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Motivation

 Current state of affairs:
– Seismic data processing firmly rooted in paradigm of regular Nyquist sampling

– Practitioners go all out to create regularly-sampled data volumes

– Preferred by Fourier-based processing flows

 Recent theoretical & hardware developments
– Alternative multiscale, localized & directional transform domains that compress 

seismic data

– New nonlinear sampling theory that supersedes the overly pessimistic Nyquist 
sampling criterion

– New autonomous data acquisition devices that allow for more flexibility during 
acquisition

– New simultaneous & continuous recording

 Recent successful application of directional transforms in seismic
– wavefield separation

– wavefield matching

– image-amplitude recovery
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Today’s agenda

 Sparsity-promoting wavefield recovery
– sparsifying transform

– favorable (random) acquisition

– nonlinear recovery by sparsity promotion

 Seismic data processing with curvelets
– primary-multiple separation

 A look ahead ...
– stable wavefield inversion

– multidimensional acquisition design
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Wavefield reconstruction methods

 filter-based methods [Spitz’91, Fomel’00]

– convolve the incomplete data with an interpolating filter

 wavefield-operator-based methods [Canning and Gardner’96, Biondi et al.’98, Stolt’02]

– explicitly include wave propagation

– require knowledge of velocity model

– computationally intensive

 transform-based methods [Sacchi et al.’98, Trad et al.’03, Zwartjes and Sacchi’07]

– fastest approaches

– no explicit link with wave propagation

Performance of most aforementioned methods deteriorates for data with 
acquisition irregularities.
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Key ideas

Use recent insights from the field of compressive sensing to 

 formulate a new wavefield reconstruction method that handles both 
regular and irregular acquisition geometries

– curvelet reconstruction with sparsity-promoting inversion (CRSI) [Herrmann and 
Hennenfent‘08]

 develop a new random coarse sampling scheme that maximizes 
the performance of CRSI

– jittered undersampling scheme [Hennenfent and Herrmann‘08]

 implement a new large-scale, one-norm solver
– iterative soft thresholding with cooling (ISTc) [Herrmann and Hennenfent’08, Hennenfent et 

al.‘08]

 formalize nonlinear ad hoc  methods 
– anti-leakage Fourier transform [Xu et. al. ‘05]
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Problem statement

Consider the following (severely) underdetermined system of linear 
equations

Is it possible to recover x0 accurately from y?

unknown

data
(measurements
/observations)

x0

Ay
=
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Perfect recovery

 conditions
– A obeys the uniform uncertainty principle

– x0 is sufficiently sparse

 procedure

 performance
– S-sparse vectors recovered from roughly on the order of S measurements (to within 

constant and log factors)

min
x

‖x‖1

︸ ︷︷ ︸

sparsity

s.t. Ax = y
︸ ︷︷ ︸

perfect reconstruction

x0

Ay
=

[Candès et al.‘06]
[Donoho‘06]
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Simple example

x0

A

A := RFH

y
=

Fourier coefficients
(sparse)

with

Fourier
transform

restriction
operator

signal
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NAIVE sparsity-promoting recovery

inverse
Fourier

transform

detection +
data-consistent

amplitude recovery

Fourier
transform

y

A
H

=

A

y
=detection

Ar data-consistent amplitude 
recovery

y

A
†
r

=

x0
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Coarse sampling schemes

Fourier

transform

✓

✗

3-fold under-sampling

significant 
coefficients detected

ambiguity

few significant 
coefficients

Fourier

transform

Fourier

transform

[Hennenfent and Herrmann‘08]
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Observations

 Random undersampling breaks the constructive interferences, i.e. 
aliases

 Turns alias  into incoherent noise

 Works by virtue of 
– incoherence (correlations) between the rows of the Dirac measurement basis 

and the columns of the Fourier synthesis basis

– maximum spreading of Diracs in Fourier domain

– maximum leakage

– independence amongst columns of A, i.e., there exists a subset of columns of A 
that forms an orthonormal basis

 According to theory of compressive sensing 
– recovery stable w.r.t. noise

– measurement & sparsity bases can be more general
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Sparsity-promoting wavefield reconstruction

x0

Ay
= with

sparsifying transform
for seismic data

restriction operator

A := RS
H

[Sacchi et al.‘98]
[Xu et al.‘05]

[Zwartjes and Sacchi‘07]
[Herrmann and Hennenfent‘08]

complete wavefield
 (transform domain)

acquired
data

Interpolated data given by                 withf̃ = S
H
x̃

x̃ = arg min
x

||x||1 s.t. y = Ax
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Key elements

sparsifying transform
– typically localized in the time-space domain to handle the complexity of 

seismic data

advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying 

domain

– does not create large gaps

• because of the limited spatiotemporal extent of transform elements used 
for the reconstruction

sparsity-promoting solver
– requires few matrix-vector multiplications
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Representations for seismic data

 curvelet transform
– multiscale: tiling of the FK domain into 

dyadic coronae

– multidirectional: coronae sub-
partitioned into angular wedges, # of 
angles doubles every other scale

