

![](_page_36_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

#### **CRSI from opt.-jittered 3-fold undersampling**

![](_page_37_Figure_1.jpeg)

Seismic Laboratory for Imaging and Modeling

![](_page_38_Figure_0.jpeg)

![](_page_39_Figure_0.jpeg)

![](_page_40_Figure_0.jpeg)

![](_page_41_Figure_0.jpeg)

![](_page_42_Figure_0.jpeg)

#### Conclusions

- new wavefield reconstruction method that handles both regular and irregular acquisition geometries
  - curvelet reconstruction with sparsity-promoting inversion (CRSI) [Herrmann and Hennenfent'08]
- extension of the fast discrete curvelet transform to handle irregular seismic data
  - nonequispaced fast discrete curvelet transform (NFDCT) [Hennenfent and Herrmann'06]
- new coarse sampling schemes that maximize performance of CRSI
  - jittered undersampling schemes [Hennenfent and Herrmann'08]
- new large-scale, one-norm solver
  - iterative soft thresholding with cooling (ISTc) [Herrmann and Hennenfent'08, Hennenfent et al.'08]

Seismic Laboratory for Imaging and Modeling

## **Opportunities**

- paradigm shift
  - from an assumption of band-limited to **sparse representation for seismic data**
  - from linear to nonlinear wavefield sampling theory
- design of advantageous coarse sampling schemes
  - same image quality at a lower acquisition cost
  - better image quality at a given acquisition cost

Seismic Laboratory for Imaging and Modeling

![](_page_45_Picture_1.jpeg)

## Other applications of curveletdomain processing

![](_page_45_Picture_3.jpeg)

#### Felix J. Herrmann <u>fherrmann@eos.ubc.ca</u> <u>http://slim.eos.ubc.ca</u>

P. Moghaddam, D. Wang, R. Saab, O. Yilmaz

Seismic Laboratory for Imaging & Modeling Department of Earth & Ocean Sciences The University of British Columbia

D. J. Verschuur, DelphiC. C. Stolk, Twente University

ION Technical forum - Sprowston, UK Tuesday 15th – Thursday 17th April

![](_page_45_Picture_9.jpeg)

![](_page_45_Picture_10.jpeg)

#### **Other applications**

- Curvelet-domain primary-multiple separation
  - sparsity promotion [Herrmann et. al. '07, Saab '07, Wang '08]
  - primary-multiple matching [Herrmann et. al. '08]
- Curvelet-domain migration amplitude recovery
  - sparsity-promotion [Herrmann et. al. '08b]
  - image-remigrated-image matching [Herrmann et. al. '08b]
  - migration preconditioning

Seismic Laboratory for Imaging and Modeling

## **Primary-multiple separation**

- Motivation
  - residual multiple energy and inadvertent removal primaries are problematic
  - Achilles' heel is adaptive separation after prediction
  - use curvelet-domain sparsimony and adaptivity
- New curvelet-domain technology
  - uses non-agressive (SRME) prediction as input
  - produces improved separation for primaries and multiples

#### • Three stages

- Single-term optimized SRME prediction for the multiples
- Curvelet-domain matching of predicted multiples with multiples in data
- Bayesian separation of matched multiples and primaries based on sparsity promotion

Seismic Laboratory for Imaging and Modeling

![](_page_48_Figure_0.jpeg)

![](_page_49_Figure_0.jpeg)

![](_page_50_Figure_0.jpeg)

![](_page_51_Figure_0.jpeg)

![](_page_52_Figure_0.jpeg)

#### Conclusions

- Nyquist sampling criterion is too pessimistic for seismic data processing
  - new acquisition design based on controlled randomness
  - leverages recent developments in wireless acquisition systems
- Application of curvelet-technology opens a tantalizing perspective of redesigning seismic processing flows via combination of
  - sparsity promotion through norm-one optimization
  - phase-space adaptation through curvelet matching
- By no longer combating sampling irregularity but by embracing it we open the possibility to supersede Nyquist's criterion and further push the envelope ...

Seismic Laboratory for Imaging and Modeling

#### Acknowledgments

- SLIM team members
  - C. Brown, H. Modzelewski, and S. Ross-Ross for *SLIMpy* (slim.eos.ubc.ca/ SLIMpy)
- D. J. Verschuur for the synthetic dataset
- Norsk Hydro for the real dataset
- E. J. Candès, L. Demanet, D. L. Donoho, and L. Ying for *CurveLab* (www.curvelet.org)
- E. van den Berg and M. P. Friedlander for SPGL1 (www.cs.ubc.ca/ labs/scl/spgl1) & Sparco (www.cs.ubc.ca/labs/scl/sparco)
- S. Fomel, P. Sava, and the other developers of *Madagascar* (rsf.sourceforge.net)

This work was carried out as part of the SINBAD project with financial support, secured through ITF, from the following organizations: BG, BP, Chevron, ExxonMobil, and Shell. SINBAD is part of the collaborative research & development (CRD) grant number 334810-05 funded by the Natural Science and Engineering Research Council (NSERC).

Seismic Laboratory for Imaging and Modeling

#### References

T. Lin and F. J. Herrmann. Compressed extrapolation. Geophysics, Volume 72, Issue 5, pp. SM77-SM93, September-October 2007

F.J. Herrmann and U. Boeniger and D.J. Verschuur. Nonlinear primary-multiple separation with directional curvelet frames. , Geophysical Journal International, Vol. 170, 781-799, 2007

Felix J. Herrmann, Deli Wang, Gilles Hennenfent and Peyman Moghaddam. Curvelet-based seismic data processing: a multiscale and nonlinear approach. Geophysics, Vol. 73, No. 1, pp. A1–A5, January-February 2008

F.J. Herrman, P.P. Moghaddam and C. C. Stolk. Sparsity- and continuity-promoting seismic image recovery with curvelet frames. Appl. Comput. Harmon. Anal. Vol 24/2, 150-173, 2008

F. J. Herrmann and G. Hennenfent. Non-parametric seismic data recovery with curvelet frames, Geophysical Journal International, 173, 233–248, 2008

F. J. Herrmann, D. Wang and D. J. Verschuur. Adaptive curvelet-domain primary-multiple separation, Geophysics, 73(3), May-June 2008

G. Hennenfent and F. J. Herrmann. Simply denoise: wavefield reconstruction via jittered undersampling. Geophysics, 73(3), May-June 2008

D. Wang, R. Saab, O. Yilmaz and F. J. Herrmann. Bayesian wavefield separation by transformdomain sparsity promotion. To appear in Geophysics. 2008

Seismic Laboratory for Imaging and Modeling

#### Thanks

• Check out our website

slim.eos.ubc.ca

Seismic Laboratory for Imaging and Modeling