– anisotropic: parabolic scaling principle

– local

Transform Underlying assumption

FK plane waves

linear/parabolic Radon transform linear/parabolic events

wavelet transform point-like events (1D singularities)

curvelet transform curve-like events (2D singularities)

k1

k2
angular

wedge
2j

2j/2
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2D discrete curvelets
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3D discrete curvelets
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Figure 3. 3D frequency tilings. (a) Schematic plot for the frequency tiling of continuous 3D curvelets. (b) Discrete

frequency tiling. ω1, ω2 and ω3 are three axes of the frequency cube. Smooth frequency window eUj,! extracts the
frequency content near the shaded wedge which has center slope (1, α!, β!).

This frame of discrete curvelets has all the required properties of the continuous curvelet transform in Section
2. Figure 2(b) shows one typical curvelet in the spatial domain. To summarize, the algorithm of the 2D discrete
curvelet transform is as follows:

1. Apply the 2D FFT and obtain Fourier samples f̂(ω1,ω2), −n/2 ≤ ω1,ω2 < n/2.

2. For each scale j and angle ", form the product Ũj,!(ω1,ω2)f̂(ω1,ω2).

3. Wrap this product around the origin and obtain W(Ũj,!f̂)(ω1,ω2), where the range for ω1 and ω2 is now
−L1,j,!/2 ≤ ω1 < L1,j,!/2 and −L2,j,!/2 ≤ ω2 < L2,j,!/2. For j = j0 and je, no wrapping is required.

4. Apply a L1,j,!×L2,j,! inverse 2D FFT to each W(Ũj,!f̂), hence collecting the discrete coefficients cD(j, ", k).

4. 3D DISCRETE CURVELET TRANSFORM
The 3D curvelet transform is expected to preserve the properties of the 2D transform. Most importantly, the
frequency support of a 3D curvelet shall be localized near a wedge which follows the parabolic scaling property.
One can prove that this implies that the 3D curvelet frame is a sparse basis for representing functions with surface-
like singularities (which is of codimension one in 3D) but otherwise smooth. For the continuous transform, we
window the frequency content as follows. The radial window smoothly extracts the frequency near the dyadic
corona {2j−1 ≤ r ≤ 2j+1}, this is the same as the radial windowing used in 2D. For each scale j, the unit sphere
S2 which represents all the directions in R3 is partitioned into O(2j/2 · 2j/2) = O(2j) smooth angular windows,
each of which has a disk-like support with radius O(2−j/2), and the squares of which form a partition of unity
on S2 (see Figure 3(a)).

Like the 2D discrete transform, the 3D discrete curvelet transform takes as input a 3D Cartesian grid of the
form f(n1, n2, n3), 0 ≤ n1, n2, n3 < n, and outputs a collection of coefficients cD(j, l, k) defined by

cD(j, ", k) :=
∑

n1,n2,n3

f(n1, n2, n3) ϕD
j,!,k(n1, n2, n3)

where j, " ∈ Z and k = (k1, k2, k3).
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2D nonequispaced fast discrete curvelets

[Hennenfent and Herrmann‘06]
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data with acquisition irregularities
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Figure 1: Sample of an unequispaced curvelet

CONCLUSION

In this report, I presented the first 2-D fast discrete curvelet transform at non equi-
spaced knots (NFDCT) along one axis and regular points along the other axis. The
transform is an extension to the 2-D fast discrete curvelet transform (Candes et al.,
2005a). I have presented an very efficient implementation based on the fast Fourier
transform at non equispaced knots (Kunis and Potts, 2002). The generalization of
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Key elements

sparsifying transform
– typically localized in the time-space domain to handle the complexity of 

seismic data

advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying 

domain

– does not create large gaps

• because of the limited spatiotemporal extent of transform elements used 
for the reconstruction

sparsity-promoting solver
– requires few matrix-vector multiplications

✓
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Localized transform elements & gap size

v v

✓ ✗

x̃ = arg min
x

||x||1 s.t. y = Ax
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Discrete random jittered undersampling
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[Hennenfent and Herrmann‘08]
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Key elements

sparsifying transform
– typically localized in the time-space domain to handle the complexity of 

seismic data

advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying 

domain

– does not create large gaps

• because of the limited spatiotemporal extent of transform elements used 
for the reconstruction

sparsity-promoting solver
– requires few matrix-vector multiplications

✓

✓
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 quadratic programming [many references!]

 basis pursuit denoise [Chen et al.’95]

 LASSO [Tibshirani’96]

Approaches

BPσ : min
x
‖x‖1 s.t. ‖y −Ax‖2 ≤ σ

QPλ : min
x

1
2
‖y −Ax‖2

2 + λ‖x‖1

LSτ : min
x

1
2
‖y −Ax‖2

2 s.t. ‖x‖1 ≤ τ
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One-norm solvers

iterative soft 
thresholding 
(IST)

iterative 
reweighted 
least-squares 
(IRLS)

spectral 
projected 
gradient for l1 
(SPGl1)

iterative soft 
thresholding 
with cooling 
(ISTc)

Pareto curve++++

[Hennenfent et al.‘08]
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Key elements

sparsifying transform
– typically localized in the time-space domain to handle the complexity of 

seismic data

advantageous coarse sampling
– generates incoherent random undersampling “noise” in the sparsifying 

domain

– does not create large gaps

• because of the limited spatiotemporal extent of transform elements used 
for the reconstruction

sparsity-promoting solver
– requires few matrix-vector multiplications

✓

✓

✓
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Model
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Regular 3-fold undersampling

Wednesday, April 23, 2008



Seismic Laboratory for Imaging and Modeling

CRSI from regular 3-fold undersampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 6.92 dB
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Random 3-fold undersampling
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CRSI from random 3-fold undersampling

SNR = 20 × log10

(

‖model‖2

‖reconstruction error‖2

)

SNR = 9.72 dB
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Optimally-jittered 3-fold undersampling
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CRSI from opt.-jittered 3-fold undersampling

SNR = 10.42 dB
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avg. spatial sampling:  10 m
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avg. spatial sampling:  10 m
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SNR = 7.79 dB
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(basic FK filtering )
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Conclusions

 new wavefield reconstruction method that handles both regular and 
irregular acquisition geometries

– curvelet reconstruction with sparsity-promoting inversion (CRSI) [Herrmann and 
Hennenfent‘08]

 extension of the fast discrete curvelet transform to handle irregular 
seismic data

– nonequispaced fast discrete curvelet transform (NFDCT) [Hennenfent and Herrmann‘06]

 new coarse sampling schemes that maximize performance of CRSI
– jittered undersampling schemes [Hennenfent and Herrmann‘08]

 new large-scale, one-norm solver
– iterative soft thresholding with cooling (ISTc) [Herrmann and Hennenfent’08, Hennenfent et 

al.‘08]
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Opportunities

 paradigm shift
– from an assumption of band-limited to sparse representation for seismic data

– from linear to nonlinear wavefield sampling theory

 design of advantageous coarse sampling schemes
– same image quality at a lower acquisition cost

– better image quality at a given acquisition cost
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Other applications

 Curvelet-domain primary-multiple separation
– sparsity promotion [Herrmann et. al. ’07, Saab ’07, Wang ‘08]

– primary-multiple matching [Herrmann et. al. ’08]

 Curvelet-domain migration amplitude recovery
– sparsity-promotion [Herrmann et. al. ’08b]

– image-remigrated-image matching [Herrmann et. al. ’08b]

– migration preconditioning 
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Primary-multiple separation

 Motivation
– residual multiple energy and inadvertent removal primaries are problematic

– Achilles’ heel is adaptive separation after prediction

– use curvelet-domain sparsimony and adaptivity

 New curvelet-domain technology
– uses non-agressive (SRME) prediction as input

– produces improved separation for primaries and multiples

 Three stages
– Single-term optimized SRME prediction for the multiples

– Curvelet-domain matching of predicted multiples with multiples in data

– Bayesian separation of matched multiples and primaries based on sparsity 
promotion
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Total data Predicted multiplesTotal data Predicted multiples
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SRME primaries Predicted multiplesOne-term SRME 
predicted primaries

Predicted multiples

Wednesday, April 23, 2008



Seismic Laboratory for Imaging and Modeling

Not scaled Bayesian Predicted multiplesBayesian estimate 
without matching

Predicted multiples
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Difference between SRME and scaled 
Bayesian 

Scaled Bayesian Difference between SRME and 
Bayesian with matching

Bayesian estimate with 
matching
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SRME primaries Scaled BayesianOne-term SRME 
predicted primaries

Bayesian estimate with 
matching
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Conclusions

 Nyquist sampling criterion is too pessimistic for seismic data 
processing

– new acquisition design based on controlled randomness

– leverages recent developments in wireless acquisition systems

 Application of curvelet-technology opens a tantalizing perspective 
of redesigning seismic processing flows via combination of

– sparsity promotion through norm-one optimization

– phase-space adaptation through curvelet matching

 By no longer combating sampling irregularity but by embracing it 
we open the possibility to supersede Nyquist’s criterion and further 
push the envelope ...
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